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1 Introduction

The aim of this paper is to define and discuss a class of representations of the
Cohomological Hall algebras.

1.1 Cohomological Hall algebras

The notion of Cohomological Hall algebra (COHA for short) for quivers with
potential was introduced in [KoSo5]1. Since quiver with potential defines a 3-
dimensional Calabi-Yau category (3CY category for short), it was expected that
COHA should exist for “good” abelian subcategories of 3-dimensional Calabi-
Yau categories endowed with additional data (most notably, with orientation
data introduced in [KoSo1]). Below we will give an informal description of the
construction.

Let k be a perfect field. Suppose C is a k-linear triangulated A∞-category,
which is ind-constructible and locally regular in the sense of Section 3 of [KoSo1].2.
It is explained in Section 3.2 of loc.cit that one can associate with C the ind-
constructible stack MC of objects of C. Local regularity implies that MC is
locally presented as an ind-Artin stack over k. Let A ⊂ C be an abelian sub-
category. Then we have an ind-constructible substackMA ⊂MC of objects of
A, which is locally ind-Artin.

The definition of COHA depends on an ind-constructible sheaf Φ onMC. In
the case of 3CY categories one takes Φ = φW , which is the sheaf of vanishing
cycles of the potentialW (we recall the definition of potential in Section 2.1). For
the sheaf of vanishing cycles to be well-defined onMC, the 3CY -category C has
to be endowed with an orientation data. The latter is an ind-constructible super
line bundle L overMC, such that for the fiber over a point ofMC corresponding
to an object E ∈ Ob(C) one has L⊗2

E = sdet(Ext•(E,E)). Furthermore, it is
required that LE behaves naturally on exact triangles (see [KoSo1], Section 5
for the details). It follows from local regularity that L is (locally) a line bundle
over an ind-Artin stack.

Let i : MA ⊂ MC be the natural embedding. Then the pull-back i∗(Φ)
is an ind-constructible sheaf on MA. Let Z ⊂ MA × MA be the “Hecke
correspondence”, which is the stack consisting of pairs of objects (E,F ) such
that E ⊂ F . There are projections pn : Z → MA, n = 1, 2, 3 such that
p1(E,F ) = E, p2(E,F ) = F, p3(E,F ) = E/F . We say that the abelian category
A is good if the projection p1 is locally a proper morphism of ind-Artin stacks.

As a vector space COHA of MA is defined as H := HA = H•(MA, i
∗(Φ)).

For that one chooses an appropriate cohomology theory of Artin stacks with
coefficients in constructible sheaves. The product m : HA ⊗ HA → HA is
defined by the formula p1∗ ◦ (p∗2 ⊗ p∗3)(i

∗(Φ) ⊗ i∗(Φ)). It is expected to be
well-defined in general due to the properness of p1.

1In fact we considered in the loc.cit. formally smooth algebras with potential.
2We can work over any field k, but Calabi-Yau categories which we will discuss later require

char(k) = 0. For simplicity we will often assume that k = C.
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Associativity of the product depends in general on the conditions we impose
on the sheaf Φ and the cohomology theory. We do not know those conditions
in general. For the sheaf of vanishing cycles Φ = φW the condition is the
Thom-Sebastiani theorem for the chosen cohomology theory.3

We will fix an abstract version of Chern character (called the class map in
[KoSo1]) i.e. a homomorphism of abelian groups cl : K0(C)→ Γ, where Γ ≃ Zn

is a free abelian group, such that connected components ofMC are parametrized
by Γ, while classes cl(E), E ∈ Ob(A) form an additive submonoid Γ+ ⊂ Γ. Then
COHA of A will be Γ+-graded algebra.

In the case of smooth algebras with potential considered in [KoSo5] the
stackMA is a countable union of smooth quotient stacks, and the foundational
questions are resolved positively. For some ideas about general case one can
look at [DyKap].

1.2 Stable framed objects and modules over COHA

Since the above approach to of COHA is somehow similar to the Nakajima’s
approach to construction of Kac-Moody algebras, it is natural to ask whether
one can realize representations of COHA in the cohomology groups of some
natural schemes (or stacks), which might also depend on a choice of stability
condition on A. Let us explain how it can be achieved.4

First we define the moduli space Mfr,st
γ , γ ∈ Γ+ of “ stable framed objects

of class γ” (those can be framed sheaves, framed representations of quivers,
framed Lagrangian submanifolds, etc.). This notion depends on a choice of
stability condition on A. It is expected (see [KoSo7]) that the constructible
sheaf Φ “descends” to each stackMfr,st

γ .
For a pair of “Chern classes” γ1, γ2 let us consider the Hecke correspon-

dence Zγ1,γ2
of pairs (Eγ1+γ2

, Eγ2
) (the subscripts denote the Chern classes) of

framed stable objects such that Eγ2
is a quotient of Eγ1+γ2

. Let us denote the
cohomology theory we used in the definition of COHA by H•. It descends to
each Mfr,st

γ . Furthermore, similarly to the definition of COHA we have three
projections of Zγ1,γ2

:
a) toMfr,st

γ2
;

b) to the moduli spaceMγ1
of all (not framed) objects with fixed γ1;

c) to Mfr,st
γ1+γ2

.
Using the pull-back and pushforward construction as in the previous sub-

section, we obtain a structure of HA = ⊕γH
•(Mγ),Φ-module over COHA of

A on the space ⊕γH
•(Mfr,st

γ ,Φ).
We will show in Section 3 that moduli stacks of stable framed objects are in

fact schemes. Hence graded components of our modules are finite-dimensional
vector spaces. Dropping the stability assumption we will still obtain a represen-
tation of COHA, but this time in the spaces with infinite-dimensional graded
components.

3As explained in Section 7 of [KoSo5], it is more convenient to work with compactly
supported cohomology and then apply the duality functor.

4We warn the reader that our moduli spaces are not Nakajima’s quiver varieties.
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1.3 Modules over COHA motivated by physics

COHA can be thought of as a mathematical incarnation of the notion of algebra
of (closed) BPS states envisioned in [HaMo1,2]. Motivated by the ideas of S.
Gukov (see e.g. [GuSto]) we would like to think about representations of COHA
described in the previous subsection as of representations of the algebra of closed
BPS states on the vector space of open BPS states. We are going to speculate
about applications of this point of view in the last section of the paper. We
plan to discuss this relationship more systematically in separate projects jointly
with E. Diaconescu, S.Gukov, N. Saulina.

Here we just mention three interesting classes of modules over COHA which
have geometric origin and should have interesting applications to gauge theory
and knot invariants:

a) Modules over COHA of the resolved conifoldX = tot(O
P1(−1)⊕OP1(−1))

realized in the cohomology of moduli spaces of C-framed stable sheaves in the
sense of [DiHuSo]. Those modules should have applications in the knot theory.

b) Modules over COHAs of the Fukaya categories of local Calabi-Yau 3-folds
associated with spectral curves of Hitchin integrable systems. Those should
serve as BPS algebras of the gauge theories from class S.

c) Modules over COHA realized in the cohomology of the moduli spaces of
(framed, possibly ramified) instantons on P2. We expect such representations
being motivated by the idea of geometric engineering. We also expect a link
between the algebras of Hecke operators proposed in [Nak1] and those proposed
in [So1]. The actual transformation should explain the appearance of COHA
on the “Calabi-Yau side” of geometric engineering and conventional (“motivic”)
Hall algebra on the “instanton side” (cf. also [SchV], [Sz2]). The relationship
between various classes of gauge theories should give non-trivial results about
corresponding COHAs and their representations (including the relationships
between our classes a), b), c)).

1.4 Contents of the paper

Section 2 is a reminder on COHA in the framework of quivers with poten-
tial. Section 3 is devoted to stable framed objects in triangulated and abelian
categories. In Section 4 we discuss representations of COHA realized in the
cohomology of the moduli spaces of stable framed representations. We also dis-
cuss a possibility to define “full COHA” which consists of two copies of ordinary
COHAs. In Section 5 we speculate about representations of COHA motivated
by knot theory and physics.

Acknowledgments. I thank to Emanuel Diaconescu, Sergei Gukov, Nigel
Hitchin, Mikhail Kapranov, Gabriel Kerr, Maxim Kontsevich, Hiraku Naka-
jima, Andy Neitzke, Olivier Schiffmann for stimulating discussions and corre-
spondences. The approach to the representation theory of COHA suggested
here was a subject of my discussions with Maxim Kontsevich. I also thank
IHES for excellent research conditions. This work is partially supported by an
NSF grant.
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2 Cohomological Hall algebra: reminder

This section is a reminder of some basic facts about the notion of Cohomological
Hall algebra. Most of the material is borrowed from [KoSo5], and we refer the
reader to loc.cit. for more details and proofs.

2.1 COHA and 3CY categories

Suppose we are given an ind-constructible 3-dimensional ind-constructible Calabi-
Yau category C over the field k, char(k) = 0 which is assumed to be locally
regular (see [KoSo1]). As explained in Section 3.2 of loc.cit. (and was already
mentioned in the Introduction), one can associate with such a category the stack
of objects, which is a countable union of schemes over k of finite type acted by
affine algebraic groups. For simplicity of the exposition we take the ground field
k = C.

Some examples of such categories are listed in the Introduction of [KoSo1].
They include various categories of D-branes popular in string theory (e.g. the
Fukaya category of a compact or local Calabi-Yau 3-fold, the category of perfect
sheaves on such a 3-fold, the category of finite-dimensional representations of a
quiver with potential, etc.).

Recall the approach to the construction of COHA already mentioned in the
Introduction. In order to define COHA one has to choose orientation data (see
[KoSo1], Section 5) on C as well as a “good” t-structure with the ind-Artin
heart. Let us denote it by A. The existence of mutation-invariant orientation
data is known for a class of 3CY categories, e.g. for those associated with
a quiver without potential (see [Dav]). There are partial existence results for
the derived category of coherent sheaves on a compact Calabi-Yau 3-fold (see
e.g. [Hu]). But the general case is still open. In present paper we will assume
the existence of the orientation data as a part of the “foundational questions”
package. Also, we do not discuss in detail the meaning of the notion of “good”
t-structure. As we mentioned in the Introduction, the latter includes properness
of the morphisms which appear in the definition of the product on COHA.

We assume the existence of the “class map” cl : K0(C) → Γ (see [KoSo1]),
where Γ ≃ Zn is a free abelian group endowed with integer skew-symmetric
form 〈•, •〉 (Poisson lattice). We assume that the class map respects the Euler
form χ(E,F ) =

∑
i(−1)idimExti(E,F ) on K0(C) and the form 〈•, •〉 on Γ.

The lattice Γ plays a role of topological K-theory of the category C. Finally,
we assume that we have fixed an additive submonoid Γ+ ⊂ Γ generated by
cl(E), E ∈ Ob(A).

When the above choices are made, one can define COHA of A as an associa-
tive algebra graded by Γ+. Graded components are given by the cohomology of
the moduli stacks of objects with the given class γ ∈ Γ with the coefficients in
the sheaf of vanishing cycles of the potential of C restricted to A.

For completeness we recall here the notion of potential of a 3CY cate-
gory. Using the A∞-structure on C as well as the Calabi-Yau pairing (•, •)
(see [KoSo1]) one defines the potential of an object E as a formal series:
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WE(a) =
∑

n≥1

(mn(a, ..., a), a)

n+ 1
,

wheremn are higher composition maps, and the element a belongs toHom1(E,E)
which is the subspace in the graded space Hom(E,E) consisting of elements of
degree 1. By our assumptions the potential WE is a locally regular function
with respect to E. Hence we have a partialy formal function W defined by the
family of series WE .

Remark 2.1.1. If C is “minimal on the diagonal” (see [KoSo1]), we can replace
Hom(E,E) by its cohomology with respect to the differential m1. In this case
we may assume that a ∈ Ext1(E,E), which can be thought of as the “tangent
space to the moduli stack of formal deformations of E”. Hence one can think of
the potential as a function on the moduli stack of objects which is locally regular
along the stack of objects (this follows from the “locally regular” assumption)
and formal in the transversal direction.

Then COHA is a Γ-graded vector space

H := ⊕γ∈ΓHγ ,

where Hγ = H•
Gγ

(Sγ ,Wγ), and Sγ is the stack of objects E such that cl(E) = γ.
Recall that we use an appropriate stack version of the cohomology theory
H•(X, f) of a scheme X endowed with a regular function f . There are sev-
eral choices for such theory. They are discussed in [KoSo5], where the above
approach made rigorous in the case of 3CY categories arising from quivers (more
generally, formally smooth algebras) with potential. A version of the cohomol-
ogy theory which is suitable in the framework of categories is called “critical
cohomology” in loc. cit. It is defined by means of the compactly supported co-
homology of X with coefficients in the sheaf of vanishing cycles of f . Sometimes
(e.g. for quivers with potential) the function f := W is regular. In such a case
one can use de Rham cohomology defined via the twisted de Rham differential
d + dW ∧ (•) or Betti cohomology which is generated by “integration cycles”
for the exponential differential forms of the type exp(W )ν. More generally, one
can define “motivic” version of COHA. In that case COHA H is an object of
the tensor category of exponential mixed Hodge structures, and the concrete
choice of the cohomology theory corresponds to a tensor functor to graded vec-
tor spaces (“realization”). It is explained in [KoSo5] that in all cases H carries
an associative algebra structure with “structure constants” defined by means
of the cohomology of Hecke correspondences with coefficients in the sheaves of
vanishing cycles for the potential W = (Wγ)γ∈Γ (cf. Introduction).

Let us illustrate the above considerations in the case of a quiver Q with
potential W , which is the main example in [KoSo5]. We set k = C. If I
is the set of vertices of Q then Γ = ZI ,Γ+ = ZI

≥0. For any γ = (γi)i∈I ∈
Γ+ we consider γ-dimensional representations of Q in coordinate vector spaces

(Cγi

)i∈I . It is an affine scheme Mγ naturally acted by the affine algebraic group
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Gγ =
∏

i∈I GL(γi,C). Then the corresponding stack of objects is a countable
union (over all dimension vectors γ ∈ Γ+) of algebraic varieties Crit(Wγ) of the
critical points of the functions Wγ = Tr(W ) : Mγ → C. As a graded vector
space COHA is the direct sum ⊕γ∈Γ+

Hbullet
Gγ

(Mγ ,Wγ).

2.2 COHA for quivers without potential

COHA is non-trivial even if W = 0. In the latter case

Hγ := H•
Gγ

(Mγ).

Since Mγ is equivariantly contractible, and Gγ is homotopy equivalent to its
maximal torus, one can use the toric localization and obtain an explicit formula
for the product which expresses COHA as a shuffle algebra. In the formula below
we identify equivariant cohomology of a point with respect to the trivial action
of the torus (C∗)n with the space of symmetric polynomials in n variables.

Theorem 2.2.1. The product f1 · f2 of elements fi ∈ Hγi
, i = 1, 2 is given by

the symmetric function g((xi,α)i∈I,α∈{1,...,γi}), where γ := γ1+γ2, obtained from
the following function in variables (x′i,α)i∈I,α∈{1,...,γi

1
} and (x′′i,α)i∈I,α∈{1,...,γi

2
}:

f1((x
′
i,α)) f2((x

′′
i,α))

∏
i,j∈I

∏γi
1

α1=1

∏γ
j
2

α2=1(x
′′
j,α2
− x′i,α1

)aij

∏
i∈I

∏γi
1

α1=1

∏γi
2

α2=1(x
′′
i,α2
− x′i,α1

)
,

by taking the sum over all shuffles for any given i ∈ I of the variables x′i,α, x
′′
i,α

(the sum is over
∏

i∈I

(
γi

γi
1

)
shuffles).

Here aij is the number of arrows in Q from the vertex i to vertex j.
For example, let Q = Qd be a quiver with just one vertex and d ≥ 0 loops.

Then the product formula specializes to

(f1 · f2)(x1, . . . , xn+m) :=

∑

i1,...,jm

f1(xi1 , . . . , xin
) f2(xj1 , . . . , xjm

)

(
n∏

k=1

m∏

l=1

(xjl
− xik

)

)d−1

for symmetric polynomials, where f1 has n variables, and f2 has m variables.
The sum is taken over all {i1 < · · · < in, j1 < · · · < jm, {i1, . . . , in, j1, . . . , jm} =
{1, . . . , n+m}. The product f1 ·f2 is a symmetric polynomial in n+m variables.
One can show that for even d the algebra is isomorphic to the infinite Grassmann
algebra, while for odd d one gets an infinite symmetric algebra.

We introduce a double grading on algebra H, by declaring that a homoge-
neous symmetric polynomial of degree k in n variables has bigrading (n, 2k+(1−
d)n2). Equivalently, one can shift the cohomological grading in H•(BGL(n,C))
by [(d−1)n2]. In general, even for quivers without potential each componentHγ

has also the grading by cohomological degree. Total Γ×Z-grading can be further
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refined, since Hγ carries the weight filtration (as an object of the category of
exponential mixed Hodge structures, see [KoSo5]). Hence typically COHA has
Γ×Z×Z-grading (which is not compatible with the product). More precisely, it
is shown in [KoSo5] that for W = 0 COHA is graded by the Heisenberg group.

Finally, we remark that in the case of Dynkin quivers there are other inter-
esting explicit formulas for the product in COHA (see [Rim]).

2.3 COHA for quiver A2

The quiver A2 has two vertices {1, 2} and one arrow 1← 2. The Cohomological
Hall algebra H of this quiver contains two subalgebras HL, HR corresponding
to representations supported at the vertices 1 and 2 respectively. Clearly each
subalgebra HL, HR is isomorphic to the Cohomological Hall algebra for the
quiver A1 = Q0. Hence it is an infinite Grassmann algebra. Let us denote the
generators by ξi, i = 0, 1, . . . for the vertex 1 and by ηi, i = 0, 1, . . . for the
vertex 2. Each generator ξi or ηi corresponds to an additive generator of the
group H2i(BGL(1,C)) ≃ Z · xi. Then one can check that ξi, ηj , i, j > 0 satisfy
the relations

ξiξj + ξjξi = ηiηj + ηjηi = 0 , ηi ξj = ξj+1ηi − ξjηi+1 .

Let us introduce the elements ν1
i = ξ0ηi , i > 0 and ν2

i = ξiη0 , i > 0. It is
easy to see that ν1

i ν
1
j + ν1

j ν
1
i = 0, and similarly the generators ν2

i anticommute.
Thus we have two infinite Grassmann subalgebras in H corresponding to these
two choices: H(1) ≃

∧
(ν1

i )i>0 and
H(2) ≃

∧
(ν2

i )i>0. One can directly check the following result.

Proposition 2.3.1. The multiplication (from the left to the right) induces iso-
morphisms of graded vector spaces:

HL ⊗HR
∼
−→ H, HR ⊗H

(i) ⊗HL
∼
−→ H , i = 1, 2 .

2.4 COHA for Jordan quiver with polynomial potential

Let us consider the quiver Q1 which has one vertex and one loop l (Jordan

quiver), and choose as the potential W =
∑N

i=0 cil
i, cN 6= 0 an arbitrary poly-

nomial of degree N ∈ Z>0 in one variable.
In the case N = 0, the question about COHA reduces to the quiver Q1

without potential. This case was considered before. The algebra H is the
symmetric algebra of infinitely many variables.

In the case N = 1 COHA is one-dimensional.
In the case N = 2 we may assume without loss of generality that W =

−l2. Then COHA H = H(Q1,W ) is the exterior algebra with infinitely many
generators (infinite Grassmann algebra). This can be shown directly.

In the case when the degree N > 3, one can show that the bigraded algebra
H is isomorphic to the (N−1)-st tensor power of the infinite Grassmann algebra
of the case N = 2.
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Basically the above examples are the only cases in which we know COHA
explicitly. On the other hand, generating functions for the dimensions of its
graded components (we call them motivic DT-series in [KoSo1,5]) are known in
many cases.

2.5 Stability conditions and motivic DT-invariants

Definition of COHA depends on the abelian categoryA (e.g. on the t-structure)
but does not depend on the central charge, which is a homomorphism of groups
Z : Γ→ C. This raises the question about the role of stability condition.

Having a central charge Z : Γ → C we can define a full subcategory A of
our category C generated by semistable objects with a central charge sitting in
a given strict sector V ⊂ R2 which has the vertex in the origin. For example,
we can take V = l to be a ray with the vertex at the origin. Taking V to be the
upper-half plane we arrive to a category which is the heart of a t-structure of
C. Only in these two cases the categories generated by semistables are abelian.

As explained in [KoSo5], for a fixed strict sector V , one can define a Γ-graded
vector space

H(V ) := ⊕γ∈ΓHγ(V ) .

But this space cannot be endowed in general with a structure of an associative
algebra (except of the case when V = l or V being an upper-half plane). The
problem is with properness of morphisms of the corresponding stacks.

It was observed in [KoSo5], Section 5.2 that the algebrasHl := H(l) “look as”
universal enveloping algebras of some Lie algebras gl which are analogous to the
“positive root” Lie algebras gα, α > 0 of Kac-Moody algebras. Then similarly to
the isomorphism U(n+) ≃ ⊗α>0U(gα) (which depends on a chosen order on the
set of positive roots) one should expect an isomorphism H(V ) ≃ ⊗l⊂VHl where
the tensor product is taken in the clockwise order over all rays in the sector V .
This was demonstrated in [Rim] in the case of Dynkin quivers without potential.
In particular, taking V to be the upper-half plane we obtain a factorization of
the COHA H into the tensor product of COHAs for individual rays. COHA for
each ray l is typically commutative. It can be computed from the knowledge of
space of semistable objects in the fixed t-structure whose central charges belong
to l. For a generic central charge we have two possibilities: either l does not
contain Z(γ) for γ ∈ Γ, or l contains only multiples nZ(γ0), n > 0 for some
primitive vector γ0 (an furthermore, only vectors nγ0, n ∈ Z>0 are mapped by
Z to l). In this case Hl is indeed commutative and can be computed explicitly
in many cases.

The notion of motivic DT-series (i.e. virtual Poincaré series of H) does
not depend on the central charge. On the other hand, motivic DT-invariants
Ωmot(γ) (they correspond in physics to refined BPS invariants) can be defined
only after a choice of stability condition (i.e. the central charge in case of
quivers). Definition of DT-invariants is based on the theory of factorization
systems developed in [KoSo5]. It follows from loc. cit. that the motivic DT-
series factorizes as a product of the powers of shifted quantum dilogarithms.
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Those powers are motivic DT-invariants.
As a side remark we mention that factorizations systems appear in different

disguises when mathematicians try to make sense of the operator product ex-
pansion in physics (we can mention e.g. the work of Beilinson and Drinfeld on
chiral algebras or Costello’s work on OPE in QFT). From this point of view it
is not clear why factorization systems appear in our story.

2.6 Generators of COHA

Definition of COHA depends on a choice of a t-structure. This means that for
different t-structures their COHAs are not necessarily isomorphic. For example,
if we start with a pair (Q,W ) consisting of a quiver Q with potential W and
make a mutation at a vertex i0 ∈ I, then COHA for the mutated pair (Q′,W ′)
is different from the one for (Q,W ). On the other hand we can compute motivic
DT-series for the mutated pair. As was explained in [KoSo1] and [KoSo5], if we
make a mutation at the vertex i0 ∈ I then the motivic DT-series for (Q,W ) and
(Q′,W ′) are related by the conjugation by the motivic DT-series corresponding
to the ray l0 = R>0 · Z(γi0) (which is essentially the quantum dilogarithm).
Thus the question arises: what should be called COHA for a triangulated 3CY
category C? We do not know the answer to this question, but we can see some
structures which should be incorporated in the definition.

For example, let us consider all COHAs corresponding to all possible muta-
tions. Let M be the orbit of the pair (Q,W ) under the action of the group of
mutations. Then to any m ∈M we can assign COHA Hm. More generally, we
can consider rotations Z 7→ Zeiθ of the central charge and get the corresponding
COHA Heiθ . This defines a structure of cosheaf of algebras over S1. Each stalk
is the COHA for the corresponding t-structure.

Next question is about the space of generators of COHA. Recall the following
conjecture from [KoSo5] which was proved by Efimov (see [Ef]). It is formulated
for symmetric quivers. Such quivers arise naturally in relation to 2-dimensional
Calabi-Yau categories and Kac-Moody algebras.

Theorem 2.6.1. Let H be the COHA (considered as an algebra over Q) for
the abelian category of finite-dimensional representations of a symmetric quiver
Q. Then H is a free supercommutative algebra generated by a graded vector
space V over Q of the form V = V ′ ⊗ Q[x], where x is an even variable of
bidegree (0, 2) ∈ ZI

≥0 × Z, and for any given γ the space V ′
γ,k 6= 0 is non-zero

(and finite-dimensional) only for finitely many k ∈ Z.

In general we expect (see [KoSo5] for the precise question) that H is isomor-
phic to the universal enveloping algebra of a graded Lie algebra V := V ′⊗C[x]
which satisfies the conditions of the Theorem 2.6.1. Mutations act on V , hence
we obtain a collection of vector spaces Vm (one for each t-structure m). From
the point of view the chamber structure of the space of stability conditions,
we can say that with every chamber we associate its own COHA. Change of
the chamber corresponds to the wall-crossing, which at the level of COHA is a
conjugation (with a shift of grading).
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3 Framed and stable framed objects

In this section we present a definition of stable framed objects following [KoSo7]
as well as a related construction of modules over COHA of the same authors
(unpublished).

3.1 Stable framed objects in triangulated categories

We recall the definition of stable framed object from [KoSo7] in the case of
triangulated categories. Then we discuss some versions in the case of abelian
categories.

Let C be a triangulated A∞-category over the ground field k, which we
assume to be an algebraically closed of characteristic zero. We fix a stability
condition τ ∈ Stab(C). Let Φ : C → Db(V ectk) be an exact functor to the
triangulated category of bounded complexes of k-vector spaces.

For a fixed ray l in the upper-half plane with the vertex at the origin, we
denote by Cl := Css

l the abelian category of τ -semistable objects having the
central charge in l. We will impose the following assumption: Φ maps Cl to the
complexes concentrated in non-negative degrees.

Definition 3.1.1. Framed object (or Φ-framed object, if we want to stress
dependence on the framing functor) is a pair (E, f) where E ∈ Ob(Cl) and
f ∈ H0(Φ(E)).

Let (E1, f1) and (E2, f2) be two framed objects. We define a morphism
φ : (E1, f1) → (E2, f2) as a morphism E1 → E2 such that the induced map
H0(Φ(E1)) → H0(Φ(E2)) maps f1 to f2. Framed objects naturally form a
category, and hence there is a notion of isomorphic framed objects.

Definition 3.1.2. We call the framed object (E, f) stable is there is no ex-
act triangle E′ → E → E′′ in C with E′ non-isomorphic to E such that both
E′, E′′ ∈ Ob(Cl) and such that there is f ′ ∈ H0(Φ(E′)) which is mapped to
f ∈ H0(Φ(E)).

Then one deduces the following result (see [KoSo7]), proof of which we re-
produce here for completeness.

Proposition 3.1.3. If (E, f) is a stable framed object then Aut(E, f) = {1}.

Proof. Let h ∈ Aut(E) satisfies the property that its image Φ(h) preserves
f . We may assume that h ∈ Hom0(E,E). We would like to prove that h = id.
Assume the contrary. Let h1 := h − id 6= 0. Then Φ(h1)(f) = 0. Since the
category Cl is abelian, the morphism h1 6= 0 gives rise to a short exact sequence
in Cl:

0→ Ker(h1)→ E → Im(h1)→ 0,

where Im(h1) 6= 0. Hence there exists an exact triangle E′ → E → E′′ in C
with E′ = Ker(h1) non-isomorphic to E and E′′ = Im(h1). Let us consider a
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short exact sequence in Cl given by

0→ Ker(h1)→ E → E → Coker(h1)→ 0,

where the morphism E → E is h1. Since the functor Φ is exact we get short
exact sequence of vector spaces

H0(Ker(Φ(h1)))→ H0(Φ(E))→ H0(Φ(E))→ H0(Ker(Φ(h1)))→ H1(Ker(Φ(h1)))→ ....

Let us remark that by the assumption that Φ maps Cl to complexes with
non-negative cohomology, we conclude that if E′ → E → E′′ is an exact triangle
then in the induced exact sequence

H−1(Φ(E′′))→ H0(Φ(E′))→ H0(Φ(E))→ ...

the first terms is trivial. Hence the functor H0Φ maps monomorphisms in Cl to
monomorphisms in the category V ectk of k-vector spaces.

Let us decompose h1 into a composition of the morphism ψ : E → Im(h1)
and the natural embedding j : Im(h1)→ E. Applying Φ, and using Φ(h1)(f) =
0 and the above remark we conclude that Φ(ψ)(f) = 0.

Finally, applying Φ to the short exact sequence

0→ Ker(h1)→ E → Im(h1)→ 0,

we obtain a short exact sequence in V ectk:

H0(Ker(Φ(h1)))→ H0(Φ(E))→ H0(Φ(Im(h1))),

where the last arrow is Φ(ψ). Since Φ(ψ)(f) = 0 we conclude that there ex-
ists f1 ∈ H0(Ker(Φ(h1))) which is mapped into f . This contradicts to the
assumption that the pair (E, f) is framed stable. The Proposition is proved. �

Corollary 3.1.4. The moduli stack of stable framed objects is in fact a scheme.

In many examples it is a smooth projective scheme.

3.2 Stable framed objects and torsion pairs

The above definitions can be repeated almost word-by-word, if we replace an
ind-Artin (or locally regular) triangulated category C by an ind-Artin abelian
category A. Then we have a definition of the framed and stable framed objects
in the framework of abelian categories. Let us discuss its relation to the notion
of torsion pair (see e.g. [H] for a short introduction).

Recall that a torsion pair for the abelian category A is given by a pairs
of two full subcategories T ,F ⊂ A such that Hom(T, F ) = 0 for any pair
T ∈ Ob(T ), F ∈ Ob(F) and such that any object E ∈ Ob(F) admits (a unique)
decomposition

0→ T → E → F → 0

12



with the same meaning of F and T . Here T is called the torsion part of E and
F is called the torsion-free part of E. The origin of the terminology is clear
from the theory of abelian groups or theory of coherent sheaves on curves.

Let us assume as before that our abelian categoryA is k-linear. Suppose we
are given a stability condition on A with the central charge Z. Fix θ ∈ (0, π).
Then the pair of full subcategories Tθ = {T ∈ Ob(A|Arg(Z(T )) > θ}, Fθ =
{F ∈ Ob(A|Arg(Z(F )) ≤ θ} defines a torsion pair for A (one can exchange
strict and non-strict inequality signs). Let us fix a non-zero object P ∈ Ob(A).
It defines a functor Fθ → V ectk given by Φ(E) = Hom(P,E). Framed objects
are pairs (E, f : P → E). Then we can give the following version of the notion
of stable framed object: (E, f) is stable framed if either f is epimorphism or
Coker(f) is a non-zero object of Tθ.

Then the above Proposition 3.1.3 still holds, and the proof is much simpler.

Proposition 3.2.1. The automorphism group of a stable framed object is triv-
ial.

Proof. Let h : E → E be an automorphism such that h ◦ f = f . Then
(h − id) vanishes on the image of f . If f is an epimorphism, we conclude
that h = id. Otherwise, assume h 6= id. Then (h − id) defines a non-trivial
morphism Coker(f) → E which contradicts to the assumption on Coker(f)
and the definition of torsion pair. Hence h = id. �

From this Proposition we again conclude that stable framed objects form a
scheme, not a stack.

Remark 3.2.2. Notice that in the proof of the Proposition 3.2.1 we did not
really use a fixed slope θ, we rather worked with an individual object E. Hence
we can give the following version of the notion of stable framed object for the
framing functor defined by means of an object P : stable framed object is a
pair (E, f) such that E is a non-zero object of category A, and f : P → E is a
morphism which is either an epimorphism or a morphism with non-zero cokernel
satisfying the condition that Arg(Coker(f)) > Arg(E) (we denote Arg(Z(E))
by Arg(E) to simplify the notation). Yet another possibility is to require that
all Harder-Narasimhan factors of E belong to Tθ (or require that all HN factors
of E has arguments strictly bigger than the Arg(E)). For all described versions
the Corollary 3.1.4 remains true.

3.3 Stable framed representations of quivers

Let k be an algebraically closed field.
In the case of quivers without potential there is a well-known way (exploited

by Nakajima and Reineke among others) to construct framed objects by adding
a new vertex i0 and di new arrows i0 → i for each vertex i ∈ I of the quiver Q. If
we denote byWi the vector space spanned by di arrows, then the framing functor
Φ assigns to a representation E = (Ei)i∈I the vector space

∏
i∈I Hom(Wi, Ei).

Let γ = (γi) ∈ ZI
≥0 be a dimension vector.
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Then a framed representation of Q is given by a representation of the ex-
tended quiver Q̂ with the set of vertices I ⊔{i0} of dimension (γi0 = 1, (γi)i∈I),
a collection of new di arrows i0 → i, i ∈ I, and the collection of linear maps
Wi → Ei.

Let us fix a central charge Z : ZI → C and a ray l := lθ = R>0e
iθ, 0 < θ ≤ π.

Then Cl is the category of semistables with the central charge in l. A framed
representation is stable framed if the following condition is satisfied (see e.g.
[Re1]):

the representation E of the quiver Q is semistable with central charge in l,
and satisfies the condition that it does not have a subrepresentation E′ which
contains the images of all vector spaces Wi, i ∈ I and has a bigger argument of
the central charge.

There are many versions of the above criterion. For example, one can start
with several additional vertices instead of just one. Also, one can restate the
above criterion in terms of stable representations of the extended quiver Q̂. The
later approach makes it clear why the notion of stable framed representation
can be thought of as a generalization of the notion of a cyclic representation.

Remark 3.3.1. For the quiver Q2 with one vertex and 2 loops there are no
nontrivial stability conditions. Then stable framed objects is the same as left
ideals of finite codimension in the path algebra of Q2. The moduli space of
stable framed objects is known as the non-commutative Hilbert scheme of k2.

4 Modules over COHA from stable framed ob-

jects

4.1 Quiver case

Let k be an algebraically closed field.
Let fix a quiver Q with the set of vertices I as well as a central charge

Z : ZI → C. We also fix a slope 0 < θ ≤ π and the corresponding ray
l = lθ = R>0 · e

iθ. In order to specify the framing we fix a collection (di)i∈I of
non-negative integer numbers. An additional (framing) vertex is denoted by i0.

The corresponding extended quiver will be denoted by Q̂ := Qi0((di)i∈I).

Given a dimension vector γ ∈ ZI
≥0 we denote by Mst

γ,(di)i∈I
:= M

st,l

γ,(di)i∈I
the

scheme of stable framed representations of dimension γ having Z(γ) ∈ l. We
denote by Mγ,(di)i∈I

:= Ml
γ,(di)i∈I

the bigger space of framed representations

(no stability conditions is imposed). The group Gγ =
∏

i GL(γi,k) acts freely
on Mst

γ,(di)i∈I
. We denote by V l

γ,(di)i∈I
= V θ

γ,(di)i∈I
the graded vector space

H•
Gγ

(Mst
γ,(di)i∈I

) = H•(Mst
γ,(di)i∈I

/Gγ).
Recall that with the ray l = lθ we can associate COHA

Hl = ⊕γ∈ZI
≥0

,Z(γ)∈lH
•
Gγ

(Mss
γ ).
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Let us denote by S := Sγ1,γ2,γ3,(di)i∈I
the scheme of short exact sequences

0→ E1 → E2 → E3 → 0

of such representations of the extended quiver Q̂ that dim(Ei) = γi ∈ ZI
≥0, i =

1, 2, 3, representation E1 is framed, E2, E3 stable framed, and the morphism
E2 → E3 is equal to the identity at the vertex i0.

There is a projection π13 : S → Mγ1
×Mst

γ3,(di)i∈I
which sends the short exact

sequence 0→ E1 → E2 → E3 → 0 to the pair (E1, E3), where we treat E1 as a
representation of Q. Similarly we have a projection π2 to E2. Notice that the
latter is a proper morphism of S to Mst

γ2,(di)i∈I
. Since the automorphism group

of the moduli space of stable framed objects is trivial, we see that the morphism
π2∗π

∗
13 gives rise to a map of cohomology groups

H•
Gγ1

(Mγ1
)⊗H•(Mst

γ3,(di)i∈I
)→ H•(Mst

γ2,(di)i∈I
).

Proposition 4.1.1. The above map gives rise to a (left) Hl-modules structure
on the vector space V l := V l

(di)i∈I
= ⊕γV

l
γ,(di)i∈I

.

Proof. Similar to the proof of associativity of the product on COHA given
in [KoSo5]. �

Remark 4.1.2. The above considerations can be generalized to the case of quiv-
ers with potential.

Example 4.1.3. In the case of the quiver Q2 (one vertex and two loops) and
d1 = 1 the moduli space Mst

γ,d1
, γ ∈ Z≥0 is the same as the moduli space of

representations of the free algebra k〈x1, x2〉 of dimension γ which are cyclic. In
other words, it is the moduli space of codimension γ ideals in the free algebra
with two generators, i.e. it is the non-commutative Hilbert scheme. The above
Proposition claims that it carries a structure of module over the COHA for Q2

(which is the infinite Grassmann algebra).

Consider as an example COHA H of a quiver which has at least one vertex i0
without loops. Then H is a module over the infinite Grassmann algebra (a.k.a
free fermion algebra) Λ•. Indeed, consider i0 as a quiver Q0 (one vertex, no
loops). We know that COHA of Q0 is Λ•. Since it is a subalgebra of H, it acts
on H by left multiplication.

Let Q be a quiver with the set of vertices I. Let us fix a set of non-negative
integers d = (di)i∈I (not all equal to zero)and the dimension vector γ = (γi)i∈I .

Then we have an extended quiver Q̂ with the set of vertices I ⊔ i0 and di arrows
from i0 to i ∈ I. For a fixed central charge Z : ZI → C the moduli space M

st,l
γ,d

of stable framed representations of Q of dimension γ such that Z(γ) ∈ l is a
non-empty smooth variety of pure dimension

∑
i∈I d

iγi−χ(d, d), where χ(α, β)
is the Euler-Ringel bilinear form of Q (see [EnRe], Prop. 3.6). Moreover it
admits a projective morphism to the moduli space of polystables with the fixed
slope.
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4.2 Representations of COHA in general case

Let A be “good’ abelian subcategory in the 3CY category C (see Introduction
and Section 2.1). We assume the conditions on the potential W which guarantee
existence o COHA of A as well as moduli spaces of stable framed objects. Then
considerations from the previous subsection can be generalized to this situation
provided A satisfies some extra conditions.

First we assume as before that we are given a class map cl : K0(A) → Γ,
where Γ ≃ Zn is a free abelian group. We assume that classes cl(E) of objects
of A belong to an additive monoid Γ+ which is mapped to Zn

≥0 under the above
identification Γ ≃ Zn.

Next, let us fix a ray l = R≥0 · eiθ in the upper half-plane, and a stability
function Z : Γ→ C such that Z(Γ+) belongs to the upper half-plane. Then we
have the category Al of semistables with the central charge in l. Let us fix the
framing functor Φ. Then we can speak about framed and stable framed objects.

Recall that there is a notion of morphism of framed objects (E2, f2) →
(E3, f3). An epimorphism (E2, f2) → (E3, f3) is a morphism in the category
of framed objects which induces a homomorphism H0(Φ(E2)) → H0(Φ(E3))
which sends f2 to f3 (see Section 3.1 for the notation).

Assume that E2 and E3 are semistable objects with central charges in the
ray l. Then the kernel of the epimorphism (E2, f2) → (E3, f3) of framed ob-
jects does not have to be framed. Let us consider the stack Zγ1,γ2

of triples
(E1, (E2, f2), (E3, f3)) where:

a) cl(E1) = γ1, and Z(γ1) ∈ l;
b) (E2, f2) is stable framed, cl(E2) = γ1 + γ2, Z(cl(E2) ∈ l;
c) (E3, f3) is stable framed, cl(E3) = γ2, Z(cl(E2) ∈ l;
d) there is a epimorphism of framed objects (E2, f2) → (E3, f3) such that

it induces (in the category of semistable objects with the central charge in l) a
short exact sequence

0→ E1 → E2 → E3 → 0.

Recall that stable framed objects with fixed class γ ∈ Γ+ form a scheme
which we denote by Mst,fr

γ . Then we have natural projections p2 : Zγ1,γ2
→

Mst,fr
γ1+γ2

and p3 : Zγ1,γ2
→Mst,fr

γ2
which are morphisms of stacks. Furthermore,

let Mγ denotes the moduli stack of objects of Al. Then we have the natural
projection p1 : Zγ1,γ2

→Mγ1
.

We will assume that:
i) if we consider the analog of the above situation with all fi = 0, i = 1, 2, 3

(i.e. we work just in the abelian category Al) then the restriction of p2 to
p−1
1 (E1) ∩ p

−1
3 (E3) is a morphism of smooth proper stacks;

ii) in general, for fixed E1 and (E3, f3) as above, the restriction of p2 to
p−1
1 (E1) ∩ p

−1
3 ((E3, f3)) is a morphism of smooth proper stacks.

By condition i) COHA Hl of the category Al is well-defined as an asso-
ciative algebra. For that we use the critical version of the cohomology from
[Koso5] with trivial potential. Furthermore, repeating the construction from
the previous subsection we obtain a structure of (left) Hl-module on V := V l =
⊕γ∈Γ+

H•(Mst,fr
γ ).
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Remark 4.2.1. More generally, we can construct modules over COHA by con-
sidering the stack of objects whose Harder-Narasimhan filtration has consecutive
factors with arguments of the central charge belonging to the interval [θ, π]. If
we have an exact short sequence

0→ E1 → E2 → E3 → 0,

such that Arg Z(E2) ∈ [θ, π] then Arg Z(E3) belongs to the same interval, while
Arg Z(Ea) ∈ [0, π]. Then we get a representation of COHA in the cohomology
of the stack of objects generated by semistables E such that Arg Z(E) ∈ [θ, π].

Similarly, one can show that if V is a strict sector in the plane then the
graded “Cohomological Hall vector space” H(V ) bounded from the left by a ray
l is a module over the COHA Hl associated with the ray.

Furthermore, suppose that our abelian category A is a “good” subcategory
of an ind-Artin 3CY category C endowed with orientation data. Let W be
the potential for C. It gives rise to the sheaf of vanishing cycles φW on the
stack of objects of C. Then the pull-backs of φW to the stack of objects of
A and subsequently to Mγ and Mst,fr

γ are well-defined. Then, similarly to
[KoSo5] (and under the above assumption), the above construction (but this
time with cohomolology groups with coefficients in φW ) gives rise to the module
V := V l = ⊕γ∈Γ+

H•(Mst,fr
γ , φW ) over the COHA Hl of Al. The details will

be explained elsewhere.

4.3 Hecke operators associated with simple objects

Recall that in the classical Nakajima construction of the infinite Heisenberg
algebra (see [Nak2]) one considers pairs of ideal sheaves (J2, J3) on a surface S
such that J2 ⊂ J3 and Supp(J3/J2) = {x}, where x is a fixed point. Then one
has an epimorphism OS/J2 → OS/J3. Let us compare this observation with the
above construction of modules over COHA. We see that a fixation of K-theory
classes γi, i = 1, 2 for the pair of objects (E2, E3) along with an epimorphism
E2 → E3 corresponds in the Nakajima’s construction to the fixation of ni, i =
2, 3 such that Ji ∈ Hilbni

(S) and to the above-mentioned epimorphism of the
quotient sheaves.

In the construction of the module structure on the cohomology of stable
framed objects we used the pushforward map associated with the projection to
the middle term in the moduli space of short exact sequences

0→ E1 → E2 → E3 → 0,

where E2, E3 are stable framed (we omit here fi, i = 2, 3 from the notation).
As a result, our construction gives rise to the “raising degree” operators Hγ1

⊗
Vγ2
→ Vγ1+γ2

for the COHA action H ⊗ V → V . There are no “lowering
degree” operators, which would correspond to the projection to the term E3 =
E2/E1. The reason is similar to the one in the Nakajima’s construction: such a
projection is not proper.
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Originally Nakajima solved the problem by considering points x ∈ S which
belong to a compact subset in S. We can use this idea and consider short exact
sequences as above, where E1 is a simple object which runs through a compact
(in analytic topology) subset in the moduli scheme of simple objects of our
abelian category A.

Let us illustrate the construction in the case of quivers without potential
and trivial stability condition. In that case stable framed objects are cyclic
modules over the path algebra of the quiver. Then we should prove that there
are sufficiently many cyclic modules with the fixed simple submodule and fixed
cyclic quotient. This is guaranteed by the following result.

Proposition 4.3.1. Let A be an associative algebra, (M2, v2), (M3, v3) be A-
modules with marked elements vi ∈Mi, i = 2, 3 such that v3 is a cyclic vector for
M3. Let f : M2 → M3 be an epimorphism of A-modules such that f(v2) = v3
and such that W = Ker(f) is a simple A-module. Suppose that the extension

0→W →M2 →M3 → 0

is non-trivial. Then v2 is a cyclic vector for M2.

Proof. Let M ′
2 ⊂M2 be the A-submodule generated by v2. If M ′

2 = M2 then
we are done. Otherwise we have a non-trivial epimorphism g : W →M2/M

′
2 of

A-modules. Its kernel is a submodule ofW . It must be trivial, sinceW is simple.
Hence g is an isomorphism. Then the submodules W and M ′

2 determine the
direct sum decomposition M2 = W ⊕M ′

2, where M ′
2 ≃M3. Hence the extension

0→W →M2 →M3 → 0 is trivial. This contradiction shows that v2 is a cyclic
vector. �

Corollary 4.3.2. For fixed W,M3 the stack of cyclic modules M3 which are
middle terms in the above short exact sequence is a smooth projective scheme
isomorphic to the projective space P(Ext1(M3,W )).

Proof. Follows from the Proposition. �

Remark 4.3.3. Similar result holds in case when M3 is stable framed and S is
simple.

Let nowMsimp :=Msimp
A be the moduli space of simple objects in the heart

A of the “good” t-structure of an ind-Artin 3CY category C endowed with ori-
entation data. ThenMsimp

A is a smooth separated scheme. Let H•
BM,c(M

simp)
denotes compactly supported Borel-Moore cohomology. As before we have two
projections π1, π3 from the schemes of short exact sequences to its first and last
term, i.e. to the moduli spaceMsimp of simple objects and to the moduli space
Mst of stable framed objects correspondingly. Then the composition π3,∗ ◦ π∗

1

defines a collection of operations on H•(Mst) parametrized by the elements
of H•

BM,c(M
simp). The above Proposition (or rather its analog for non-trivial

stability condition) ensures that the operations are well-defined. Differently
from the action of COHA defined in the previous subsection, these operations
decrease the degree γ ∈ Γ.
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Remark 4.3.4. Let us recall that for any i ∈ ±Z>0 Nakajima defines an op-
erator P [i] which corresponds to the i-th generator of the infinite Heisenberg
algebra. In the above discussion the operator P [i] corresponds to the direct sum
iS := S ⊕ S ⊕ ....⊕ S of ±i > 0 of copies of the simple object S.

Using the above construction one can extend a representation of COHA
to a representation of a bigger algebra, which we loosely call “full COHA” (or
double of COHA). We do not know how to define this algebra intrinsically. This
is similar to the Nakajima’s construction of the infinite Heisenberg algebra from
two representations of the symmetric algebra: one is given by creation operators
and another one is given by annihilation operators. Commuting creation and
annihilation representations in the representation space Nakajima recovers the
infinite Heisenberg algebra. One can also compare the above construction with
the one in [Re1].

Remark 4.3.5. Notice that differently from the the case of conventional Hall
algebras, we do not know a compatible comultiplication on COHA. Hence we
cannot apply directly the “Drinfeld double” construction of the double of Hopf
algebra.

We are going to consider a motivating example in the next subsection.

4.4 “Full” COHA-an example

It is well-known that one can construct finite-dimensional representations of
quantized enveloping algebra of finite-dimensional semisimple Lie algebras, us-
ing framed stable representations of quivers. Let us recall the construction in
the case of Uq(sl(2)).

In general, if take the stability function Θ = 0 then every finite-dimensional
representation of a quiver Q is semistable. Then the moduli space of stable
framed representations admit a simple description in terms of Grassmannians
(see e.g. [Re1], Prop. 3.9). Let us take quiver Q = A1. This quiver has one
vertex i1 and no arrows. Framing consists of adding a new vertex i0 and d
arrows i0 → i1. The stability function is trivial automatically, and one can
easily see that for each dimension vector γ ∈ Z≥0 the moduli space Mγ,d =
Mθ=0,st

γ of framed stable representations of dimension γ is isomorphic to the
Grassmannian Gr(d − γ, d) ≃ Gr(γ, d). Then it is non-empty only for γ ≤ d.
Let us denote by Gr(d) the “full Grassmannian” consisting of vector subspaces
of Cd of all dimensions (it is disconnected). Then the moduli space of d-framed
semistable representations of Q1 is Gr(d). Since for the trivial stability function
the COHA associated with a ray θ = 0 coincides with whole COHA, we obtain
a representation of the infinite Grassmann algebra Λ• in the finite-dimensional
vector space V := H•(Gr(d)) = ⊕0≤k≤dH

•(Gr(k, d)). One can write down
explicitly the action of the natural generators of Λ• on the cohomology classes
of Schubert cells.

The space of GL(d)-invariant functions with finite support Fun(Gr(d))GL(d)

is a module over the constructible Hall algebra of A1. The constructible Hall
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algebra for the quiver A1 is the polynomial algebra with one generator z := 1C,
where the generator z corresponds to the characteristic function 11 of M1 in
the stack M = ⊔γ≥0Mγ . Indeed the Hall product gives an isomorphism of the
constructible Hall algebra with the polynomial ring C[z]. In each Gr(k, d) we
have only one GL(d)-orbit of the standard coordinate vector subspace Ck ⊂ Cd.
Let us denote by vk, 0 ≤ k ≤ d the characteristic function of the corresponding
GL(d)-orbit.

Let us consider the “minus” Hecke correspondence given by pairs (Vk−1 ⊂
Vk) with 1-dimensional factor V1 and project to Vk−1:

0→ Vk−1 → Vk → V1 → 0.

Then by direct computation we obtain a representation of C[z] given by ρ−(z)vk =
qk−q−k

q−q−1 vk−1, 1 ≤ k ≤ d, and ρ−(z)v0 = 0, where the factor comes from the nor-

malization of the cocycle c(M,N) above as qχ(M,N). The Euler-Ringel form χ
on the pair of representations E of dimension a and F of dimension b is given by
χ(E,F ) = ab. Similarly, consider the “plus” Hecke correspondence (Vk ⊂ Vk+1)
and project to Vk+1. Then we get a representation of C[z] in Fn given by

ρ+(z)vk =
qk+1 − q−k−1

q − q−1
vk+1, 0 ≤ k ≤ d− 1, ρ+(z)vd = 0.

Combining ρ− and ρ+ together we obtain the standard d-dimensional repre-
sentation of the quantized enveloping algebra Uq(sl(2)) where the “positive”
generator E is represented by ρ−(z) while the “negative” generator F is repre-

sented by ρ+(z). Then the commutator [E,F ] maps vk to q2k−q2k

q−q−1 vk. From this

formula one can recover the action of the Cartan generators K,K−1.
Let us now consider COHA of the quiver A1. Recall, it is isomorphic to the

algebra Λ• = Λ•(ξ1, ξ2, ....), deg ξ2i+1 = 2i+ 1, i ≥ 0.
The general construction gives us a representation of COHA for the quiverA1

in the finite-dimensional vector space V := H•(Gr(d)) = ⊕0≤k≤dH
•(Gr(k, d)).

Let us choose a subspace in each H•(Fun(Gr(k, d))), 0 ≤ k ≤ d spanned
by the cohomology classes corresponding to (C∗)d-fixed points. We denote this
basis by ej := 1Cj1,...jk

(recall that the fixed points correspond to coordinate

subspaces Cj1,...jk
⊂ Cd spanned by the standard basis vectors fj1 , ..., fjk

, j1 <
j2 < ... < jk). We can identify the graded vector space V with the quotient
Λ•(ξ1, ..., ξd)/Id, where Id is the graded subspace (in fact ideal) spanned by
monomials ξi1 ∧ ...∧ ξil

, l ≥ d+ 1. Then we have standard representation of Λ•

in V by creation operators: a∗n : ej 7→ ξn ∧ ej.
We can consider another action of COHA on V by looking at the short exact

sequences
0→ E1 → E2 → E3 → 0,

where E1 and E2 are stable framed of the same slope, and E3 is just a represen-
tation without framing. This gives a representation of Λ• on V by annihilation
operators an : ej 7→ iξn

(ej), where iξn
is the contraction operator which delete

the variable ξn from the monomial ej.
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Then, as we discussed above in the case of constructible Hall algebra, one
can combine both actions of COHA into a single representation. In this way one
sees representations of the Lie algebras so(2d).5 One can speculate, that the
“full” COHA for the quiver A1 should be the infinite Clifford algebra Clc with
generators ξ±n , n ∈ 2Z + 1 and the central element c, subject to the standard
anticommuting relations between ξ+n (resp. ξ−n ) as well as the relation ξ+n ξ

−
m +

ξ−mξ
+
n = δnmc. In the case of finite-dimensional representations c 7→ 0 and we

see two representations of the infinite Grassmann algebra, which are combined
in the representations of the orthogonal Lie algebra. It is also tempting to
speculate, that Clc is the Clifford algebra associated with the positive part of
the affine Lie algebra sl(2) (hence the relation to the quiver A1).

The general construction of “full” COHA for arbitrary quiver with potential
is not known.

5 Representations of COHA motivated by physics

and geometry

In this section we are going describe some interesting classes of representations
of COHA. Details of the constructions will appear elsewhere. The reader can
consider this section as a collection of speculations. The details will appear
elsewhere.

5.1 Fukaya categories of conic bundles and gauge theories

from class S

We illustrate here general considerations in the case of SL(2) Hitchin integrable
systems. In that case the general conjecture (F.1) from the Introduction of
[ChDiManMoSo] admits a very precise interpretation. Namely, with a point of
the universal cover of the base of Hitchin system on a curve, say, C one can asso-
ciate a compact Fukaya category (“compact” means that it is generated by local
systems supported on compact Lagrangian submanifolds) of the local Calabi-
Yau 3-fold. The latter is uniquely determined by the corresponding spectral
curve. The compact Fukaya category is endowed with the natural t-structure
generated by SLAGs which are 3-dimensional Lagrangian spheres. The central
charge of the corresponding stability condition is given by the period map of the
Liouville form restricted to the spectral curve. According to the general theory
developed in Section 8 of [KoSo1] categories generated by spherical collections
are in one-to-one correspondence with pairs (Q,W ), i.e. quivers with potential.
Hence we can speak about corresponding COHA, in particular, about represen-
tations in the cohomology of stable framed objects of the category Crit(W ).

Recall that surface operators correspond to points of the curve C. In terms
of the corresponding local Calabi-Yau 3-fold they are complex 2-dimensional
manifolds. Hence one can look for the the moduli space of SLAGs with the

5I thank to Xinli Xiao for making explicit computations.
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boundary which belongs to a complex surface inside of our local Calabi-Yau
3-fold. This can be thought of as the Fukaya-Seidel category of thimbles (see
[Se]).

Furthermore, the operation of connected Lagrangian sum plays a role of an
extension in the compact Fukaya category. This operation underlies the product
structure on the COHA HQ,W . Let us observe that one can form a connected
Lagrangian sum of a Lagrangian submanifold without boundary and the one
with the boundary on a fixed complex surface. Mimicking the definition of
the product on COHA with the “moduli space of Lagrangian connected sums”
instead of the subvariety Mγ1,γ2

⊂ Mγ1+γ2
(see [KoSo2], Section 2), one ob-

tains the HQ,W -module structure on the cohomology of the moduli space of
SLAGs with the boundary on the fixed complex surface in our local Calabi-Yau
3-fold. Alternatively, following Paul Seidel, one can consider the double cover
of the Calabi-Yau 3-fold branched along the divisor given by the complex sur-
face. Then Lagrangian submanifolds with boundary lift to closed ones in the
branched cover. One can form an equivariant Lagrangian connected sum, and
then interpret that as an operation on the original Lagrangian submanifolds
with boundary.

5.2 Resolved conifold and quivers

Let X = tot(O(−1) ⊕ O(−1)) be the resolved conifold. We denote the zero
section of the corresponding vector bundle by C0 ≃ P1. Let us fix a point
p0 := 0 ∈ C0.

LetA be the abelian category of perverse coherent sheaves onX topologically
supported on C0 (see e.g. [NagNak], [Tod] for descriptions convenient for our
purposes; in [NagNak] our category A was denoted by Perc(X/Y ), where X →
Y is the crepant resolution of the conifold singularity Y = {xy − zw = 0}).

It is known (see e.g. [NagNak]) that A is equivalent to the abelian category
Crit(W ) associated with the pair (Q,W ), where Q is a quiver with two vertices
i1, i2 two arrows a1, a2 : i1 → i2, two arrows b1, b2 : i2 → i1 and “Klebanov-
Witten potential”W = a1b1a2b2−a1b2a2b1. In particular, for any γ = (γ1, γ2) ∈
Z2
≥0 the stack of objects of Crit(W ) of dimension γ is equivalent to the stack

of such representations of Q of dimension γ in coordinate vector spaces, which
belong to the critical locus of the function Tr(W ).

We recall that the category of perverse coherent sheaves carries a family of
geometrically defined weak stability conditions (see e.g. [Tod]). In the case of the
category Crit(W ) there is a class of (slope) stability conditions. The equivalence
of two categories leads to the “chamber” structure of the space of stability
conditions on A described in [NagNak]: some of the (infinitely many) chambers
correspond to the stability conditions of the quiver origin, while “at infinity”
we have chambers corresponding to different choices of the weak stability.

Similar story is with framed perverse coherent sheaves and framed represen-
tations of (Q,W ) (i.e. critical points of Tr(W ) considered as a function on the

space of representations of the extended quiver Q̂ obtained from Q by adding
an extra vertex i0 and an arrow i0 → i1.)

22



In particular, when we are in the “quiver chamber”, we can (after a choice
of a stability condition on A which belongs to the above class) speak about the
moduli space of stable framed objects of the fixed slope. For a given (l, n) ∈
Z≥0 × Z and certain choice of stability condition on Rep(Q), and certain slope
θ which depends on (l, n), the space of stable framed representations of (Q,W )
with the slope θ is isomorphic to the moduli space of PT stable pairs P (l, n)
(see [NagNak]). There is no unique θ which serves all (l, n).

It follows from the previous section that:

Proposition 5.2.1. For a choice of stability conditions in the “quiver cham-
ber”, COHA H(Q,W ) acts on the cohomology of the moduli space of stable framed
representations of (Q,W ) having fixed slope.

Let us observe that if we have a morphism f : E2 → E3 of PT stable pairs
which is surjective in degree zero (i.e. on the sheaves supported on C0) then
Ker(f) is a coherent sheaf scheme-theoretically supported on C0. Passing to the
cohomology groups we reformulate the above Proposition by saying that COHA
of the corresponding category acts on the cohomology of the moduli space of
stable PT pairs. We expect the same result to hold for “geometric chambers”
were one uses weak stability conditions.

5.3 Vertically framed sheaves

There is a potential application of the representation theory of COHA of the
resolved conifold to knots. It is motivated by the conjecture from [ORS], its
reformulation in [DiHuSo] and the proof in [Mau1] of the “unrefined” version.

If we would like to incorporate algebraic knots in the story, we should add
coherent sheaves on X supported on a singular algebraic curve CK which defines
the knot via the intersection with the S3-boundary of a small ball around the
singularity. More precisely we consider coherent sheaves which are “vertically
framed” along CK (see details [DiHuSo]). Stable vertically framed coherent
sheaves provide a natural generalization to stable pairs from [PT1] (this is jus-
tified at the level of physics in [DiShVa]). In the language of gauge theory
inclusion the curve CK to the story corresponds to a choice of surface operator.

Let us recall some details following [DiHuSo].
Let X = tot(O(−1)⊕O(−1)) be the resolved conifold, C a planar complex

algebraic curve with the only singular point p. In [DiHuSo] the authors used
the abelian category of C-framed perverse coherent sheaves which is a full sub-
category AC ⊂ Db(Coh(X)). Roughly speaking, AC consists of complexes E
of coherent sheaves on X such that the cohomology sheaves Hi(E) are non-
trivial for i ∈ {0,−1} only, and those cohomology sheaves are topologically
supported one the union C ∪ P1 (see loc.cit. Section 2.2 and below for more
precise description). The category AC is closed under extensions. Since it is a
full subcategory of the category of perverse coherent sheaves A ⊂ Db(X), it was
used in the loc. cit. for developing the theory of C-framed stable pairs analo-
gous to the one of stable pairs of Pandharipande and Thomas (the latter can
be interpreted in terms of A, see e.g. [Tod]). After fixing Kähler class ω on the
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compactification X defined in [DiHuSo] one defines a family of weak stability
conditions on AC associated with an explicitly given family of slope functions
µb := µ(ω,bω). Then one can speak about C-framed (semi)stable sheaves, mean-
ing weakly (semi)stable objects of AC with respect to the slope function µb.
6 For “very negative” value of b the moduli space Ps

b (X,C, r, n) of C-framed
µb-stable objects E with ch(E) = (−1, 0, [C] + r[P1], n) is isomorphic to the
moduli space of stable framed pairs on X in the sense of Pandharipande and
Thomas which are C-framed. If we move the value of b from b = −∞ to a
small positive number (which depend on r) the above moduli space of µb-stable
objects experiences finitely many wall-crossings. One of the main results of [Di-
HuSo] is a theorem which relates the moduli space of µb-stable objects of AC for
small b > 0 with the punctual Hilbert schemes from [ORS], thus making a link
to HOMFLY polynomials of algebraic knots. The moduli space Pss

b (X,C, r, n)
of µb semistable objects is a C∗-gerbe over Ps

b (X,C, r, n).
Let us fix (r, n) ∈ Z≥0 × Z and consider the full subcategory AC

r,n ⊂ A
C

consisting of objects E such that ch(E) = (−1, 0, [C] + r[P1], n). Let E1 be a
pure dimension one sheaf on X supported on P1 (hence it belongs to AC as
well), and let E3 ∈ Ob(AC

r3,n3
). Then we see that the middle term E2 of an

extension in AC

0→ E1 → E2 → E3 → 0

belongs to AC
r2,n2

for some r2, n2.

Let MC := ∪r,nMC
r,n be the moduli space (stack) of the objects E which

belong the category AC
r,n for some r, n. LetMP

1

be the moduli space (stack) of
objects of the category CohP1(X) of coherent sheaves on X supported on P1.
Let N be the moduli space (stack) of short exact sequences as above. We have

the following projections: π13 : N →MC ×MP
1

, (E1, E2, E3) 7→ (E1, E3) and
π2 : N →MC , (E1, E2, E3) 7→ E2.

Then we can apply the same procedure as for framed representations of
quivers using the composition π2∗π

∗
13. Then e.g. in the case of COHA it gives us

the module structure H•(MP
1

)⊗H•(MC)→ H•(MC) over the COHA of the
category CohP1(X), where by H• we denote an appropriate stack cohomology.

Now we can use the weak stability condition defined by the slope function
µb. More precisely, let us choose a stability parameter b satisfying the condition
(3.1) of Lemma 3.1 from [DiHuSo] and consider µb-semistable objects E of AC

such that ch(E) = (−1, 0, [C] + r[P1], n), where (r, n) ∈ Z≥0 × Z is fixed, and
P1, as before, denotes the zero section of the resolved conifold bundle. Then we
can repeat the above definition but this time in the exact sequence

0→ E1 → E2 → E3 → 0

we will assume that E2 and E3 are weakly semistable objects with respect to
µb, and E1, as before, is an arbitrary coherent sheaf on X supported on P1.

6In [DiHuSo] the authors considered stable vertically framed sheaves on the compactifica-
tion X. The corresponding moduli spaces were projective. Considerations with non-compact
submanifold X gives rise to quasi-projective moduli spaces. We ignore these technicalities in
this paper.
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There is an explicit description of µb-semistable and µb-stable objects of
AC

r,n for sufficiently small positive b given in [DiHuSo], Section 3. For example
a µb-stable object E fits into an exact short sequence

0→ EC → E → OP1(−1)r → 0,

where EC = (OX → FC) is a stable pair onX in the sense of Pandharipande and
Thomas, with the sheaf FC scheme theoretically supported on C (and satisfying
some non-degeneracy conditions, see [DiHuSo], Proposition 3.3 for the details).
Similarly, any µb-semistable object fits into an exact sequence where instead of
OP1(−1)r one has a sheafG topologically supported on P1 (and ch2(G) = r[P1])
which is a direct image (under the embedding i : P1 → X) of the vector bundle
⊕1≤j≤mO(aj)

rj with a1 > ... > am ≥ −1. The Harder-Narasimhan filtration of
G (with respect to the ω-slope defined by χ(G)/r) therefore have consecutive
factors with slopes aj/r.

The above considerations lead to the idea of using C-framed stable sheaves
as “ stable framed objects” which should give rise to representations of COHA
of X similarly to the case of quivers (and PT stable pairs). At this time it is
not clear how far this idea can be developed. Indeed, computations made by E.
Diaconescu, show that if in the short exact sequence 0→ F → E1 → E2 → 0 the
terms E1, E2 are C-framed stable then F is isomorphic to O(−2)n. Probably,in
order to obtain interesting representations, one should also include short exact
sequences of the type 0 → E1 → E2 → F → 0, where E1, E2 are C-framed
stable. This should lead to the representation of “full” COHA (see below). We
expect that it will be affine sl(2).

Remark 5.3.1. The above story with C-framed sheaves is related to algebraic
knots. As for the general knots, we expect that the following is true.

Recall that the resolved conifold X is a non-compact Calabi-Yau 3-fold. For
any non-compact real analytic Lagrangian submanifold L ⊂ X with “good be-
havior at infinity” we expect to have a well-defined stack Coh≤1(X,L) of real
analytic sheaves on X (considered as real analytic manifold) with the following
properties:

a) Every F ∈ Coh≤1(X,L) has topological support, which is an immersed
2-dimensional real-analytic submanifold of X. Moreover, the support without
boundary is an immersed non-compact complex analytic curve. The restriction
of F to the complement of the boundary is a a coherent sheaf on the correspond-
ing complex manifold.

b) The boundary of the support of each F ∈ Coh≤1(X,L) belongs to L.
c) The stack Coh≤1(X,L) is a countable union of real-analytic stacks of finite

type. It is naturally the stack of objects of the abelian category of real-analytic
sheaves on X satisfying conditions a) and b).

In particular, sheaves F with pure support are those for which the support is
an immersed “bordered Riemann surfaces” in the sense of [KatzLiu].

We expect that despite of the analytic nature of objects, there is a theory
of stability structures for this category, as well as the notion of stable framed
object.
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Notice that we can consider extensions 0 → F → E1 → E2 → 0, where
E1, E2 are objects of Coh≤1(X,L), while F is the usual coherent sheaf on X
with support on C0 = P1. We expect that this operation leads to the action of
COHA on the cohomology of framed stable objects in Coh≤1(X,L), similarly to
the case of C-framed stable sheaves.
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