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Abstract

In this paper, we study gradient Ricci expanding solitons ðX ; gÞ satisfying

Rc ¼ cgþD2f ;

where Rc is the Ricci curvature, c < 0 is a constant, and D2f is the Hessian of the

potential function f on X . We show that for a gradient expanding soliton ðX ; gÞ with

non-negative Ricci curvature, the scalar curvature R has at most one maximum point on

X , which is the only minimum point of the potential function f . Furthermore, R > 0

on X unless ðX ; gÞ is Ricci flat. We also show that there is exponentially decay for

scalar curvature on a complete non-compact expanding soliton with its Ricci curvature

being e-pinched.

1. Introduction

In this paper, we continue our study on Ricci solitons [8], which are special
solutions generated by one parameter family of di¤eomorphisms to Ricci flow
introduced by R. Hamilton in 1982 [7]. Ricci flow enjoys a remarkable property
to improve Riemannian metrics on 3-manifolds (see [5] and [10]). It is an
interesting and challenging subject to better understand the special solutions such
as Ricci solitons to Ricci flow.

We assume in this paper that ðX ; gÞ is a gradient expanding soliton. Here is
the definition of the gradient expanding soliton.

Definition 1. We call a Riemannian manifold ðX ; gÞ a gradient expanding
soliton (in short, just call it an expanding soliton) if there is a smooth solution f
on a Riemannian manifold ðX ; gÞ such that for some constant c < 0, it holds the
equation

Rc ¼ cgþD2f ;ð1Þ
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on X , where D2f is the Hessian matrix of the function f and Rc is the Ricci
tensor of the metric g. We call the function f the potential function for the
soliton ðX ; gÞ. If c > 0 in (1), ðX ; gÞ is called a shrinking soliton; if c ¼ 0, ðX ; gÞ
is called a steady soliton.

In the study of Ricci flow, we often meet the following definition.

Definition 2. The Ricci curvature of a Riemannian manifold ðX ; gÞ is
called e-pinched if there is some e > 0 such that the scalar curvature R > 0 on X
and

Rcb eRg

on X .

Throughout this paper, we shall assume that the Riemannian manifold ðX ; gÞ
is a complete non-compact Riemannian manifold of dimension nb 3. We
denote by R the scalar curvature of the metric g.

Our main result is the following

Main Theorem. Assume that the Ricci curvature of the gradient expanding
soliton ðX ; gÞ is non-negative. Then the scalar curvature R has at least one
maximum point on X , which is the only assumed minimum point of the potential
function f . Furthermore, R > 0 on X unless ðX ; gÞ is Ricci flat.

The proof of this Theorem will be proved in section 3.
In section four, we will prove the following result

Theorem 3. Assume that ðX ; gÞ is a gradient expanding soliton with its Ricci
curvature being e-pinched. Then its scalar curvature has the decay

RðsÞaRðoÞeCs�Cs2 :

as the distance function s from a fixed point going to infinity, i.e., s ¼ dðx; oÞ !
þy.

We remark that a similar but weaker decay result has been announced by
L. Ni in Proposition 3.1 in [9]. We know the result for a while, and a reason for
the delay of this present is that we try to prove non-existence of this kind of
expanding solitons. However, it is still an open problem.

Throughout C will denote various uniform constants in di¤erent places.

2. Preliminary

We recall first some basic properties about Ricci solitons [7].
Taking the trace of both sides of (1), we have

R ¼ ncþ Df :ð2Þ
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Take a point x A X . In local normal coordinates ðxiÞ of the Riemannian
manifold ðX ; gÞ at a point x, we write the metric g as ðgijÞ. The corresponding
Riemannian curvature tensor and Ricci tensor are denoted by Rm ¼ ðRijklÞ and
Rc ¼ ðRijÞ respectively. Hence,

Rij ¼ gklRikjl

and

R ¼ gijRij :

We write the covariant derivative of a smooth function f by Df ¼ ð fiÞ, and
denote the Hessian matrix of the function f by D2f ¼ ð fijÞ, where D the co-
variant derivative of g on X . The higher order covariant derivatives are denoted
by fijk, etc. Similarly, we use the Tij;k to denote the covariant derivative of the
tensor ðTijÞ. We write T i

j ¼ gikTjk. Then the Ricci soliton equation is

Rij ¼ fij þ cgij :

Taking covariant derivative, we get

fijk ¼ Rij;k:

So we have

fijk � fikj ¼ Rij;k � Rik; j:

By the Ricci formula we have that

fijk � fikj ¼ Rl
ijk fl :

Hence we obtain that

Rij;k � Rik; j ¼ Rl
ijk fl :

Recall that the contracted Bianchi identity is

Rij; j ¼
1

2
Ri:

Upon taking the trace of the previous equation we get that

1

2
Ri þ Rk

i fk ¼ 0;

i.e.,

Rk ¼ �2R j
k fj:ð3Þ

Then at x,

DkðjDf j2 þ Rþ 2cf Þ ¼ 2fjð fjk � Rjk þ 2cgjkÞ ¼ 0:

So,

jDf j2 þ Rþ 2cf ¼ M;ð4Þ
where M is a constant.
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In the remaining part of this section, we assume that there is for some
constant C > 0 such that 0aRcaC on the expanding soliton ðX ; gÞ. Then we
have jD2f jaC on X . Assume f b 0 and that o is a critical point of the
potential function f . Then using the Taylor’s expansion, we have

f ðxÞaCd 2ðx; oÞ:
We now study the behavior of the potential function along a minimizing

geodesic curve on the expanding soliton. A similar work has been done by G.
Perelman [10] (see also [6]) where he tries to give some uniform bounds on
potential function f on a shrinking soliton. Fix a point o A X . Take any
minimizing geodesic curve gðsÞ connecting x and the fixed point p, where s is the
arc-length parameter. Write by r ¼ dðx; oÞ and X ¼ g 0ðsÞ. Assume that r > 2.
Let fYig (i ¼ 1; . . . n� 1) be an orthonormal parallel vector fields along g. Let
Y be an orthogonal vector field along the curve g vanishing at end points. Then
the second variational formula [11] (see also [1]) tells us thatð r

0

ðjY j2 � hRðX ;Y ÞY ;XÞÞ dsb 0:

Take Y to be sYi on ½0; 1�;¼ Yi on ½1; r� r0� where 1 < r0 < r, and
r� s

r0
Yi.

Adding over i gives thatð r

0

RcðX ;XÞaC0ðr0Þ þ
n� 1

r0
�
ð r

r�r0

r� r0

r0

� �2

RcðX ;XÞ ds;

which implies that for some constant C > 0,ð r

0

RcðX ;XÞaC:ð5Þ

Note thatð r

0

RcðX ;Y1Þ ds
� �2

a r

ð r

0

jRcðX ;Y1Þj2 dsa s
X
i

ð r

0

jRcðX ;YiÞj2 ds:

Thinking of Rc as self-adjoint linear operator on TX and taking a point-wise
orthonormal frame fejg as eigenvectors of Rc ¼ ð0 ljÞ, we have that

R ¼
X
j

lj

and for X ¼
P

j Xjej,

X
i

jRcðX ;YiÞj2 ¼ hX ;Rc2Xi ¼
X
j

l2j X
2
j aRRcðX ;X Þ:

Then, ð r

0

RcðX ;Y1Þ ds
� �2

aCs

ð r

0

RcðX ;X ÞaC 2s:
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Hence, for any unit vector field Y along g, orthogonal to X , we haveð r

0

RcðX ;Y Þ dsaCð
ffiffi
s

p
þ 1Þ:

Using (1) we have

d 2f ðgðsÞÞ
ds2

¼ RcðX ;XÞ � cb�c;

and

dðYf ÞðgðsÞÞ
ds

¼ RcðX ;YÞ:

Then we have

df ðgðsÞÞ
ds

b
df ðgðsÞÞ

ds
ð0Þ � csb�csþ C

and for s > 2,

jðYf ÞðgðsÞÞja jðYf Þðgð0ÞÞj þ
ð s

0

jRcðX ;YÞj dsaC
ffiffi
s

p
:ð6Þ

Therefore, we can conclude that at large distance from o the potential function f
has its gradient making small angle with the gradient of the distance function
from o.

3. Proof of Main Theorem

We now give the proof of Main Theorem: Assume that Rcb 0 on X .
Then for any constant c < 0 we have Rc� cg > 0 on X . By (1) we know that

D2f ¼ Rc� cgb�cg > 0; on X :

Then the potential function f is locally strictly convex. Since ðX ; gÞ is a com-
plete non-compact Riemannian manifold, we have that f has at most one critical
point, i.e., the point where ‘f ¼ 0. Using D2f > 0, we know that if p A X is the
critical point of f , then it is a non-degenerate minimum point of f .

Note that along any minimizing geodesic curve gðsÞ connecting x and the
fixed point p, where s is the arc-length parameter, we have

h‘f ; g 0ðsÞijs0 ¼
ð s

0

fij
dg i

ds

dg j

ds
dsð7Þ

¼
ð s

0

ðRij � cgijÞ
dg i

ds

dg j

ds
ds

¼ �csþ
ð s

0

Rij

dg i

ds

dg j

ds
ds

b�cs > 0
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This implies that f ðgðsÞÞ is growing at infinity at least the quadratic rate �c of
the distance function. Then f has at least a minimum point in X .

Assume that o is the only critical point of f . Then by adding a constant,
we can assume that and f ðoÞ ¼ 0 and f > 0 on X � fog. Using (4), we know
that

M ¼ jDf j2ðoÞ þ RðoÞ þ 2cf ðoÞ ¼ RðoÞ:
Using (3) we know that o is also the critical point of R.

Let x A X � fog. Taking a minimizing geodesic curve gðsÞ connecting x
and the fixed point o, where s is the arc-length parameter, we again have by using
(7)

h‘f ; g 0ðsÞi > �cs > 0:

This implies that the integral curves of ‘f in X � fog emanating from the point
o to infinity. Take a integral curve sðtÞ ‘f in X � fog. Then by (3) we have

d

dt
RðsðtÞÞ ¼ Ri fi ¼ �2Rcð‘f ;‘f Þa 0:ð8Þ

Hence RðxÞaRðoÞ for all x A X � fog. So, o is a maximum point of R.
By this we conclude that

Assertion 4. Assume that the Ricci curvature of the gradient expanding
soliton ðX ; gÞ is non-negative positive. Then the scalar curvature R has at most
one maximum point of R, which is the only critical point of the potential function
f .

If RðoÞ ¼ 0, then R ¼ 0 on X . Hence Rc ¼ 0 on X , that is to say that
ðX ; gÞ is Ricci flat. So we have RðoÞ > 0. By the local strong maximum
principle, we must have R > 0 on the whole space X .

This finishes the proof of Main Theorem.
In the remaining part of this section, we consider the behavior of f at

infinity. Since

jDf jðxÞ2 þ 2cf ðxÞ ¼ RðoÞ � RðxÞb 0;

we get that

jDf j2 b�2cf ¼ 2jcj f :
Then we have

jD
ffiffiffi
f

p
jb

ffiffiffiffiffi
jcj
2

r
;

at where f 0 0. Therefore, we have

ffiffiffi
f

p
ðsÞb

ffiffiffiffiffi
jcj
2

r
s
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and

f ðsÞb jcj
2
s2

along any minimizing geodesic curve gðsÞ connecting x and the fixed point o,
where s is the arc-length parameter.

Note that using (2) we have

jDf j2ðsÞ ¼ �2cf ðxÞ þ RðoÞ � RðxÞa�2cf ðxÞ þ RðoÞaCs2 þ RðoÞ:
Hence, for sg 1,

C4sa jDf jðsÞaC5s:ð9Þ

4. e pinched solitons

We give a proof of Theorem 3 below. We try to make the proof more
transparent and self-contained.

Proof of Theorem 3. Recall that the Ricci curvature of the non-shrinking
soliton ðX ; gÞ is e-pinched, i.e., for some e > 0 we have that R > 0 on X and

Rcb eRg

on X . Then using the maximum principle, we know that either R ¼ 0 on X or
R > 0. If R ¼ 0 on X , then by the pinching condition we know that ðX ; gÞ is
Ricci flat.

Assume that R > 0 on X . Then as before, the potential function f is
locally strictly convex. Since ðX ; gÞ is a complete non-compact Riemannian
manifold, we have that f has at most one critical point, i.e., the point where
‘f ¼ 0. Assume that we have a critical point for f , saying that it is o A X .
Then using (3), we know it is also a critical point of R. Using (8), we know that
is the maximum point for R. In particular, we know that R is a bounded
function on X , saying that D > 0 is the upper bound.

Using (3) and the e-pinched condition, we have that

�Rj‘f j2 a h‘R;‘f i ¼ �2Rcð‘f ;‘f Þa�eRj‘f j2:
Taking a minimizing geodesic curve gðsÞ connecting x and a fixed point o,

where s is the arc-length parameter, we have

h‘f ; g 0ðsÞijs0 ¼
ð s

0

fij
dg i

ds

dg j

ds
dsð10Þ

¼
ð s

0

ðRij � cgijÞ
dg i

ds

dg j

ds
ds

¼ �csþ
ð s

0

Rij

dg i

ds

dg j

ds
ds:
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This implies that there is a constant C2 such that

h‘f ; g 0ðsÞib�csþ
ð s

0

eR dsb�csþ
ð1

0

R dsb�csþ C2 bC2

for sg 1.
Using (5) and the pinching condition, we have that

ð s

0

R dsaC6:

Using the pinching condition again, (10) also implies that

h‘f ; g 0ðsÞia�csþ
ð s

0

R dsa�csþD:

Therefore, the angle between ‘f and the gradient of the distance function from o
is almost fixed.

Then, using (3) and the e-pinched condition, we have for some constant
C3 > 0,

ðR�1Þs ¼ �R�2h‘R; g 0ðsÞi ¼ 2R�2Rcð‘f ; g 0ðsÞÞ:

Using (6) and (9), we obtain that

Rcð‘f ; g 0ðsÞÞ ¼ j‘f jRcðg 0; g 0Þ þ 0ð
ffiffi
s

p
Þ

b eRj‘f j þ 0ð
ffiffi
s

p
ÞbRðCs� CÞ;

we have

ðR�1Þs b 2R�1ðCs� CÞ:
This implies that

ðlog RÞs aC � Cs

and

RðsÞaRðoÞeCs�Cs2 :

This implies that R ! 0 exponentially as s ! þy. This completes the proof of
Theorem 3.

Theorem 3 tells us that for such ðX ; gÞ we have

A ¼ limsup
s!y

Rs2 ¼ 0:

Added in proof. Some of our results has been cited in Prop. 7.3 in the recent
paper of Brendle and Schoen: Sphere theorems in geometry, arxiv:0904.2604v2.
We refer to this paper for recent deep results of S. Brendle and R. Schoen.
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