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REMARKS ON CURVATURE AND
THE EULER INTEGRAND

ALAN WEINSTEIN

1. Review of the problem

We define an n-dimensional curvature tensor as an n4-tuple R = (Rίjkl),
1 < /, /, k,l < n, of real numbers satisfying the symmetry relations

( 1 ) R-ijkl — —Rjίkl — R-klij J

and

( 2 ) Rίjki + Rikij + R-iijk = 0 ,

and we denote the vector space of all such curvature tensors by Kn.
The polynomial function χ2n: K2n —> R defined by the formula

χ27l(R) — (— \ ) n J] εi1...i2nεj1...J2nRi1iΛj1j2 ' ' ^ n - i W a n - i ^ n

will be called the Euler integrand in dimension 2n since, by the generalized
Gauss-Bonnet theorem, the Euler characteristic of an oriented riemannian
manifold M of dimension 2n is obtained, up to a positive constant, by evaluat-
ing χ2n on the components of the curvature tensor in orthonormal frames and
integrating the resulting real valued function over M, using the volume element
associated with the given riemannian metric.

It has been conjectured by H. Hopf that the Euler characteristic of an even
dimensional riemannian manifold with positive sectional curvature is positive,
and it may even be the case that the Euler integrand is positive in this situation.
The present note is devoted to the presentation of some remarks on this ques-
tion. We continue by fixing some more terminology.

The polynomial function σn: Kn x Rn x Rn -> R defined by the formula

σn(R,x, y) = - Σ RijkiXtfjXkyi

may be called the sectional curvature function, since σn(R,x,y) is, up to a
positive constant, the sectional curvature of the plane spanned by x and y,
computed from the curvature tensor R. Of course, x and y really span a plane
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if and only if an(x, y) Φ 0, where an: Rn X Rn —> R is the polynomial function
defined by

an(χ, y) = Σ (xtfj - xjyi)2 -

R is called positive sectional if σn(R, x, y) > 0 whenever #"(>;, y) Φ 0.
The conjecture, "if R e X2 n is positive sectional, then χ2wCR) > 0" will be

denoted by ^ 2 w . ^ 2 is trivially true, and ̂ 4 has been proven by Milnor and
Chern [1].

2. First remark on the conjectures ^2n

Theorem 1. For each n, there is a finite decision procedure for determining
whether <€ln is true.

The proof of Theorem 1 depends on a deep result of Seidenberg and Tarski
concerning semi-algebraic sets, a subset of a vector space being called semi-
algebraic if it is generated by unions and intersections from the solution sets of
a finite number of polynomial equations and inequalities. The Seidenberg-
Tarski theorem states that, if V and W are vector spaces, then the projection
onto V of a semi-algebraic subset of V X W is a semi-algebraic subset of V.
The proof [2] of this theorem gives a finite procedure for constructing the
equations and inequalities defining the projection from those defining the origi-
nal set. Unfortunately, the procedure is too long to be used in practice even
with the aid of a computer, so the conjectures ^2n should remain of interest to
geometers and algebraists.

Proposition 1. The set Pn of positive sectional n-dimensional curvature
tensors is semi-algebraic in Kn.

Proof. Let Sn c Kn x Rn x Rn be the semi-algebraic set

{(R,x,y)\an(x,y)φ0 and σn(R,x,y) < 0} ,

whose projection onto Kn is the complement of Pn. By the Tarski-Seidenberg
theorem and the obvious fact that the complement of a semialgebraic set is
semialgebraic, Pn is semialgebraic. q.e.d.

Proposition 1 implies that there exist finitely many polynomial inequalities in
in the Rίjkι's such that, given any curvature tensor, one could determine
whether it is positive sectional by evaluating the polynomials and checking
whether the results satisfy the inequalities. (There are no equations, because,
as is easily verified, Pn is an open subset of Kn.) It would be useful to know
these inequalities explicitly. They could be used, for example, in a computer
procedure to generate a random sample of the elements of P2n, on which χ2n

could be evaluated for an empirical test of ^2n.

Proof of Theorem 1. Let T2n C R° x K2n be the set
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{(O,R)\RεP2n and χ(R) < 0} .

T2n being semialgebraic, so is its projection U2n onto R°, which is empty if and
only if ζ€2n is true. But one may decide by checking a finite number of poly-
nomial inequalities, derivable in a finite number of steps from the data of the
problem, whether the unique element 0 of R° lies in U2n.

3. The importance of the Bianchi identity

An n4-tuρle R satisfying the relations (1) of § 1 will be called a generalized
curvature tensor, whether or not it satisfies the Bianchi identities (2). We denote
the space of all generalized curvature tensors by Kn. All the functions and defini-
tions in the previous paragraphs extend in the obvious way to Kn, and there is
a corresponding sequence of conjectures &2n.

First, we observe that the Chern-Milnor proof of ^ 4 is even a proof of &
(i.e., the Bianchi identity is never used), and that &2 is trivially true. The fol-
lowing result suggests the source of some of the difficulty in proving ^2n for
n>2.

Theorem 2. &n is false for n > 2.
Proof. Let R e K2n be defined by the formulas

\*) *M234
 =
 *^2134

 = =
 ^M243

 =
 ^3412

 =
 ^ ,

(4) -^5612 — ^6512
 =
 ^5621

 =
 -*M256

 =
 1 ?

( 5 ) #3456 = —#4356 = ~ ^3465 = ^5634 = ~ 1 >

( θ ) #2fc-l,2fc,2fc-l,2fc = #2fc,2fc-l,2fc-l,2fc == ^2k-l,2k,2kt2k-l = = 1 >

f or 4 < X < n ,

( 7 ) R-ίjki = 0 J f°Γ aU other values of /, /, k, I .

It is not hard to see that the part of R coming from (3), (4), and (5) con-
tributes nothing to sectional curvature. What is left is the curvature tensor of
the product of a 6-dimensional flat space and (n — 3) 2-dimensional spaces of
positive curvature, so R is non-negative sectional. (We will make it positive in
a moment.)

Now all the non-vanishing terms in χ2n(R) may be shown to be equal, by
even permutations of the indices, to

( 1 ) */Vi234#3456#5612#7878' ' •-^271-1,271,271-1,271 ?

which equals ( - l ) n ( - l ) . l . ( - l ) . ( - l ) n - 3 = ( - l ) 2 n - 1 = - 1 , so that χ

2n(R)
is negative.

Letting S be any positive sectional curvature tensor (for instance, the one for
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constant sectional curvature), we write Rδ for R + δ-S. Since the function σ is
linear in its first argument, Rδ is positive sectional for δ > 0. For δ sufficiently
small, the continuity of χ implies that χ(Rδ) < 0, and Rδ is a counterexample
to &n.
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