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REMARKS ON DEVIATION INEQUALITIES FOR FUNCTIONS
OF INFINITELY DIVISIBLE RANDOM VECTORS1

BY CHRISTIAN HOUDRÉ

Georgia Institute of Technology

We obtain deviation inequalities for some classes of functions of
infinitely divisible random vectors having finite exponential moments.

1. Introduction and statement of results. It is by now well known that the
concentration of measure phenomenon, and in particular its functional form, is of
great importance in probability theory and its applications. At the methodological
level various tools have been developed to obtain this type of results: isoperimetric
techniques, inductive methods, functional inequality techniques, transportation
and information theoretic methods. In particular, every single one of the methods
stated above recovers the classical fact (motivating many of the others) that
Lipschitz functions of independent Gaussian random variables have near Gaussian
tails (we refer to the sets of notes of Ledoux [12, 13] for precise credit and
references for this large body of work). More recently, the Gaussian deviation has
also been recovered (at the polynomial level) using a covariance representation [1];
and this method might be the simplest to date to obtain this result. Since this
representation has a version for infinitely divisible (i.d.) random vectors, it is
natural to try to explore its deviation consequences. This is initiated below.

LetX ∼ ID(b,0, ν), that is, letX be a d-dimensional infinitely divisible random
vector without Gaussian component. Its characteristic function is given by

ϕ(t)= exp
{
i〈t, b〉 +

∫
Rd

(
ei〈t,u〉 − 1 − i〈t, u〉1‖u‖≤1

)
ν(du)

}
,(1.1)

where t, b ∈ R
d and where ν (the Lévy measure) is a positive measure without

atom at the origin on B(Rd) (the Borel σ -field of R
d ) such that

∫
Rd (‖u‖2 ∧ 1)

×ν(du) < +∞ (throughout, 〈·, ·〉 and ‖ · ‖ are, respectively, the Euclidean inner
product and norm in R

d , and we also assume that ν �≡ 0). As is well known,
the behavior of the Lévy measure ν controls the integrability property of the
vector X and any feasible light or heavy tail is possible for i.d. vectors (we refer
to Sato [17] for a good general introduction to infinitely divisible distributions and
Lévy processes). Here, we only takeX without Gaussian component but it is rather
easy to get at once results for the general case.
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Let us now state a summary of some of the results we intend to prove. Again,
let X ∼ ID(b,0, ν), and let f : Rd → R, where R

d is equipped with the Euclidean
norm. The function f is said to be Lipschitz (with constant α) if

|f (x + u)− f (x)| ≤ α‖u‖,(1.2)

for every x ∈ R
d and u ∈ R

d . Below, the function f need not be defined on the
whole of R

d but just on a subset of R
d containing RX + Sν and RX , where RX

is the range of X and Sν the support of ν, for example, if X is a Poisson random
variable, a Lipschitz function (with constant α) is then defined on N and such that

|f (n+ 1)− f (n)| ≤ α,(1.3)

for every n ∈ N. However, since we do not wish to distinguish between the various
ranges and supports, and also distinguish between continuous and discrete random
variables, it is in the sense of (1.2) that Lipschitz will be understood in the rest
of these notes. Moreover, a Lipschitz function f defined on a subset of R

d can
be extended (without increasing its Lipschitz seminorm) to a function f̃ which is
Lipschitz on all of R

d (see Theorem 6.1.1 in Dudley [6]). Now, as integrands,
f and f̃ are the same (as seen from the various proofs below). Finally, it is
clear that although we mainly consider the Lipschitz property with respect to the
Euclidean norm, other norms could have equally been used.

We are now ready to present our first general deviation result.

THEOREM 1. LetX ∼ ID(b,0, ν) be such thatEet‖X‖ <+∞, for some t > 0.
Then, for any Lipschitz function f (with constant α),

P
(
f (X)−Ef (X)≥ x

)≤ exp
(
−
∫ x

0
h−1(s) ds

)
,(1.4)

for all 0 < x < h((M
α
)−), where M = sup{t ≥ 0 :Eet‖X‖ < +∞} and where h−1

is the inverse of h(s)= ∫
Rd α‖u‖(eαs‖u‖ − 1)ν(du), 0< s < M

α
.

It is clear that applying (1.4) to −f , gives left tail estimates; that is,

P
(
f (X)−Ef (X)≤ x

)≤ exp
(
−
∫ 0

x
h−1(−s) ds

)
,(1.5)

for all −h((M
α
)−) < x < 0, and that two sided tails follow from (1.4) and (1.5).

[Throughout, h(a−) denotes the left-hand limit of h at the point a.]
In essence, the previous results tell us that under a Cramér condition, the

tail behavior of f (X) is controlled by the tail behavior of X. The deviation
inequality (1.4) is sharp. Indeed, let X be a Poisson random variable with mean λ,
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X ∼ P (λ) and let α = 1. Then, h(s)= λ
∫
R
(|u|es|u| − |u|)δ1(du)= λ(es − 1), and

h−1(s)= log(1 + s
λ
). Hence, (1.4) becomes

P
(
f (X)−Ef (X)≥ x

)
≤ exp

(
−
∫ x

0
log

(
1 + s

λ

)
ds

)

= exp
(
−
{
x log

(
1 + x

λ

)
− x + λ log(λ+ x)− λ logλ

})

= ex exp
(
−(x + λ) log

(
1 + x

λ

))
,

(1.6)

for all x > 0, since h(M−)= +∞ in that case. In particular, if f (X)=X we get

P (X− λ≥ x)≤ ex exp
(
−(x + λ) log

(
1 + x

λ

))
.(1.7)

Already this particular case of (1.4) recovers some recent results of Bobkov and
Ledoux [3], and (1.7) provides rather precise asymptotics. Indeed, for λ and n

integers, P (X ≥ λ + n) = ∫ λ
0 e

−t tλ+n−1 dt/ (λ + n). Now,
∫ λ

0 e
−t tλ+n−1 dt ∼

(λ+n)−1e−λλλ+n, as n→ +∞, while standard estimates on the Gamma function
give  (x)= √

2πe−xxx−1/2(1 + 1
12x + 1

288x2 + · · ·), as x → +∞ (e.g., see [14]).

Thus, P (X ≥ λ + n) ∼ 1√
2π(λ+n)e

ne−(λ+n) log(1+n/λ) as n → +∞, which is,
up to an inverse fractional polynomial factor, exactly (1.7). Unfortunately this
polynomial factor is not recovered here, in contrast to the Gaussian situation [1].

Other types of tail behavior are possible. Indeed, still assuming d = 1, let X
be a geometric random variable with parameter p; that is, µ(k) = pqk , k =
0,1,2, . . . , where as usual q = 1 − p. Then ν is concentrated on the positive

integers with ν(k) = qk

k
, k = 1,2, . . . . Since, EetX = p

1−qet , for t < − logq , we
can apply Theorem 1. Hence, for any f : N → R such that |f (n+ 1)− f (n)| ≤ 1,

P
(
f (X)−Ef (X)≥ x

)≤ exp
((
x + q

p

)
log

(
q + pqx

q + px

)
+ log(1 + px)

)
,(1.8)

for all x > 0, since again h(M−) = +∞. Clearly [using log(1 + x) ≤ x, x ≥ 0]
(1.8) provides rather precise tail estimates, since for x ≥ 0,

P (X−EX≥ x)= exp
(([

x + q

p

]
+ 1

)
logq

)
,(1.9)

whenever x + q
p

is not a positive integer (with easily modifications when x + q
p

is a positive integer). In complete similarity with these results, it is easy to see
that if X is negative binomial, then up to a multiplicative polynomial factor,
f (X) − Ef (X) has negative binomial tails. It can also be checked that if X is
a Gamma random variable, then again f (X)−Ef (X) has near Gamma tails. If X
is an extreme distribution given by P (X ≤ x)= e−e−x , x ∈ R, then X is infinitely
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divisible and the left tails of f (X)−Ef (X) are of order e−e−x . IfX is a compound
Poisson random variable, that is, X =∑N

n=0Zn, where Z0 = 0, and where the Zn,
n≥ 1, are i.i.d. random variables with law µ, independent of the Poisson random
variable N with mean λ, then X is infinitely divisible with Lévy measure ν = λµ.
Thus, if Eet|Z1| <+∞ for some t > 0, it follows that P (f (X)− Ef (X) ≥ x) ≤
exp(min0<t<M(H(t) − tx)), where H(t) = λE(et|Z1| − t|Z1| − 1), and where
M = sup{t > 0 :Eet|Z1| <+∞}.

It is clearly not our purpose to list here every particular case of infinitely
divisible random vector to which Theorem 1 applies, but many examples can
be found. The previous examples just illustrate the potential sharpness of the
estimate (1.4).

For ν with bounded support, the hypotheses of the previous theorem are satisfied
and (1.4) can also be made more precise.

COROLLARY 1. Let ν have bounded support with R = inf{ρ > 0 :ν({x :
‖x‖ > ρ})= 0}, and let V 2 = ∫

Rd ‖u‖2ν(du). Then, for any Lipschitz function f
(with constant α),

P
(
f (X)−Ef (X)≥ x

)≤ e(x/αR) exp
(
−
(
x

αR
+ V 2

R2

)
log

(
1 + Rx

αV 2

))
,(1.10)

for all x > 0.

A direct consequence of (1.10) is the strong exponential integrability of the
functional f − Ef . More precisely, under the hypothesis of Corollary 1 (with
α = 1),

Eet|f−Ef | log |f−Ef | <+∞,(1.11)

for any t < 1
R

. In case f (X) = ‖X‖, a result similar to (1.11) is known and due
to Sato (see Theorem 26.1 in [17]). For norms of Banach space valued random
variables, it is due to De Acosta [5] and Talagrand [19]. The representation (2.1)
on which the proof of Theorem 1 is based, is also valid for Banach space valued
random variables (see [9]), and so Theorem 1 should have a version in that setting
as well. Actually, a stronger result due to Rosiński [16] asserts that (for norms of
Banach-space valued random variables)

E exp
(
R−1‖X‖ log+ tR−1‖X‖)<+∞,

for all t > 0 such that tp0 ≤ 1
e
, where p0 = ν({x :‖x‖ =R}).

Sato also showed that for infinitely divisible (real) vectors X with boundedly
supported Lévy measure, and for any 0< t < 1

R
,

P (‖X‖ ≥ x)= o(e−tx logx), x → +∞.

Thus, (1.10) also generalizes the above.
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Note that in the multivariate Poisson case, ν consists of point masses, of
arbitrary sizes 0 ≤ λi < +∞, distributed on the elements di of {0,1}d . Hence
in (1.10), R = √

d and V 2 =∑2d
i=1 λi‖di‖2.

Let us now present another corollary which also provides tail inequalities under
Bernstein-type moment assumptions.

COROLLARY 2. Let X ∼ ID(b,0, ν) be such that E‖X‖2 < +∞, with
moreover, ∫

Rd
‖u‖kν(du)≤ Ck−2k!

2

∫
Rd

‖u‖2ν(du), k ≥ 3,

for some C > 0. Then for any Lipschitz function f (with constant α),

P
(
f (X)−Ef (X)≥ x

)≤ exp
(
−1

8
min

(
2x2

α2V 2 ,
x

αC

))
,

where V 2 = ∫
Rd ‖u‖2ν(du).

Theorem 1 has a drawback; it requires a knowledge of the Lévy measure ν
of the vector X in order to compute h to then identify its inverse. However,
very little is known on the Lévy measure of d-dimensional infinitely divisible
vectors (with dependent components). Again, we refer to Sato [17] for up-to-date
information on the topic. Sometimes an explicit knowledge of the Lévy measure
can be bypassed. Indeed, in the proof of Theorem 1 (and, say, for α = 1), we wish
to find min0<t<M e−tx+H(t), where

H(t)=
∫

Rd
(et‖u‖ − 1 − t‖u‖)ν(du)=K(t)−

∫
‖u‖>1

t‖u‖ν(du)− ‖b‖t,

and so K(t) = ∫
Rd (et‖u‖ − 1 − t‖u‖1‖u‖≤1)ν(du) + ‖b‖t . In some instances,

eK(t) can be expressed via the distribution of X (see Theorem 21.9 in [17]),
but this representation might not always be that useful for our purposes. When
some knowledge of the Lévy measure is available, Theorem 1 is sharp. This can
be verified for the density ce−‖x‖ (c normalizing constant), which is infinitely
divisible (see Takano [18] or [17]), and whose Lévy measure is explicitely known.

Other versions of Theorem 1 are possible. For example, let X ∼ ID(b,0, ν) and
let f : Rd → R, be such that the representation (2.1) holds, with also:

(i) A= ∥∥∫
Rd (f (X+ u)− f (X))2ν(du)

∥∥1/2
L∞(X) <+∞.

(ii) k(t) = ∥∥∫
Rd (et(f (X+u)−f (X)) − 1)2ν(du)

∥∥1/2
L∞(X) < +∞, for all t ∈ (0, T ),

T > 0.

For k integrable, it should be clear from the proof of Theorem 1 that

P
(
f (X)−Ef (X)≥ x

)≤ exp
(

min
0<t<T

(∫ t

0
Ak(s) ds − tx

))
,(1.12)
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which is however more untractable than (1.4). This last estimate also applies to
a different class of functions, but nevertheless recovers Corollary 1. Indeed, for ν
with bounded support, f Lipschitz (with constant one) and using the notation of
Corollary 1, we have

k(t) ≤
(∫

Rd
(et‖u‖ − 1)2ν(du)

)1/2

=
(∫

‖u‖≤R
‖u‖2

( ∞∑
k=1

tk‖u‖k−1

k!
)2

ν(du)

)1/2

≤
(∫

‖u‖≤R
‖u‖2

( ∞∑
k=1

tkRk−1

k!
)2

ν(du)

)1/2

= V

(
etR − 1

R

)
.

Thus, since A≤ V , (1.12) gives Corollary 1.
Actually, it is easily seen from Theorem 1 and (1.12), that what is needed to get

similar results “in greater generality” is an upper bound on∥∥∥∥
∫

Rd

(
f (X+ u)− f (X)

)
(et(f (Y+u)−f (Y )) − 1)ν(du)

∥∥∥∥
L∞(X,Y )

,

but this leads to tail expressions even more untractable than (1.12).
To finish this introduction, let us deal with the case of infinite divisible

vectors with independent components (and, for simplicity of notation, identically
distributed components). In that case, the Lévy measure ν is concentrated on the
axes (see [17], page 67); that is,

ν(dx1, . . . , dxd)=
d∑
i=1

δ0(dx1) · · · δ0(dxi−1)ν̃(dxi)δ0(dxi+1) · · · δ0(dxd).

Identifying ui ∈ R, with (0, . . . ,0, ui,0, . . . ,0) ∈ R
d , i = 1, . . . , d , Theorem 1

becomes Theorem 2.

THEOREM 2. Let X ∼ ID(b,0, ν) with i.i.d. components, be such that
Eet‖X‖ <+∞, for some t > 0. Let f : Rd → R be such that |f (x+ui)−f (x)| ≤
β|ui|, for all x ∈ R

d , ui ∈ R, and i = 1, . . . , d . Then

P
(
f (X)−Ef (X)≥ x

)≤ exp
(
−
∫ x

0
h−1(s) ds

)
,(1.13)

for all 0 < x < h((M
β
)−), where M = sup{t ≥ 0, Eet‖X‖ <+∞} and where h−1

is the inverse of h(s)= βd
∫
R

|u|(eβs|u| − 1)ν̃(du), 0< s < M
β

.
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The tail estimate (1.13) is not always optimal. A case at hand is the Laplace
distribution. Indeed, let X1, . . . ,Xd , be i.i.d. random variables with density
2−1e−|x|. Then, the Lévy measure of Xi has density e−|u|

|u| , u ∈ R, u �= 0. Now

H(t)=
∫

Rd
(eβt‖u‖ − βt‖u‖ − 1)ν(du)

= d

∫
R\{0}

∞∑
k=2

(βt)k|u|k
k!

e−|u|

|u| du

= 2d
∫ ∞

0

∞∑
k=2

(βtu)k

k!
e−u

u
du

= −2d
(
log(1 − βt)+ βt

)
.

Hence min0<t<1/β(H(t)− tx) is attained at t = 1
β
( x
x+2βd ) and the corresponding

tail estimate is

exp
(

2d log
(

1 + x

2βd

)
− x

β

)
.(1.14)

Now for x large, (and up to absolute constants) the exponent in (1.14) is of
order − x

β
, while for x small it is of order −x2

dβ2 . Now an influential estimate of

Talagrand [20] tells us that if f is such that |f (x + u)− f (x)|2 ≤ α2∑d
i=1 |ui|2

and |f (x + u)− f (x)| ≤ β
∑d
i=1 |ui |, then −min( x

2

α2 ,
x
β
) is the right order. With

our approach, the estimate for x small is worse than −x2

α2 , while the same for x
large. One reason for this might be the fact that we know since the work of Bobkov
and Ledoux [2] that a Poincaré inequality leads to the estimate −min( x

2

α2 ,
x
β
),

while, in our case, we have just used the Lipschitz structure. In the absence
of a Poincaré inequality, (1.13) might be optimal. It should, however be noted
that for linear sums, for example, f (x1, . . . , xd) = 1

d

∑d
i=1 |xi|, both Talagrand’s

inequality and (1.14) give the same order e−cdmin(x,x2), where c is an absolute
constant. It would be interesting to know if modifications of our methods can give
Talagrand’s inequality. A simple modification such as replacing the “uniform” β
by βi, i = 1, . . . , d , will still come short of this goal.

Following a referee’s suggestion, let us explicitely link, in a classical manner,
the results obtained above for functions to concentration results for sets. Let d2

denote the Euclidean distance on R
d × R

d , let A⊂ R
d be a Borel set of measure

µ(A) ≥ 1
2 , where µ is the law of X, and let fr(x) = min(d2(x,A), r), r > 0.

Clearly, fr is Lipschitz with constant at most one and Efr ≤ r
2 , where E is

expectation with respect to µ. Let also Ar be the open r-neighborhood of A
with respect to the Euclidean distance; that is, Ar = {x ∈ R

d :d2(x,A) < r}, then
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applying (1.4) to fr , we obtain the concentration inequality,

1 −µ(Ar)≤ µ{fr −Efr ≥ r/2} ≤ exp
(
−
∫ r/2

0
h−1(s) ds

)
,

where X, h and r/2, satisfy the conditions of Theorem 1. Since Ar = A+ rB2,
where B2 is the open Euclidean unit ball in R

d , this last inequality is just

µ(A+ rB2)≥ 1 − exp
(
−
∫ r/2

0
h−1(s) ds

)
.(1.15)

As is well known, an inequality such as (1.15) also (essentially) implies (1.4). Let
us present the version of Theorem 2 for sets. In the independent case, by the form
of the Lévy measure, B2 is replaced by B1 the open 61-unit ball of R

d . Thus, if
the product measure µd is the law of X (and so µ is the law of any of the i.i.d.
components of X), (1.15) becomes

µd(A+ rB1)≥ 1 − exp
(
−
∫ r/2

0
h−1(s) ds

)
,

where h is now as in Theorem 2. In particular if µ = η, where η is the one-
dimensional Laplace distribution, we get for all r > 0, and since β = 1,

ηd(A+ rB1)≥ 1 − exp
(
−cmin

(
r2

d
, r

))
,

where c is some absolute constant and since, as explained above, the exponent

in (1.14) is equivalent to −min(x
2

d
, x). In turn, it is easily seen that this last

inequality is equivalent to

ηd(A+ √
rdB1 + rB1)≥ 1 − e−cr ,(1.16)

where c is an(other) absolute constant. It is again clear that (1.16) is weaker than
Talagrand’s

ηd(A+ √
rB2 + rB1)≥ 1 − e−cr .(1.17)

Using an idea of Pisier ([15], page 181), Talagrand [20] shows that (1.17) recovers
(and improves some aspects of) the Gaussian concentration. The same arguments
show that (1.16) also recovers the Gaussian concentration, but only for r large
enough.

Let us now return to the functional forms of deviation inequalities. In the
independent case, a result similar to Corollary 1 also follows from (1.13), but
this also leads to dimension dependent (on d) estimates. However, as shown in
the next corollary, the method of Theorem 2 can be modified sometimes to obtain
dimension independent estimates. First, we have:
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THEOREM 3. Let X ∼ ID(b,0, ν) with i.i.d. components, be such that∫
R
et|u|ν̃(du) < +∞, for some t > 0. Let 1 ≤ p,q, r ≤ +∞, r �= +∞, with

1
p

+ 1
q

+ 1
r

= 1, and let f : Rd → R be such that

∥∥∥∥∥
d∑
i=1

∫
R

|f (X+ ui)− f (X)|pν̃(dui)
∥∥∥∥∥

1/p

L∞(X)
= α <+∞,(1.18)

∥∥∥∥∥
d∑
i=1

∫
R

|f (X+ ui)− f (X)|q ν̃(dui)
∥∥∥∥∥

1/q

L∞(X)
= β <+∞,(1.19)

max
1≤i≤d

(‖f (X+ ui)− f (X)‖L∞(X)

|ui |
)

≤ γ <+∞,(1.20)

for all ui ∈ R, ui �= 0. Then

P
(
f (X)−Ef (X)≥ x

)≤ exp
(
−
∫ x

0
h−1(s) ds

)
,(1.21)

for all 0 < x < h((M
γ r
)−), where h−1 is the inverse of h(s) = αβs(

∫
Rd eγ rs‖u‖

×ν(du))1/r , 0< s < M
γr

, and where M = sup{t ≥ 0 :
∫
R
et|u|ν̃(u) <+∞}.

COROLLARY 3. Let ν have bounded support with R = inf{ρ > 0 :ν({x :
‖x‖> ρ})= 0}. Let f : Rd → R be such that∥∥∥∥∥

d∑
i=1

∫
|ui |≤R

|f (X+ ui)− f (X)|pν̃(dui)
∥∥∥∥∥

1/p

L∞(X)
= α <+∞,(1.22)

∥∥∥∥∥
d∑
i=1

∫
|ui |≤R

|f (X+ ui)− f (X)|q ν̃(dui)
∥∥∥∥∥

1/q

L∞(X)
= β <+∞,(1.23)

‖f (X+ ui)− f (X)‖L∞(X) ≤ γ |ui|,(1.24)

for all ui ∈ R, i = 1, . . . , d , and where 1
p

+ 1
q

= 1. Then,

P
(
f (X)−Ef (X)≥ x

)≤ exp
(
− x

4γR
log

(
1 + γRx

2αβ

))
,(1.25)

for all x > 0.

Again, when X is a vector of independent identically distributed Poisson
random variables and p = q = 2, Corollary 3 is known (see [3]), with actually
better absolute constants. Extensions, to various infinite dimensional settings, for
example, Wiener functionals, Poisson functionals, Bernoulli process, Riemannian
path space, of some of the results presented in the present paper can also be found
in [10]. Moreover, concentration results for stable vectors are obtained in [8].
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2. Proofs. The following covariance representation is crucial to our approach.

LEMMA 1. Let X ∼ ID(b,0, ν) be such that E‖X‖2 < +∞, and let
f,g : Rd → R be Lipschitz. Then

Ef (X)g(X)−Ef (X)Eg(X)

=
∫ 1

0
Ez

∫
Rd

(
f (X+ u)− f (X)

)(
g(Y + u)− g(Y )

)
ν(du) dz,

(2.1)

where the expectation Ez is with respect to the R
2d i.d. vector with parameter

(b, b) and Lévy measure νz = zν1 + (1 − z)ν0, 0 ≤ z≤ 1. The measures ν0 and ν1
are given by ν0(du, dv) = ν(du)δ0(dv) + δ0(du)ν(dv), and ν1(du, dv) is the
measure ν supported on the main diagonal of R

2d , (u, v) ∈ R
2d .

We refer to [9] for a simple proof of this representation in case f,g ∈ C∞
c ;

that is, f and g are compactly supported infinitely differentiable functions and
without the finite second moment assumption (it is easily verified at the level
of characteristic functions, hence for trigonometric polynomials and by density
extended to C∞

c ). Above, the passage from f,g ∈ C∞
c to Lipschitz ones can be

done as follows: approximate f Lipschitz by bounded Lipschitz functions fn
where fn = f if |f | ≤ n, fn = n if f ≥ n and fn = −n if f ≤ −n, and similarly
for g. Next apply to bounded Lipschitz functions the standard mollification
argument, that is, convolve them with pε , ε > 0, where for x ∈ R

d , pε(x) =
1
εd
p(x

ε
), and where p(x)= c exp( 1

‖x‖2−1
)1‖x‖<1 (c normalizing constant). Finally,

to pass from C∞ to C∞
c , just multiply by a compactly supported C∞ cutoff

function.
The representation (2.1) is proved in [9] for X ∼ ID(b,=, ν) and, following

Chen [4], for functions which are partially differentiable, bounded on bounded
subsets of R

d , having also bounded gradient on bounded subsets of R
d and

such that the set of discontinuity of the gradient has probability zero. The reader
will also find in [7, 1] further information, references and applications of this
representation.

PROOF OF THEOREM 1. Without loss of generality, let α = 1. Let C =
{t ≥ 0 :Eet‖X‖ < +∞}, clearly C is convex (an interval) not reduced to {0} and
moreover,

C =
{
t ≥ 0 :

∫
‖u‖>1

et‖u‖ν(du) <+∞
}

=
{
t ≥ 0 :

∫
‖u‖>1

(et‖u‖ − t‖u‖ − 1)ν(du) <+∞
}
,

where the first equality follows from Theorem 25.3 in [17], while the second is
easily verified. Now let us apply the representation formula (2.1) to the function f
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which is bounded, Lipschitz (with constant at most 1) with Ef = 0 and to g = etf ,
t ∈C, t <M . Thus,

Efetf =
∫ 1

0
Ez

∫
Rd

(
f (X+ u)− f (X)

)
(etf (Y+u) − etf (Y ))ν(du) dz

≤
∫ 1

0
Eze

tf (Y )
∫

Rd
|f (X+ u)− f (X)| |et(f (Y+u)−f (Y )) − 1|ν(du) dz

≤
∫ 1

0
Eze

tf (Y )
∫

Rd
‖u‖(et‖u‖ − 1)ν(du) dz

=
∫

Rd
‖u‖(et‖u‖ − 1)ν(du)Eetf ,

since the marginal of (X,Y ) is X. Hence setting L(t)=Eetf , we have

L′(t)
L(t)

≤
∫

Rd
‖u‖(et‖u‖ − 1)ν(du).

Thus, ∫ t

0

L′(s)
L(s)

ds ≤
∫ t

0

∫
Rd

‖u‖(es‖u‖ − 1)ν(du) ds,

that is,

Eet(f−Ef ) ≤ exp
(∫

Rd
(et‖u‖ − t‖u‖ − 1)ν(du)

)
,(2.2)

for any bounded Lipschitz function f . To remove the boundedness assumption,
let fn where fn = f if |f | ≤ n, fn = n if f ≥ n and fn = −n if f ≤ −n. The fn
are bounded Lipschitz functions (with constant at most 1 since |fn(x)− fn(y)| ≤
|f (x) − f (y)|) converging pointwise to f with also Efn converging to Ef . By
Fatou’s lemma, (2.2) holds for any Lipschitz function. [This exponential estimate
is sharp since it becomes equality for X ∼ P (λ), and f (X)=X.] Now, let

H(t)=
∫

Rd
(et‖u‖ − t‖u‖ − 1)ν(du).

By the assumptions on Eet‖X‖, H is infinitely differentiable on (0,M) with

H ′(t)= h(t)=
∫

Rd
‖u‖(et‖u‖ − 1)ν(du) > 0,

H ′′(t)=
∫

Rd
‖u‖2et‖u‖ν(du) > 0,

for all 0< t <M . Thus, for any f ,

P
(
f (X)−Ef (X)≥ x

)≤ eH(t)−tx,

and we now wish to minimize in t . This will be done using the standard Cramér
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method in large deviation. Indeed, for any 0 < x < h(M−), min0<t<M(H(t) −
tx) = H(h−1(x))− xh−1(x), since h(t)− x changes sign at t = h−1(x). Hence,
since H(0)= h(0)= h−1(0)= 0,

H
(
h−1(x)

)=
∫ h−1(x)

0
h(s) ds

=
∫ x

0
s dh−1(s)

= xh−1(x)−
∫ x

0
h−1(s) ds.

Thus, min0<t<M(H(t) − tx) = − ∫ x
0 h

−1(s) ds, for all 0 < x < h(M−), and the
proof is complete. �

PROOF OF COROLLARY 1. Again, without loss of generality, let α = 1. Since
suppν ⊂ B2(0,R), Eet‖X‖ <+∞, for all t > 0, and we have

h(s)=
∫
‖u‖≤R

(‖u‖es‖u‖ − ‖u‖)ν(du)

=
∫
‖u‖≤R

‖u‖2

( ∞∑
k=1

sk‖u‖k−1

k!
)
ν(du)

≤
∫
‖u‖≤R

‖u‖2
∞∑
k=1

skRk−1

k! ν(du)

= V 2
(
esR − 1

R

)
.

Hence,

P
(
f (X)−Ef (X)≥ x

) ≤ exp
(
−
∫ x

0

1

R
log

(
1 + Rs

V 2

)
ds

)

= exp
(
−R

x
log

(
1 + Rx

V 2

)
+ x

R

− V 2

R2
log(V 2 +Rx)+ V 2 logV 2

R2

)

= ex/R exp
(
−
(
x

R
+ V 2

R2

)
log

(
1 + Rx

V 2

))
,

for all x > 0. �

PROOF OF COROLLARY 2. Let α = 1. First note that E‖X‖2 < +∞ is
equivalent to V 2 = ∫

Rd ‖u‖2ν(du) < +∞. Hence, under the hypothesis of the
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corollary,
∫
Rd (et‖u‖ − t‖u‖ − 1)ν(du) ≤ V 2t2

2(1−Ct) ,0 < t < 1
C

, and thus Eet‖X‖ <
+∞,0< t < 1

C
. Now we just need to find

min
0<t<1/C

(
−tx + V 2t2

2(1 −Ct)

)
.(2.3)

Solving a quadratic, the above minimum is attained at t = 1
C
(1 − V√

V 2+2Cx
).

Pluging this value in (2.3) we get for minimal value,

− 1

2C2

(√
V 2 + 2Cx − V

)2 = − V 2

2C2

(√
1 + 2Cx

V 2
− 1

)2

≤ − V 2

16C2
min

(
4C2x2

V 4
,

2Cx

V 2

)

= −1

8
min

(
2x2

V 2
,
x

C

)
.

This last estimate proves the corollary and also provides sharp asymptotics since

−V 2

2C2

(√
1 + 2Cx

V 2 − 1

)2

≥ −V 2

8C2 min
(

4C2x2

V 4 ,
2Cx

V 2

)
. �

PROOF OF THEOREM 2. Proceeding as in Theorem 1, for f bounded,

Ef etf =
∫ 1

0
Ez

∫
Rd

(
f (X+ u)− f (X)

)
(etf (Y+u) − etf (Y ))ν(du) dz

≤
∫ 1

0
Eze

tf (Y )
d∑
i=1

∫
R

|f (X+ ui)− f (X)|(et|f (Y+ui)−f (Y )| − 1)ν̃(dui) dz

≤
∫ 1

0
Eze

tf (Y )
d∑
i=1

∫
R

β|ui|(eβt|ui | − 1)ν̃(dui) dz

=
∫

Rd
β‖u‖(eβt‖u‖ − 1)ν(du)Eetf .

The rest of the proof is similar to the proof of Theorem 1; let us just note that
{t ≥ 0 :Eet‖X‖ < +∞} = {t ≥ 0 :

∫
|u|>1 e

t|u|ν̃(du) <+∞}, since the components
of X are i.i.d. �

PROOF OF THEOREM 3. The proof also proceeds as in Theorem 1. Applying
the covariance representation to f bounded Lipschitz such that Ef = 0 and to
g = etf , we see that Ef etf is dominated by∫ 1

0
Ez

∫
Rd

(
f (X+ u)− f (X)

)
(etf (Y+u) − etf (Y ))ν(du) dz

≤
∫ 1

0
Eze

tf (Y )
d∑
i=1

∫
R

|f (X+ ui)− f (X)|(e|tf (Y+ui)−tf (Y )| − 1)ν̃(du) dz
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≤
∫ 1

0
Ezte

tf (Y )
d∑
i=1

∫
R

|f (X+ ui)− f (X)| |f (Y + ui)− f (Y )|

× teγ t|ui |ν̃(dui) dz

=
∫ 1

0
Eze

tf (Y )
∫

Rd
|f (X+ u)− f (X)| |f (Y + u)− f (Y )|teγ t‖u‖ν(du) dz

≤ αβt

(∫
Rd
eγ rt‖u‖ν(du)

)1/r

Eetf ,

where we have used ex − 1 ≤ xex , x ≥ 0 and Hölder’s inequality. Now, setting
h(t) = αβt(

∫
Rd eγ rt‖u‖ν(du))1/r and proceeding as in the proof of Theorem 1

gives the result. �

PROOF OF COROLLARY 3. Proceeding as in the proof of Theorem 3, we get
h(s)≤ αβseγRs , for all s ≥ 0. Instead of working with h−1, it is easier in that case
to go back directly to the minimization problem. We want to estimate

m= min
0<t<+∞

(
−tx + αβ

γ 2R2
(γRteγRt − eγRt + 1)

)
.(2.4)

Now, if x ≤ 2αβ
γR

, choose t = x
2αβ , hence in (2.4), we get

m≤ −tx + αβt2

2
eγRt

≤ − x2

2αβ
+ x2e

8αβ

≤ − x2

8αβ
.

(2.5)

If x > 2αβ
γR

, choose t = 1
γR

log γRx
2αβ . Then,

m≤ −tx + αβ

γ 2R2 (γRte
γRt)

≤ − x

2γR
log

γRx

2αβ
.

(2.6)

Finally, combining (2.5) and (2.6) gives (1.25). �
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