Remarks on differentiable structures on spheres

By Itiro TAMURA

(Received June 23, 1961)
J. Milnor [2] defined the invariant λ^{\prime} for compact unbounded oriented differentiable ($4 k-1$)-manifolds which are homotopy spheres and boundaries of π manifolds at the same time, and proved that the invariant λ^{\prime} characterizes the J-equivalence classes of these ($4 k-1$)-manifolds for $k>1$. Recently S. Smale [3] has shown that a compact unbounded (oriented) differentiable n-manifold ($n \geqq 5$) having the homotopy type of S^{n} is homeomorphic to S^{n} and that two such manifolds belonging to the same J-equivalence class are diffeomorphic to each other if $n \neq 6$. Hence it turns out that the invariant λ^{\prime} characterizes differentiable structures on $S^{4 k-1}$ which bound π-manifolds for $k>1$.

In this note we shall compute the invariant λ^{\prime} of $B_{m, 1}^{7}$ (S^{3} bundles over S^{4}, see [4]) and show that every differentiable structure on S^{7} can be expressed as a connected sum of $B_{m, 1}^{7}$. We shall obtain also a similar result on S^{15}. Furthermore we shall show that $\bar{B}_{m, 1}^{8} \cup_{i} D^{8}$ such that $m(m+1) \equiv 0 \bmod 56$ are 3connected compact unbounded differentiable 8 -manifolds with the 4 th Betti number 1 and differentiable 8 -manifolds of this type are exhausted by them, where $B_{m, 1}^{8}$ are 4 -cell bundles over S^{4} ([4]]. This will reveal that Pontrjagin numbers are not homotopy type invariants.

Notations and terminologies of this note are the same as in the previous paper [4]. We shall use them without a special reference.

1. The invariant λ^{\prime} of $\boldsymbol{B}_{m, 1}^{7}$ -

In the following $M_{1}^{n-1} \# M_{2}^{n-1}$ will denote the connected sum of two compact connected unbounded oriented differentiable ($n-1$)-manifolds M_{1}^{n-1} and M_{2}^{n-1} (Milnor [2]). Let W_{1}^{n} and W_{2}^{n} be two compact connected oriented differentiable n-manifolds with non-vacuous boundaries; let $f_{1}: D^{n-1} \rightarrow \partial W_{1}^{n}$ be an orientation-preserving differentiable imbedding and $f_{2}: D^{n-1} \rightarrow \partial W_{2}^{n}$ be an ori-entation-reversing differentiable imbedding. Then $W_{1}^{n}+W_{2}^{n}$ denotes the compact connected oriented differentiable n-manifold with boundary obtained from the disjoint union of W_{1}^{n} and W_{2}^{n} by identifying $f_{1}(x)$ with $f_{2}(x)\left(x \in D^{n-1}\right)$, making use of the device of "straightening the angle".

We choose an orientation of $B_{m, 1}^{7}$ (resp. $B_{m, 1}^{15}$) and that of $\bar{B}_{n, 1}^{8}$ (resp. $\bar{B}_{m, 1}^{16}$)
in such a way that they are consistent and

$$
\begin{gathered}
\left(\alpha_{4} \cup \alpha_{4}\right)\left[\bar{B}_{m, 1}^{8}, B_{m, 1}^{7}\right]=1 \\
\left(\text { resp. }\left(\alpha_{8} \cup \alpha_{8}\right)\left[\bar{B}_{m, 1}^{16}, B_{m, 1}^{15}\right]=1\right) .
\end{gathered}
$$

It is known that any differentiable structure on S^{7} is the boundary of a π-manifold (Milnor [2, §6]). Let M_{0}^{7} be the compact connected unbounded oriented differentiable 7 -manifold which is homeomorphic to S^{7} such that $\lambda^{\prime}\left(M_{0}^{7}\right)$ $=1$, and let W_{0}^{8} be the compact connected parallelizable oriented differentiable 8 -manifold with the boundary $\partial W_{0}^{8}=M_{0}^{7}$ such that $I\left(W_{0}^{8}\right)=8$ (Milnor [2, §4]).

Suppose that $B_{n, 1}^{7}$ is diffeomorphic to $M_{0}^{7} \# M_{0}^{7} \# \cdots \# M_{0}^{7}$ (s-fold connected sum of M_{0}^{7}). Let $M^{8}=\bar{B}_{m, 1}^{8} \cup\left(\left(-W_{0}^{8}\right)+\left(-W_{0}^{8}\right)+\cdots+\left(-W_{0}^{8}\right)\right)$ (s-fold sum of $\left.-W_{8}^{8}\right)$ be the compact connected unbounded oriented differentiable 8 -manifold obtained from the disjoint union of $\bar{B}_{m, 1}^{8}$ and $\left(-W_{0}^{8}\right)+\left(-W_{0}^{8}\right)+\cdots+\left(-W_{0}^{8}\right)$ identifying $\partial \bar{B}_{m, 1}^{8}=B_{n, 1}^{7}$ with $-\partial\left(\left(-W_{0}^{8}\right)+\left(-W_{0}^{8}\right)+\cdots+\left(-W_{0}^{8}\right)\right)=M_{0}^{7} \# M_{0}^{7} \# \cdots \# M_{0}^{7}$ by the diffeomorphism.

Index theorem $I\left(M^{8}\right)=\frac{1}{45}\left(7 p_{2}\left(M^{8}\right)-p_{1}^{2}\left(M^{8}\right)\right)\left[M^{8}\right]$ yields

$$
\begin{equation*}
7 p_{2}\left(M^{s}\right)\left[M^{8}\right]=45(1-8 s)+4(2 m+1)^{2} . \tag{*}
\end{equation*}
$$

Integrality of \hat{A}-genus $\hat{A}\left(M^{8}\right)=\frac{1}{2^{7} \cdot 45}\left(-4 p_{2}\left(M^{8}\right)+7 p_{1}^{2}\left(M^{8}\right)\right)\left[M^{8}\right]$ implies

$$
p_{2}\left(M^{8}\right)\left[M^{8}\right] \equiv 7(2 m+1)^{2} \quad \bmod 2^{5} \cdot 45
$$

By (*) and (**), we have

$$
m(m+1) \equiv-2 s \quad \bmod 8
$$

Furthermore (*) implies

$$
m(m+1) \equiv-2 s \quad \bmod 7
$$

Since there exist precisely 28 distinct differentiable structures on S^{7} which form an abelian group under the connected sum (Smale [3]), we obtain therefore the following theorem.

Theorem 1. The invariant λ^{\prime} of $B_{m, 1}^{7}$ is equal to $-\frac{m(m+1)}{2}$.
For example M_{0}^{7} is diffeomorphic to $B_{10,1}^{7}$.
The following theorem is an immediate consequence of Theorem 1.
Theorem 2. $B_{m, 1}^{7}$ and $B_{m^{\prime}, 1}^{7}$ are diffeomorphic if and only if

$$
m(m+1) \equiv m^{\prime}\left(m^{\prime}+1\right) \quad \bmod 56
$$

In particular $B_{m, 1}^{7}$ is diffeomorphic to the standard S^{7} if and only if

$$
m(m+1) \equiv 0 \quad \bmod 56
$$

Theorem 1 also implies

Theorem 3. Every differentiable structures on S^{7} can be expressed by means of connected sums of $B_{m, 1}^{7}$.

The following theorem follows from Theorem 3.
Theorem 4. For any C^{∞} differentiable structure on S^{7}, there exists a nondegenerate C^{∞} function having one maximum, one minimum, and no other critical point.

Now we consider differentiable structures on S^{15}. Since $\pi_{15+q}\left(S^{q}\right) \approx Z_{2}+Z_{480}$ for large q, the order of the image of J-homomorphism $J_{15}: \pi_{15}(S O(q)) \rightarrow \pi_{15+q}\left(S^{q}\right)$ is equal to 480 and the greatest common divisor I_{4} of $I(M)$ where M ranges over all almost parallelizable compact unbounded differentiable 16 -manifolds is equal to 8×8128 (Milnor [2; Lemma 3.5]). Hence there exist precisely 8128 distinct differentiable structures on S^{15} which bound π-manifolds. Therefore by a similar argument as in the case of differentiable structures on S^{7}, we obtain the following theorems.

Theorem 5. If $B_{m, 1}^{15}$ bounds a π-manifold, the invariant λ^{\prime} of $B_{m, 1}^{15}$ is equal to $-\frac{m(m+1)}{2}$.

Theorem 6. Suppose that both $B_{m, 1}^{15}$ and $B_{m^{\prime}, 1}^{15}$ bound π-manifolds. Then they are diffeomorphic if and only if

$$
m(m+1) \equiv m^{\prime}\left(m^{\prime}+1\right) \quad \bmod 16256
$$

In particular $B_{m, 1}^{15}$ is diffeomorphic to the standard S^{15} if and only if it bounds a π-manifold and

$$
m(m+1) \equiv 0 \quad \bmod 16256
$$

Since cokernel of J_{15} is $Z_{2}, B_{m, 1}^{15} \# B_{m, 1}^{15}$ bounds a π-manifold (Milnor [2; Theorem 6.7]), and its invariant λ^{\prime} is definable. We have

Theorem 7. The invarient λ^{\prime} of $B_{m, 1}^{15} \# B_{m, 1}^{15}$ is equal to $-m(m+1)$.
The proof is similar to that of Theorem 5,
For example $M_{0}^{15} \# M_{0}^{15}$ is diffeomorphic to $B_{1882,1}^{15} \# B_{1882,1}^{15}$.
Theorem 7 implies
Theorem 8. Every differentiable structure on S^{15} bounding a π-manifold for which the invariant λ^{\prime} takes on even value can be expressed by a connected sum of $B_{m, 1}^{15}$.

2. 3-connected compact unbounded differentiable 8 -manifolds with the 4 th Betti number 1.

Combining Theorem 2 and a result of the previous paper [4; Theorem 1], we have the following theorem.

Theorem 9. If $m(m+1) \equiv 0 \bmod 56$, then $\bar{B}_{m, 1}^{8} \cup_{i} D^{8}$ is a 3 -connected compact unbounded differentiable 8 -manifold with the 4 th Betti number 1, and every
such differentiable 8 -manifold is diffeomorphic to $\bar{B}_{n, 1}^{8} \cup_{i} D^{8}$ with m satisfying $m(m+1) \equiv 0 \bmod 56$.

Since the Euler-Poincaré characteristic of $\bar{B}_{m, 1}^{8} \cup_{i} D^{8}$ is 3 , these manifolds cannot carry any (weak) almost complex structure (Hirzebruch [1]).

Theorem 9 yields
Theorem 10. Pontrjagin numbers are not homotopy type invariants.
In fact, for example, $\bar{B}_{0,1}^{8} \cup_{i} D^{8}$ and $\bar{B}_{48,1}^{8} \cup_{i} D^{8}$ have the same homotopy type and their Pontrjagin numbers are given as follows ([4; Section 1]):

$$
\begin{aligned}
& p_{1}^{2}\left(\bar{B}_{0,1}^{8} \cup_{i} D^{8}\right)\left[\bar{B}_{0,1}^{8} \cup_{i} D^{8}\right]=4, \\
& p_{2}\left(\bar{B}_{8,1}^{8} \cup_{i} D^{8}\right)\left[\bar{B}_{0,1}^{8} \cup_{i} D^{8}\right]=7, \\
& p_{1}^{2}\left(\bar{B}_{88,1}^{8} \cup_{i} D^{8}\right)\left[\bar{B}_{48,1}^{8} \cup_{i} D^{8}\right]=37636, \\
& p_{2}\left(\bar{B}_{88,1}^{8} \cup_{i} D^{8}\right)\left[\bar{B}_{48,1}^{8} \cup_{i} D^{8}\right]=5383 .
\end{aligned}
$$

This shows that L-genus (index theorem) is essentially the unique linear combination of Pontrjagin numbers which has the homotopy type invariance property. For example \hat{A}-genus is not homotopy type invariant.

Since $\bar{B}_{0,1}^{8} \cup_{i} D$ is homeomorphic to the quaternion projective plane, also the following follows from Theorem 9.

Theorem 11. There exist infinitely many compact unbounded differentiable 8-manifolds having the same homotopy type as the quaternion projective plane which are not diffeomorphic to each other.

Making use of this result we can construct compact unbounded differentiable 12 -manifolds having the homotopy type of the quaternion projective space whose Pontrjagin numbers are different each other (Tamura [5]).

University of Tokyo

References

[1] F. Hirzebruch, Komplexe Mannigfaltigkeiten, Proc. of Int. Congress of Math., Edinburgh, 1958.
[2] J. Milnor, Differentiable manifolds which are homotopy spheres, (mimeographed), Princeton University, 1959.
[3] S. Smale, The generalized Poincaré conjecture in higher dimensions, Bull. Amer. Math. Soc., 66 (1960), 373-375.
[4] I. Tamura, 8-manifolds admitting no differentiable structure, J. Math. Soc. Japan, 13 (1961), 377-382.
[5] I. Tamura, On certain 12 -manifolds, to appear.

