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Remarks on differentiable structures on spheres
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J. Milnor [2] defined the invariant $\lambda^{\prime}$ for compact unbounded oriented differ-
entiable $(4k-1)$-manifolds which are homotopy spheres and boundaries of $\pi-$

manifolds at the same time, and proved that the invariant $\lambda^{\prime}$ characterizes the
J-equivalence classes of these $(4k-1)$-manifolds for $k>1$ . Recently S. Smale [3]

has shown that a compact unbounded (oriented) differentiable n-manifold $(n\geqq 5)$

having the homotopy type of $S^{n}$ is homeomorphic to $S^{n}$ and that two such
manifolds belonging to the same J-equivalence class are diffeomorphic to each
other if $n’\pm 6$ . Hence it turns out that the invariant $\lambda$ ‘ characterizes differ-
entiable structures on $S^{4k-1}$ which bound $\pi$-manifolds for $k>1$ .

In this note we shall compute the invariant $\lambda^{\prime}$ of $B_{m,I}^{7}(S^{3}$ bundles over $S^{4}$ ,

see [4]) and show that every differentiable structure on $S^{7}$ can be expressed
as a connected sum of $B_{m,1}^{7}$ . We shall obtain also a similar result on $S^{15}$ . Fur-
thermore we shall show that $\overline{B}_{m,1}^{8}\bigcup_{i}D^{8}$ such that $m(m+1)\equiv 0mod 56$ are 3-
connected compact unbounded differentiable 8-manifolds with the 4 th Betti
number 1 and differentiable 8-manifolds of this type are exhausted by them,
where $B_{m,1}^{8}$ are 4-cell bundles over $S^{4}$ ([4]). This will reveal that Pontrjagin
numbers are not homotopy type invariants.

Notations and terminologies of this note are the same as in the previous
paper [4]. We shall use them without a special reference.

1. The invariant $\lambda^{\prime}$ of $B_{m,1}^{7}$ .
In the following $M_{1}^{n-1}\#1\psi_{2}^{n-1}$ will denote the connected sum of two com-

pact connected unbounded oriented differentiable ($n-$ l)-manifolds $M_{1}^{n-1}$ and
$1\psi_{2}^{n-1}$ (Milnor [2]). Let $W_{1}^{n}$ and $W_{2}^{n}$ be two compact connected oriented differ-
entiable n-manifolds with non-vacuous boundaries; let $f_{1}$ : $D^{n-1}\rightarrow\partial W_{1}^{n}$ be an
orientation-preserving differentiable imbedding and $f_{2}$ : $D^{n-1}\rightarrow\partial W_{2}^{n}$ be an ori-
entation-reversing differentiable imbedding. Then $W_{1}^{n}+W_{2}^{n}$ denotes the com-
pact connected oriented differentiable n-manifold with boundary obtained from
the disjoint union of $W_{1}^{n}$ and wry by identifying $f_{1}(x)$ with $f_{2}(x)(x\in D^{n-1})$,
making use of the device of “ straightening the angle“.

We choose an orientation of $B_{m.1}^{7}$ (resp. $B_{m.1}^{15}$ ) and that of $\overline{B}_{m,1}^{8}$ (resp. $\overline{B}_{m,1}^{18}$ )
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in such a way that they are consistent and
$(\alpha_{4}U\alpha_{4})[\overline{B}_{m,1}^{8}, B_{m,1}^{7}]=1$

(resp. $(\alpha_{8}U\alpha_{8})[\overline{B}_{m,1}^{16},$ $B_{m,1}^{15}]=1$).

It is known that any differentiable structure on $S^{7}$ is the boundary of a
$\pi$-manifold (Milnor [2, \S 6]). Let $M_{0}^{7}$ be the compact connected unbounded
oriented differentiable 7-manifold which is homeomorphic to $S^{7}$ such that $\lambda^{\prime}(M_{0}^{7})$

$=1$ , and let $W_{0}^{8}$ be the compact connected parallelizable oriented differen-
tiable 8-manifold with the boundary $\partial W_{0}^{8}=M_{0}^{7}$ such that $I(W_{0}^{8})=8$ (Milnor
[2, \S 4]).

Suppose that $B_{m,1}^{7}$ is diffeomorphic to $M_{0}^{7}\# M_{0}^{7}\#\cdots\# M_{0}^{7}$ (s-fold connected
sum of $1\psi_{0}^{7}$). Let $M^{8}=\overline{B}_{m,1}^{8\cup}((-W_{0}^{8})+(-W_{0}^{8})+\cdots+(-W_{0}^{8}))$ (s-fold sum of
$-W_{0}^{8})$ be the compact connected unbounded oriented differentiable 8-manifold
obtained from the disjoint union of $\overline{B}_{m,1}^{8}$ and $(-W_{0}^{8})+(-W_{0}^{8})+\cdots+(-W_{0}^{8})$ iden-
tifying $\partial\overline{B}_{m,1}^{8}=B_{m,1}^{7}$ with $-\partial((-W_{0}^{8})+(-W_{0}^{8})+ +(-W_{0}^{8}))=1M_{0}^{7}\# M_{0}^{7}\#\cdots\# M_{\alpha}^{7}$

by the diffeomorphism.
1Index theorem $I(M^{8})=\overline{4}5-(7p_{2}(1\psi^{8})-p_{1}^{2}(1M^{8}))[M^{8}]$ yields

$7p_{2}(1\psi^{8})[1\psi^{S}]=45(1-8s)+4(2m+1)^{2}$ . $(*)$

Integrality of $\hat{A}$-genus $\hat{A}(M^{8})=\frac{1}{2^{7}\cdot 45}(-4p_{2}(M^{8})+7p_{1}^{2}(1\psi^{8}))[M_{\rfloor}^{8^{\neg}}$ implies

$p_{2}(1\psi^{8})[1\psi^{8}]\equiv 7(2m+1)^{2}$ $mod 2^{c^{B}}\ulcorner$ $45$ . $(**)$

By $(*)$ and $(**)$ , we have

$m(m+1)\equiv-2s$ $mod 8$ .
Furthermore $(*)$ implies

$m(m+1)\equiv-2s$ $mod 7$ .
Since there exist precisely 28 distinct differentiable structures on $S^{t}$ which
form an abelian group under the connected sum (Smale [3]), we obtain tllere..
fore the following theorem.

THEOREM 1. The invariant $\lambda^{\prime}$ of $B_{m,1}^{7}$ is equal to $-\frac{m(?n+1)}{2}$ .
For example $M_{0}^{7}$ is diffeomorphic to $B_{10,1}^{7}$ .
The following theorem is an immediate consequence of Theorem 1.
THEOREM 2. $B_{m,1}^{7}$ and $B_{m,1}^{7}$ are diffeomorphic if and only $i_{J}$

$m(m+1)\equiv m^{\prime}(m^{\prime}+1)$ $mod 56$ .

In particular $B_{m,1}^{7}$ is diffeomorphic to the standard $S^{7}$ if and $0\uparrow\iota ly$ if
$m(m+1)\equiv 0$ $mod 56$ .

Theorem 1 also implies
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THEOREM 3. Every differentiable structures on $S^{7}$ can be expressed by means
of connected sums of $B_{m,1}^{7}$ .

The following theorem follows from Theorem 3.
THEOREM 4. For any $C^{\infty}$ differentiable structure on $S^{7}$ , there exists a non-

degenerate $C^{\infty}$ function having one maximum, one minimum, and no other critical
point.

Now we consider differentiable structures on $S^{15}$ . Since $\pi_{15+q}(S^{q})\approx Z_{2}+Z_{480}$

for large $q$, the order of the image of J-homomorphism $J_{15}$ : $\pi_{15}(SO(q))\rightarrow\pi_{1_{0}^{\prime}+q}(S^{q})$

is equal to 480 and the greatest common divisor $I_{4}$ of $I(M)$ where $M$ ranges
over all almost parallelizable compact unbounded differentiable 16-manifolds is
equal to $8\times 8128$ (Milnor [2; Lemma 3.5]). Hence there exist precisely 8128
distinct differentiable structures on $S^{15}$ which bound $\pi$-manifolds. Therefore
by a similar argument as in the case of differentiable structures on $S^{7}$ , we
obtain the following theorems.

THEOREM 5. If $Bm,1$ bounds a $\pi$-manifold, the invariant $\lambda^{\prime}$ of $B_{m,1}^{15}$ is equal

to $-\frac{m(m+1)}{2}$ .
THEOREM 6. Suppose that both $B_{m,1}^{16}$ and $B_{m}^{15}$ bound $\pi$-manifolds. Then they

are diffeomorphic if and only if
$m(m+1)\equiv m^{\prime}(m^{\prime}+1)$ $mod$ 16256.

In particular $B_{m.1}^{15}$ is diffeomorphic to the standard $S^{15}$ if and only if it bounds
a $\pi$-manifold and

$m(m+1)\equiv 0$ $mod$ 16256.
Since cokernel of $J_{15}$ is $Z_{2},$ $B_{m,1}^{15}\# B_{m,1}^{15}$ bounds a $\pi$-manifold (Milnor [2;

Theorem 6.7]), and its invariant $\lambda^{\prime}$ is definable. We have
THEOREM 7. The invarient $\lambda^{\prime}$ of $B_{m,1}^{15}\# B_{m,1}^{15}$ is equal to $-m(m+1)$ .
The proof is similar to that of Theorem 5.
For example $M_{0}^{16}\# M_{0}^{I5}$ is diffeomorphic to $B_{1882,1}^{15}\# B_{1882,1}^{1\text{\’{o}}}$ .
Theorem 7 implies
THEOREM 8. Every $diJ7erentiable$ structure on $S^{15}$ bounding a $\pi$-manifold for

zchich the invariant $\lambda^{\prime}$ takes on even value can be expressed by a connected sum
of $B_{m,1}^{15}$ .

2. $3$-connected compact unbounded differentiable $8$-manifolds with the $4$ th
Betti number $1$ .

Combining Theorem 2 and a result of the previous paper [4; Theorem 1],

we have the following theorem.
THEOREM 9. If $m(m+1)\equiv 0mod 56$ , then $\overline{B}_{m,1}^{8}U_{i}D^{8}$ is a 3-connected com-

pact unbounded differentiable 8-manifold with the 4 th Betti number 1, and every
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such differentiable 8-manifold is diffeomorphic to $\overline{B}_{m,1}^{8}U_{i}D^{8}$ with $m$ satisfying
$m(m+1)\equiv 0mod 56$ .

Since the Euler-Poincar\’e characteristic of $\overline{B}_{m,1}^{8}U_{i}D^{8}$ is 3, these manifolds
cannot carry any (weak) almost complex structure (Hirzebruch [1]).

Theorem 9 yields
THEOREM 10. Pontrjagin numbers are not homotopy type invariants.
In fact, for example, $\overline{B}_{0,1}^{8}U_{i}D^{8}$ and $\overline{B}_{48,1}^{8}U_{i}D^{8}$ have the same homotopy

type and their Pontrjagin numbers are given as follows ([4; Section 1]):

$p_{1}^{2}(\overline{B}_{0,1}^{8}U_{i}D^{8})[\overline{B}_{0,1}^{8}U_{i}D^{8}]=4$ ,

$p_{2}(\overline{B}_{0,I}^{8}U_{i}D^{8})[\overline{B}_{0,1}^{8\bigcup_{i}}D^{8}]=7$ ,

$p_{1}^{2}(\overline{B}_{48,1}^{8}\bigcup_{i}D^{8})[\overline{B}_{48.1}^{8}U_{\dot{t}}D^{8}]=37636$ ,

$p_{2}(\overline{B}_{48,1}^{8}U_{i}D^{8})[\overline{B}_{48,1}^{8}\bigcup_{i}D^{8}]=5383$ .
This shows that L-genus (index theorem) is essentially the unique linear

combination of Pontrjagin numbers which has the homotopy type invariance
property. For example $\hat{A}$-genus is not homotopy type invariant.

Since $\overline{B}_{0,1}^{8}U_{i}D$ is homeomorphic to the quaternion projective plane, also
the following follows from Theorem 9.

THEOREM 11. There exist infinitely many compact unbounded differentiable
8-manifolds having the same homotopy type as the quatemion projective plane which
are not diffeomorphic to each other.

Making use of this result we can construct compact unbounded differen-
tiable 12-manifolds having the homotopy type of the quaternion projective
space whose Pontrjagin numbers are different each other (Tamura [5]).
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