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REMARKS ON EFFECTIVE CURVATURE
By KazuMmr TANUMA

1. Introduction

Let £ be a domain in R2, with a reflecting smooth boundary I". Suppose
that £ is a media through which wave propagates with a speed c¢(x, ¥). Let s be
the arc length of I” measured along the curve from a fixed point on /7, and n be
the normal distance from I” to the point in £ such that internal points of
correspond to n>>0. Now we suppose the center of curvature is in £. Let
K,(s) be the curvature of I" ats. Let the speed of wave propagation be constant.
Then along a concave part of I" (K(s)>0), a high frequency wave well known
by the name of whispering gallery wave can propagate. When the speed is
variable, the role of the boundary curvature K,(s) should be replaced by the
effective curvature K(s).

Babich and Kirpichnikova [1] defined the effective curvature K(s) by

(1.1) K($)=Ky(s)+c™(s, n)0ac(s, 7)]n=o.
Let w be the frequency of wave and L. be the boundary layer given by
L.={(s, )=2; K(s)>¢>0, n=0}

where n is sufficiently small.
They constructed a solution U which satisfies the following Helmholtz equa-
tion asymptotically as @— oo

(1.2) (4, o, y)HU=0 in L,

with the Dirichlet boundary condition

(L.3) Ulr=0

such that the solution is concentrated near /" in the sense that
1.4) U—0 exponentially as n—-co.

Let

Az'(x):gjcos(ta/?)—}—xt)dt (xER)
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156 KAZUMI TANUMA

be one of the Airy functions which is rapidly decreasing as x—-+oo together
with all of its derivatives and has the zeros only on the negative real axis and
let —y<0 be one of zeros ofAi(x). Then U is given in the following form

U(s, n)~exp {in:OC“(s, 0)d$+l.a)1/3h(s)}éow_slkUk(sy n)
where
H)=—v{" K*(5){2e(s, 0)}ds
Uu={2K(s)e(s, 0)}/° Ai(w**ny(s)—v)
7(s)= (2K(5)} (s, 0)
and

soel” with K(so)>¢.

U, (k=1) can be obtained successively by solving a certain recursive equation.
(see pp. 37~47 in [1])

Let us assume all the rays of waves are tangent to /', Then in this paper
we shall prove the effective curvature in (1.1) is simply given by the curvature
of I minus the ray curvature at the point of tangency, and also give the trans-
formation invariant formula for the ray curvature in the two dimensional
Riemannian space.

2. Lemma and Main Theorem
The eikonal equation for (1.2) is given by
2.1) Hixypqgo)=1/2){c*(p*+¢*)—1}=0 (p=0,T, §=0,7)

where z(x, y) is the phase function of the wave. Also the system of differential
equations for the characteristics (i.e., rays) of (2.1) has the form

(2.2) £=0H/op=c*p  y=0H/dg=c%q
p=—0H/0x=—cdc(p*+q)=—(1/c)d:c
G=—0H/0y=—cd,c(p*+¢*)=—1/c)d,c
t=p(0H/0p)+q(0H/0g)=c*(p*+¢")=1

where * denotes a derivative with respect to a parameter of the ray.

LEMMA. Assume all the rays are tangent to I’ and let K.(s) be the curvature
of the ray at s the point of tangency. Then the effective curvature (1.1) is given
by

K(s)=Ky(s)— K, (s).
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Proof. 1t is enough to show
2.3 K (8)=—0xc(s, n)/c(s, m)|n=o.

Let the generic points of I" be (u(s), v(s)) parametrized by the arc length s, and
let each point (x, ¥)€£2 near I" have the representation :

(2.4) x=u(s)—nv'(s), y=v(s)+nu'(s).
Then the boundary curvature is given by
2.5) K(s)=u'(s”(s)—u”(s)'(s).

Let the ray parameter in (2.2) increase with s. Then taking the center of cur-
vature in £, we have the ray curvature

K, =(xj—i3)- (597",
From (2.2)
F=(c*p) =2c{(0:0)% +(0,6) 3} pFp=2c*{(30)p° +(0,¢)pg} —cBac
J=(c*q) =2c{(0:0)% +(0y¢) 9} g +c*¢=2¢*{(8:€)pg+(04¢)g*} —cOyC.

Hence substituting them into K,, we obtain
K, ={cX(0:¢)g—c0,0)pHc (P> +¢7)} 7*/*=(026)g—(0,0)p .
From (2.4) it can be easily seen that
(2.6) e = (8)—nv"(8))0x + (v (s)+nu"(s))d,
=1/ (s)(1—nK(S))0: +v'(sX1—nK(S))ay

On=—0'(8)0,+u'(s)0,.
Here we have used the relations

w(=—Ksp'(s), v ()=Kolshu'(s),
which can be derived from (2.5) and uw”(squ/(s)+v”(syw'(s)=0. From (2.6) it

follows immediately
@.7 0 =(1—nKy(s)) " 'u'(s)0s—v'(5)0n
0y =(1—nKy($)) ' ($)0s+u'(s)0x .
Therefore we obtain
K, =(0:c)0,7)—(9,¢)3.1)
=(1—nKy(s))H{—Ww'(s))—©'(5))}(9n)(0s7)
F+(1=nKy(s)) {1/ ()} +®'(5))*} (05 X07)
=—(1=nKy($)) " (0:6)0:7)+(1—nK(S)) (05 )(0nr) -
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On the other hand, since the ray is tangent to [, it holds that —v'(s)d,z+
u'(s)d,t=0 at the point of tangency, that is, from (2.6)
0.t=0 at n=0.

By (2.7) the eikonal equation (2.1) becomes

¢ F=(1~nKy(s)) (st +(0.7),
which implies

¢ 2 =(0,7)? at n=0.

Since ¢#=1 and s increases with ray parameter, s0 does the phase ¢ along s.

Thus we have 9;7>0 and d,r=c~! at n=0, which give K,(s)=—0,c(s, n)/
c(s, M| n=0, and the proof is completed. Q.E.D.

Next we consider the problem (1.2), (1.3), (1.4) in the domain £ in two
dimensional Riemannian space, so the Laplacian 4 in (1.2) should be replaced by
the Laplace-Beltrami operator.

Let the fundamental tensor be g,,, 7, =1, 2 (symmetric and positive definite),
and the coordinate system be u*, 7=1, 2, and let g=det(g,;) and (g*)=(g.,) "
In the following calculus, we follow Einstein’s summation convention.

Now we put

8., =(0x1/0u")(Dx'/ou’)+(0x2/0u*)0x*/u’)
where (x1, x?) is the orthogonal coordinate and {e,, ¢.}, defined by
e,=(0x/0ut, ox%/ou'), e, =(0x"/0u?, 0x2/ou?),

is taken as the natural base for the curvilinear coordinate system (u*).
Now making the substitution of d=g~/29(g'*g"d/0u’)/ou* into (1.2) gives
the equation

(2.8) (44w ) U=g"("U/du"ou’)+(0g" /u* )0 U/ou)
+g V%(0g?/dut)g U/ oul)+w’c2U=0.

Here we assume that the leading term in the asymptotic solution U is given in
the form
{expiowr(u' u®)}(u' u?).

So substituting this into (2.8) and collecting powers of w?, we obtain
{—g" (0t /ou*)0c/du)+c* wXexpiwt)p=0.

In this case the eikonal equation is defined as

(2.9) H@w' w? py po 1)=(1/2)(c"g*pip;—1)=0

where p;=0r/0u* i=1, 2. Thus the rays are obtained by solving
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(2.10) W =dH/dp,=c*g"p; #*=0H/0p,=c*g"p;
p1=—0H/0u'=—(1/c)dc/ou'—(1/2)c*(0g* [ou)p:p;
po=—0H/0u*=—(1/c)dc/ou*—(1/2)c og*’ /ou®)p:p;
t=p,0H/0p:+ p:0H/0pe=c*g" pip;=1

where " is a derivativation with respect to the ray parameter f.
Let [ be the arc length of the ray. Then from (2.10) and the eikonal equa-

tion (2.9) it follows immediately

z=§’ {gutdu/dexdu/dt) rde={ (g, g pipn} a1

:S” {c“(‘)‘fg]mpkpm}”zdtzgt {c4gkmpkpm}1/2=5‘ cdt,

that is,
(2.11) di/dt=c.

PROPOSITION. Assume all the rays are tangent to I'. Let | be the arc length
along the ray measured from the point of tangency on I' and n be the normal

distance from the point on the ray to I'. Then we have another formula for the
effective curvature (1.1):

K(&)y=—d?n/di?| n=o(S).

Proof. Put (u!, u*)=(s, n). Then from (2.4) and (2.5) it can be easily seen
that
gu={1—nK(8)}?*, g1=gu=0, g»n=1.

In this case the eikonal equation (2.9) becomes
/2)[H{A=nK(s)*p*+ D2t —11=0  (py=0s7, pr=0a7).
So it follows from (2.10) that along the rays
(2.12) §=c{1—nK()} 0 #=cp
pa=—(1/c)dc/On—c*{1—nK(s)} *Ky(s)p,®
=—(1/¢)0c/on— {1—nK(s)} {1—c*p.) Ky(s).
Recalling that p,=0,7=0 at n=0 (the point of tangency) we have
pa=—0nc/c—Ks) at n=0.
Hence it is enough to show
(2.13) Id*n/dl*=p, at n=0.
From (2.11) and (2.12) it follows
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dn/dl=n/i=cp,
and
d’n/dlP=d(cps)/dl=c""d(cps)/dt=c" {(0,)R+(0sC)$} po+ Ps,

which proves (2.13). Q.E.D.
Remark. The effective curvature here corresponnds to the minus of the
generalized curvature for creeping waves. (see Lewis, Bleistein and Ludwig
[2], p318 (A2.3)) In [2], an asymptotic solution to the Helmholtz equation is
constructed under the convexity condition K<0, which is called the creeping

wave, while an asymptotic formula in [1] constructed under the concavity con-
dition K>0 is called the whispering gallery wave.

Next we shall give the transformation invariant formula for the ray curva-
ture at the point of tangency in the two dimensional Riemannian space.

THEOREM. Suppose that the boundary I is given by ¢(u' u*)=0 where ¢ is
a smooth funciion such that V=0 is the normal vector to I' pointing toward the
domain 8. Assume all the rays are tangent I'. Then the ray curvature at the
point of tangency is given by

(2.14) K,=—c"(0c/0u")0p/ou’)g* {g™"(¢p/0u™)Dp/ou™)} 112,

Proof. Let [ be the arc length of the ray. Then the unit tangent vector
of the ray dx/dl in (u*) coordinate is given by

dx/di=(du'/dl, du?/dl)
which follows from the chain rule:
(dx*/dl, dx*/dD)=(du'/dl)e;+(du®/dl)e,.

Now we shall prove that the first derivative of the unit tangent vector of the
ray d?x/dl* in (u*) coordinate is given by

(2.15)  dx/diP=(T"}(du*/diXdu®/dl)+d?u/di?, T3 (du*/dl)(du* /dl)+d*u?/di?)

where ['t=g"I,;, and I,;,=(1/2)0g.;/0u*+0g;./0u*—0g./0u’). Now we
observe

2.16)  dox/dIP=(x%/Butdudut /dI)du /dl)+@x/ud)dut /dlE . (a=1, 2)
Since
Toje= i}l<axm/auf)<azxm/aukauf) and ghi= él(au"/ax")(au’/ax")

we have



REMARKS ON EFFECTIVE CURVATURE 161

he= él(au"/ax")(au’/ax") Zi}l(ﬁx”‘/auf)(agxm/aukaui)
=§ En](au"/ax")5;',1(82x’"/6u’°6u’)
=@u/dx™)0*x™/0u*ou?),
which leads to
@x%/0um)[t,=08%(0%x™/du‘0u’)=0x*/0u'ou’.
Hence (2.16) is turned to
d*x®/dlP=@x*/du™)(du*/dI)du’/d)+(0x®/dut)d?u*/d(?), (a=1, 2)

which proves (2.15).
In the second step we show

(2.17) d?x/dl?=(c(0c/0u* g g* ™ pp;—c Y dc/ou’)g",
c(@c/0u*)g¥ g*™ pm ps—c H(dc/0u’)g™).
From (2.10) and (2.11) it follows
dut/dl=(du"/dt)dt/dl)=cg*p,
and
d?ut/diP={d(cg¥p,)/dt}(dt/dl)
={(@c/0u* du*/dt)g" p;+c(6g* /0ut N dut/dt)ps+cg™(dp;/dt)}c
=c(0c/0u*)g"g* ™ b, pm+c*0g"/0ur )G ™ Py pm
—c N de/dul)g —271c* g Og* ™ /Ou ) Py b -
Substituting them into the pth component (g¢=1, 2) in (2.15), we have
Iadur/diYdu?/dD)+(d*u*/dPP)=c* 4,8 g* ™ pjpm~+c(0c/0u*)g" g* ™ pipm
+c*(0g"7/0u*)g* ™ by pm—cH(0c/0u?) g™
—27c*g"(0g* ™ [0u)p s b -

Let (g™"*) be the inverse matrix of (g,,). Then differentiating the both sides
of g™*g,,=d0" with respect to u* we have

(0g™"/0u")gn;+8™"0g1s/0u*)=0.
Multiplying the both sides by g,, implies

08.;/0ut =—g.ngr (Bg™"/0u).
Hence we have
I4=—2""{g.n(0g™*/0u*)+gnr(0g"" /0’ ) - 8*18 kn gn:(08™"/0u’)}
and
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I8 g " b, pn=—27C"p, pn (0%8*™0g"" /Qu*)+ g* 107 (0g"" /0u’)
—ghron o108 /oum)}
=—C"p,png" ™0 /0ur) 27" p, pm gt P (g™ /OU).
Therefore we conclude
redut/di)du*/dl)+(d?u?/diD)=c@c/0u*)g* g*™ P, pj—c(Oc/Oui)g?,

This proves (2.17).
Since the covariant form of the normal vector to the boundary is (d¢/du’,

0¢/0u?), the contravariant form of the normal vector is given by
(2.18) (gY0¢p/0u?, g*iop/0u’).
The length of this vector is
{2800 /0u))g=P(0p/0u’)} > ={33(0p/0u’)g*P[@p/duf)} /2
={g*B(0p/0u*)(0p/duf)}/*,
Therefore the contravariant form of the unit normal vector pointing toward the
domain &£ is given by
(2.19) (8"/(d¢/0u?){g* (0@ /0u)0p/duf)} *,
220 /0u’){g*P(0¢/du"X0p/duf)} ~11%).
Now taking the inner product of the vectors (2.17) and (2.19) gives
(2.20) K.=gu{c@c/0u*)g"g"* ™ pmpj—c *(dc/0u’)g"}
X g'™0p/0u*){g“P(0p/0u)dp/duf)} /2
=01{c(0c/0u*)g*™ pu pj—c " (c/0u’)}
X g'™0¢/du"){g“*@p/0u)dp/duf)} ~1*
={c(0c/0u*)g* ™ pm p;—c™0c/0u’)}
X g™0p/Iu™){g*#(@p/0u\d¢/duf)} ~1*
={c(0c/0u*)g* ™ pug’™(0p/0u™) p;—c H0c/0u')0p/0u™)g’"}
X {g*P@¢/du)dp/ouf)} 112,
Also, according to (2.10), the contravariant form of the tangent vector of the
ray is given by
(2.21) (YD, £8%0,).

Therefore from the orthogonality of (2.18) and (2.21) at the point of tangency,
it follows that

0=gwng"*(0p/0u’)g"’ p,=0:(0p/0u)g™ p,=g"(0¢p/0u™)p,.
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Substituting this into the last equality in (2.20) we obtain the result. Q.E.D.

Since the transformation invariance of g*/(dc/0u")0¢p/0u’) and g™™(d¢p/0u™)
(0¢/0u™) in the right hand side of (2.14) follows from the property of contrac-
tion, we immediately obtain the following result.

PROPOSITION. K, is an invariant under the coordinate transformation.
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