REMARKS ON EXTREMUM PROBLEMS IN H^{1}

Kôzô Yabuta

(Received November 18, 1970)

1. Let U^{n} be the unit polydisc in the n complex variables C^{n} and T^{n} be its distinguished boundary, and let m_{n} denote the normalized Haar measure on T^{n}. $H^{1}\left(U^{n}\right)$ will denote the set of all holomorphic functions f on U^{n} such that $\|f\|_{1}$ $=\sup _{0 \leqslant r<1} \int_{T^{n}}|f(r w)| d m_{n}(w)<\infty$. Every $f \in H^{1}\left(U^{n}\right)$ has radial limits $f^{*}(w)=\lim _{r \rightarrow 1}$ $f(r w)$ for almost all $w \in T^{n}$. An $f \in H^{1}\left(U^{n}\right)$ is said to be outer if $\log |f(0)|=\int_{T^{n}}$ $\log \left|f^{*}(w)\right| d m_{n}(w)$. The following result is shown in [12];

Theorem A. Let $f \in H^{1}\left(U^{n}\right)$ and f be outer and $1 / f^{*} \in L^{1}\left(T^{n}\right)$. Then if $g \in H^{1}\left(U^{n}\right)$ and $\|g\|_{1}=\|f\|_{1}$, and $\arg g^{*}(w)=\arg f^{*}(w)$ a.e. on T^{n}, it follows that $g=f$, where $\arg f$ denotes the argument of f.

This is essentially a uniqueness theorem in extremum problems in $H^{1}\left(U^{n}\right)$. In the next section we shall extend this theorem to bounded symmetric domains. On the other hand in section 3 we shall discuss about the necessity of the assumptions posed on the above theorem.
2. Let D be a bounded symmetric domain in C^{n}, and $0 \in D . D$ is circular and star-shaped with restect to the origin, that is, $t z \in D$ when $z \in D$ and $t \in C$ with $|t| \leqslant 1$ [3]. It has the Bergman-Shilov boundary b, and b has a unique normalized measure μ invariant under the holomorphic automorphisms γ satisfying $\gamma(0)=0$. This μ is given by $d \mu(w)=V^{-1} d s(w), V$ the euclidean volume of b and $d s(w)$ the volume element at $w \in b$. A holomorphic function f in D is said to be in $N(D)$ if $\sup _{0 \leqslant r<1} \int_{b} \log ^{+}|f(r w)| d s(w)<\infty$. In the same way as in U^{n}, it can be shown that every $f \in N(D)$ has radial limits $f^{*}(w)=\lim _{r \rightarrow 1} f(r w)$ for almost all $w \in b$. A holomorphic function f on D is said to be in $N_{*}(D)$ if $\left\{\log ^{+}|f(r w)|\right.$; $0<r<1\}$ forms a uniformly integrable family in $L^{1}(b)$. A holomorphic function f on D is said to be in the Hardy class $H^{p}(D)$ if $\|f\|_{p}=\sup _{0 \leqslant \ll 1}\left(V^{-1} \int_{b}|f(r w)|^{p}\right.$
$d s(w))^{1 / p}<\infty(p>0)$. A function f is said to be outer if both f and $1 / f$ belong to $N_{*}(D)$. This definition coincides with the classical one in the case U^{n}. We state a characterization of $H^{p}(D)$.

THEOREM 1. A function f on D is in $H^{p}(D)$ if and only if f is in $N_{*}(D)$ and $\left|f^{*}(w)\right|^{p} \in L^{1}(b)$.

Another characterization is given in [3], but we do not use that here. Now in the same way as in [12], we have

THEOREM 2. Let $f(z) \in H^{1}(D), f(z)$ be outer and $1 / f^{*}(w) \in L^{1}(b)$. Then if $g(z) \in H^{1}(D)$ and $\|g\|_{1}=\|f\|_{1}$ and if $\arg g^{*}(w)=\arg f^{*}(w)$ a.e. on $b(\bmod .2 \pi)$, it follows that $g(z)=f(z)$.

To prove these theorems, we use the following results. The first is due to A . Korányi [5] and the second will be found in [3].

Lemma 1. There exists the Poisson kernel $P(w, z)$ defined on (b, D) and satisfying
(i) $P(w, z) \geqslant 0$ for $w \in b, z \in D$
(ii) $V^{-1} \int P(w, z) d s(w)=1$ for $z \in D$
(iii) For any fuxed w_{0} and a neighbourhood $N \subset b$ of $w_{0}, \lim _{z \rightarrow w_{0}} \int_{w \in N} P(w, z)$ $d s(w)=0$ for $z \in D$
(iv) $P(w, z)$ is harmonic on D for every fixed $w \in b$
(v) $f(z)=V^{-1} \int P(w z) f^{*}(w) d s(w)$ for $f \in H^{p}(D)(p \geqslant 1)$
(vi) $P(w, z)$ is continuous in w for every fixed $z \in D$
(vii) $P(u, r w)=P(w, r u)$ for $u, w \in b$ and $0<r<1$.
(i)-(v) are contained in [5] explicitely and (vi), (vii) are there implicitely. A complex-valued function h on D is said to be harmonic if $\Delta h=0$ for each differential operator Δ of D with the Bergman metric, invariant under the holomorphic automorphisms of D.

Lemma 2. If f is plurisubharmonic in D, then we have for every $0<r<1$

$$
V^{-1} \int P(w, z) f(r w) d s(w) \geqslant f_{r}(z)=f(r z) .
$$

Proof of Theorem 1. The necessity is well-known [1], and we shall show only the sufficiency. Since $\log ^{+}|f(z)|$ is plurisubharmonic in D, we have by Lemma 2

$$
\begin{equation*}
\log ^{+}|f(t z)| \leqslant \mathrm{V}^{-1} \int P(w, z) \log ^{+}|f(t w)| d s(w)(z \in D, 0<t<1) . \tag{1}
\end{equation*}
$$

As $\left\{\log ^{+}|f(t w)|\right\}$ is a uniformly integrable family by the assumption, there is a sequence $t_{j} \rightarrow 1$ such that $\log ^{+}\left|f\left(t_{j} w\right)\right|$ tends to an integrable function in the weak topology. The limiting function is clearly $\log ^{+}\left|f^{*}(w)\right|$. As $P(w, z)$ is continuous in w if $z \in D$ is fixed, we have, letting $t_{j} \rightarrow 1$ in (1),

$$
\log ^{+}|f(r w)| \leqslant V^{-1} \int P(u, r w) \log ^{+}\left|f^{*}(u)\right| d s(u) \quad(0<r<1, w \in b)
$$

Consequently, since $e^{p t}$ is a convex function, we have

$$
\max \left(1,|f(r w)|^{p}\right) \leqslant V^{-1} \int P(u, r w) \max \left(1,\left|f^{*}(u)\right|^{p}\right) d s(u) .
$$

Therefore we have

$$
\begin{equation*}
|f(r w)|^{p} \leqslant 1+V^{-1} \int P(u, r w)\left|f^{*}(u)\right|^{p} d s(u) . \tag{2}
\end{equation*}
$$

Thus using $P(u, r w)=P(w, r u)(u, w \in b)$, we have, after integrating (2) with respect to w,

$$
\sup _{0 \leq r<I} \int|f(r w)|^{p} d s(w) \leqslant V+\int\left|f^{*}(w)\right|^{p} d s(w) .
$$

This completes the proof.
Proof of Theorem 2. By Theorem 1, we have $1 / f \in H^{1}(D)$. Hence the assumption implies that $h(z)=g(z) / f(z) \in H^{1 / 2}(D)$ and $h^{*}(w)=g^{*}(w) / f^{*}(w)$ $\geqslant 0$ a.e. on b. Since $s(w)$ is a measure invariant under multiplication by $e^{i \theta}$, we have

$$
(2 \pi V)^{-1} \int k\left(e^{i \theta} w\right) d \theta d s(w)=V^{-1} \int k(w) d s(w)
$$

for every nonnegative or integrable function k on b. We have thus for almost all $w \in b$,

$$
h_{w}^{*}\left(e^{i \theta}\right)=h^{*}\left(e^{i \theta} w\right) \geqslant 0, \text { a. e. } \theta \in[0,2 \pi] .
$$

We have also for almost all $w \in b h_{w}(z)=h(z w) \in H^{1 / 2}(U)$. Hence $h_{w}(z)$ is constant in virtue of Neuwirth-Newman's theorem, which asserts that every $H^{1 / 2}(U)$ function with nonnegative boundary values a.e. is constant. Now since discs $\{z w ;$ $z \in U\}_{w \in b}$ intersect at 0 , we obtain that $h(z w)=h_{w}(z)=h(0)$ for amost all $w \in b$. Since $b / 2=\{w / 2 ; w \in b\}$ is the Bergman-Shilov boundary of $D / 2=\{z / 2 ; z \in D\}$ and $h(z)$ is holomorphic on the closure of $D / 2$, we have $h(z)=h(0)$ in D. Hence we have $g(z)=f(z)$ in D, because $h(0)=g(0) / f(0)$ and $g(0)=V^{-1} \int g^{*}(w) d s(w)$ $=V^{-1} \int f^{*}(w) d s(w)=f(0)$. This completes the proof.

REMARK. We have shown in the above proof implicitely that if $f \in H^{1 / 2}(D)$ and $f^{*} \geqslant 0$ a. e. on b, then f is constant.
3. Necessary conditions for Theorem A are the the followings,
$f /\|f\|_{1}$ is an extreme point of the unit ball of $H^{1}\left(U^{n}\right)$,

$$
\begin{equation*}
f /(1-u)^{2} \notin H^{1}(U) \text { for every } u \in H^{1}\left(U^{n}\right) \text { with }\left|u^{*}\right|=1 \text { a. e. } \tag{1}
\end{equation*}
$$

In $H^{1}(U),(1)$ is equivalent to that f is an outer function and in particular has no zero in U. We have in [13] that there is an $f \in H^{1}\left(U^{n}\right)(n \geqslant 2)$ such that it satisfies (1) but it is not an outer function. This suggests that to be outer (and in particular to be zero-free) is not necessary for the validity of Theorem A ($n \geqslant 2$). We shall check it really in the following Theorem 5.

Next we suppose that f is outer. We have seen in [12] that $1 / f \in L^{1}\left(T^{n}\right)$ is not superfluous in a sense, that is, for every $0<p<1$, there exists an $f \in H^{1}\left(U^{n}\right)$ such that f is outer and $1 / f^{*} \in L^{p}\left(T^{n}\right)$ but it breaks the validity of Theorem A. We shall see in the following Theorem 3 that $1 / f^{*} \in L^{1}(T)$ is not necessary for Theorem A even in the case $H^{1}(U)$.

Now we begin with an easy lemma.
Lemma 3. If $f(z)$ is a holomorphic function on the complex plane except 1 and it has at most a pole at 1 , and if $f\left(e^{i \theta}\right)$ is real for all real θ, then $f(z)$ has the following form

$$
f(z)=\sum_{j=0}^{k} a_{j}\left(i \frac{1+z}{1-z}\right)^{j}
$$

for some nonnegative integer k and real $a_{j}(j=0, \cdots, k)$. In particular, if $f\left(e^{i \theta}\right) \geqslant 0$, then $f(z)$ has the following from

$$
f(z)=\sum_{j=0}^{2 k} a_{j}\left(i \frac{1+z}{1-z}\right)^{j},
$$

where k is a nonnegative integer and $a_{0}, a_{2 k} \geqslant 0$ and $a_{j}(j=1, \cdots, 2 k-1)$ are suitable reals.

Proof. It is an easy matter to check that $i \frac{1+e^{i \theta}}{1-e^{i \theta}}$ is real for every real θ. Since $\frac{2}{1-z}=1+\frac{1+z}{1-z}, f(z)$ can be written as follows,

$$
f(z)=\sum_{j=0}^{k} a_{j}\left(i \frac{1+z}{1-z}\right)^{j}
$$

for some nonnegative integer k. Since $\left(i \frac{1+e^{i \theta}}{1-e^{i \theta}}\right)^{j}, j=0, \cdots, k$, are real valued functions are linearly independent, all coefficients a_{j} must be real. The second assertion is then easily verified.

Combining this lemma and an analytic continuation theorem for H^{1}, we have
Theorem 3. If $f(z) \in H^{1}(U)$ and if $\arg f^{*}\left(e^{2 \theta}\right)=\arg \left(1-e^{\imath \theta}\right)$ a.e. on T $(\bmod . \pi)$, then it follows that

$$
f(z)=a(1-z)+i b(1+z)
$$

for some real numbers a and b. In particular if $\arg f^{*}\left(e^{i \theta}\right)=\arg \left(1-e^{i \theta}\right)$ a.e. on $T(\bmod .2 \pi)$, then we have

$$
f(z)=a(1-z) \text { for some } a>0 .
$$

Proof. Let ε be an arbitrary positive number and let $U_{s}=\{z \in U ;|z-1|>\varepsilon\}$. Since $\frac{f(z)}{1-z}$ is in $H^{1}\left(U_{\mathrm{s}}\right)$ clearly and $\frac{f^{*}\left(e^{i \theta}\right)}{1-e^{2 \theta}}$ is real for almost all $\theta \in\left\{\left|e^{i \theta}-1\right| \geqslant \varepsilon\right\}$, $\frac{f(z)}{1-z}$ can be continued analytically across the open arc $\left\{\left|e^{2 \theta}-1\right|>\varepsilon\right\}$ in the $1-z$
same way as in [7] p.59. Since ε is arbitrary, we can assert that $\frac{f(z)}{1-z}$ is continued analytically on the extended complex plane except 1 , so that $f(z)=f(1 / \bar{z})$. Next, since $i \frac{1-z}{1+z}$ has real values on $T, i \frac{f(z)}{1+z}$ has also real values a.e. on T. It
follows therefore that $\frac{f(z)}{1+z}$ is holomorphic on the extended complex plane except -1 . These two facts show that $\frac{f(z)}{1-z}$ has at most a pole of order one at 1 . Applying the above lemma to this $\frac{f(z)}{1-z}$, we have the desired conclusion.

Remark. That the hypothesis of $f(z) \in H^{1}$ is not superfluous is shown by the function

$$
f(z)=1-z-\frac{(1+z)^{2}}{1-z}
$$

which has the same arguments as $1-z$ on $|z|=1$, except $z=1$, while $f(z) \in$ $H^{p}(0<p<1)$.

With a slight modification of the proof of the above theorem, we have

THEOREM 4. Suppose that $f(z)$ is in $H^{1}(U)$. Let $|a|=1$ and $\alpha>-1$. Assume further that

$$
\arg f^{*}\left(e^{i \theta}\right)=\arg \left(a-e^{i \theta}\right)^{\alpha} \quad \text { a.e. on } T(\bmod . \pi),
$$

where we take $1^{\alpha}=1$. Then $f(z)$ has the following form,

$$
\begin{equation*}
f(z)=(a-z)^{a} \sum_{j=0}^{k} a_{j}\left(i \frac{a+z}{a-z}\right)^{j} \tag{3}
\end{equation*}
$$

where $k=[\alpha]+1$ if $\alpha \neq$ integer, $=\alpha$ if $\alpha=$ integer and $a_{j}=$ real $(j=0, \cdots, k)$. In particular if

$$
\arg f^{*}\left(e^{i \theta}\right)=\arg \left(a-e^{i \theta}\right)^{\alpha} \quad \text { a. e. on } T(\bmod .2 \pi),
$$

then in (3) $k=2 m$, where m is the largest integer such that $2 m \leqslant \alpha$ if α is an integer and $2 m \leqslant \alpha+1$ if α is not an integer, $a_{0}, a_{2 m} \geqslant 0$ and $a_{j}(j=1, \cdots, 2 m-1)$ are some suitable real numbers.

Using Theorem 3 we have its n-dimensional form.

Theorem 5. Let $f(z) \in H^{1}\left(U^{n}\right)(n \geqslant 2)$ and let

$$
\begin{equation*}
\arg f^{*}\left(e^{2 \theta_{1}}, \cdots, e^{i \theta_{n}}\right)=\arg \left(e^{i \theta_{1}}+e^{2 \theta_{2}}\right) \text { a.e. on } T^{n}(\bmod .2 \pi) . \tag{4}
\end{equation*}
$$

Then it follows that

$$
f(z)=\frac{\pi}{4}\|f\|_{1}\left(z_{1}+z_{2}\right) .
$$

Proof. We have $f\left(z_{1}, e^{i \theta_{2}}, \cdots, e^{i \theta_{n}}\right) \in H^{1}(U)$ for almost ; all $\left(e^{i \theta_{2}}, \cdots, e^{i \theta_{n}}\right) \in$ T^{n-1} ([14] p.326). Thus by Theorem 3, the assumption (4) implies that

$$
f\left(z_{1}, e^{2 \theta_{2}}, \cdots, e^{i \theta_{n}}\right)=a\left(e^{i \theta_{2}}, \cdots, e^{i \theta_{n}}\right)\left(z_{1}+e^{i \theta_{2}}\right) \text { a. e. on } T^{n-1}, \text { where } a\left(e^{i \theta_{2}}, \cdots, e^{i \theta_{n}}\right)>0 .
$$

Consequently we have

$$
\begin{equation*}
f^{*}\left(e^{i \theta_{1}}, e^{i \theta_{2}}, \cdots, e^{\imath \theta_{n}}\right)=a\left(e^{i \theta_{2}}, \cdots, e^{i \theta_{n}}\right)\left(e^{i \theta_{1}}+e^{i \theta_{2}}\right) \tag{5}
\end{equation*}
$$

a. e. on T^{n}. We can hence continue $a\left(e^{i \theta_{2}}, \cdots, e^{i \theta_{n}}\right)$ analytically into U^{n-1} by

$$
a\left(z_{2}, \cdots, z_{n}\right)=\frac{f\left(e^{i \theta_{1}}, z_{2}, \cdots, z_{n}\right)}{e^{\theta_{1}}+z_{2}} \quad\left(z_{2}, \cdots, z_{n}\right) \in U^{n-1}
$$

where $f\left(e^{i \theta_{1}}, z_{2}, \cdots, z_{n}\right) \in H^{1}\left(U^{n-1}\right)$ for some fixed $\theta_{1} \in[0,2 \pi)$ ($[14]$ p.326). Since $e^{i \theta_{1}}+z_{2}$ is an outer function in U^{n-1}, it follows that $a\left(z_{2}, \cdots, z_{n}\right) \in N_{*}\left(U^{n-1}\right)$. Now we have, integrating $(5),\left(\frac{1}{2 \pi}\right)^{n-1} \int_{T^{n-1}} a\left(e^{i \theta_{2}}, \cdots, e^{i \theta_{n}}\right) d \theta_{2} \cdots d \theta_{n}=\frac{\pi}{4}\|f\|_{1}<\infty$.
Hence by Theorem 1, $a\left(z_{2}, \cdots, z_{n}\right)$ is in $H^{1}\left(U^{n-1}\right)$. Since every $H^{1}\left(U^{n-1}\right)$ function can be represented by the Poisson integral of its boundary function and since $a\left(e^{i \theta_{2}}, \cdots, e^{2 \theta_{n}}\right)$ is nonnegative, it follows that $a\left(z_{2}, \cdots, z_{n}\right)$ is a real-valued holomorphic function on U^{n-1}. Consequently $a\left(z_{2}, \cdots, z_{n}\right)$ must be a constant function. Then it follows immediately that $a=\frac{\pi}{4}\|f\|_{1}$, which completes the proof.
4. Similar results for tube domains over cones corresponding to those of section 2 will be given elsewhere.
5. Appendix. Recently R.P.Feinerman has shown the following fact in [15].

THEOREM B. Let λ be a real number, $p \geqslant 1$, and $\beta=\frac{2}{\pi} \operatorname{arc} \tan \lambda$ (principal values). If $f(z)$ is in $H^{p}(U)$, is real on $(-1,1)$ and satisfies

$$
\lambda \operatorname{Re} f\left(e^{i \theta}\right)=-\operatorname{Im} f\left(e^{i \theta}\right) \quad \text { a.e. in }(0, \pi),
$$

then

$$
f(z)=C\left(\frac{1-z}{1+z}\right)^{\beta}
$$

where C is real and (C is 0 if $p|\beta| \geqslant 1$), and we take the branch of $\left(\frac{1-z}{1+z}\right)^{\beta}$ as $1^{\beta}=1$.

We notice that we can prove this theorem easily by using our theorem 4 as follows. Note first that the null function satisfies the hypotheses of the above theorem. We may thus assume $f(z) \equiv 0$. We assume further $\beta \geqslant 0$. By assumption $1>\beta>-1$. Now if g is in $H^{q}(q>0)$ and g is real on $(-1,1)$, then $\operatorname{Re} g\left(e^{i \theta}\right)$ $=\operatorname{Re} g\left(e^{-2 \theta}\right)$ and $\operatorname{Im} g\left(e^{i \theta}\right)=-\operatorname{Im} g\left(e^{-2 \theta}\right)$ a. e. on $(0, \pi)$. This follows immediately from the fact $g(z)=\overline{g(\bar{z}})$, gained by Schwarz reflection principle. Therefore, since $\left(\frac{1-z}{1+z}\right)^{\beta}$ satisfies the hypotheses except that of H^{p}, we have that

$$
\arg f\left(e^{i \theta}\right)=\arg \left(\frac{1-e^{i \theta}}{1+e^{i \theta}}\right)^{\beta} \text { a. e. on } T(\bmod . \pi)
$$

or equivalently

$$
\arg \left(1+e^{i \theta}\right)^{\beta} f\left(e^{i \theta}\right)=\arg \left(1-e^{i \theta}\right)^{\beta} \quad \text { a. e. on } T(\bmod . \pi) .
$$

As $f(z)$ is in $H^{p},(1+z)^{\beta} f(z)$ is in H^{1}. Hence by Theorem 4 we have

$$
(1+z)^{\beta} f(z)=a(1-z)^{\beta}+i b(1-z)^{\beta} \frac{1+z}{1-z}
$$

or

$$
f(z)=a\left(\frac{1-z}{1+z}\right)^{\beta}+i b\left(\frac{1-z}{1+z}\right)^{\beta-1}
$$

for some real numbers a, b. Since $f(z)$ is real on $(-1,1)$, the second term must vanish. As $f(z)$ is in $H^{p}, p \beta$ must be smaller than 1 . The same is true in case $-1<\beta<0$. This proves Theorem B.

References

[1] S. Bochner, Classes of holomorphic functions of several variables in circular domains, Proc. Nat. Acad. Sci. U. S. A., 46(1960), 721-723.
[2] K. de Leeuw and W. Rudin, Extreme points and extremum problems in H_{1}, Pacific J. Math., 8(1958), 467-485.
[3] K. T. HaHn and J. Mitchell, H^{p} spaces on bounded symmetric domains, Trans. Amer. Math. Soc., 146(1969), 521-531.
[4] L. K. HUA, Harmonic analysis of functions of several complex variables in the classical domains, Transl. Math. Monographs, Vol. 6, Amer. Math. Soc., 1963.
[5] A. KORÁNYI, The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. of Math, 82(1965), 332-350.
[6] J. NeUWIRTH AND D. J. NEWMAN, Positive $H^{1 / 2}$ functions are constants, Proc. Amer. Math. Soc, 18(1967), 958.
[7] W. Rudin, Analytic functions of class H_{p}, Trans. Amer. Math. Soc., 78(1955), 46-66.
[8] W. Rudin, Function theory in polydiscs, Benjamin, 1969.
[9] E. M. Stein, G. Weiss, and M. Weiss, H^{p} classes of holomorphic functions in tube domains, Proc. Nat. Acad. Sci. U. S. A., 52(1964), 1035-1039.
[10] N. J. Weiss, Almost everywhere convergence of Poisson integrals on tube domains over cones, Trans. Amer. Math. Soc , 129(1967), 283-308.
[11] N. J. Weiss, An isometry of H^{p} spaces, Proc. Amer. Math. Soc., 19(1968), 1083-1086.
[12] K. Yabuta, Unicity of the extremum problems in $H^{1}\left(U^{n}\right)$, (to appear).
[13] K. Yabuta, Extreme points and outer functions in $H^{1}\left(U^{n}\right)$, Tôhoku Math. J., 22(1970), 320-324.
[14] A. Zygmund, Trigonometric series II, Cambridge University Press, 1959.
[15] R. P. Feinerman, A uniqueness theorem for H^{p} functions, J. Math. Anal. Appl., 29(1970), 79-82.

Mathematical Institute
TôHoku University
Sendai, Japan

