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Abstract

The main modes of behavior of a food chain model, composed of logistic prey and Holling type Il predator and
superpredator, are discussed in this paper. The study is carried out through bifurcation analysis, alternating
between a normal form approach and numerical continuation. The two-parameter bifurcation diagram of the
model contains Hopf, fold and transcritical bifurcation curves of equilibria as well as flip, fold and transcritical
bifurcation curves of limit cycles. The appearance of chaos in the model is proved to be related to a Hopf
bifurcation and a degenerate homoclinic bifurcation in the prey-predator subsystem. The boundary of the
chaotic region is shown to have a very peculiar structure.
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1. INTRODUCTION

The aim of this paper is to classify the asymptotic modes of behavior of three trophic-level food chains
composed by a prey (X), a predator (Y) and a superpredator (Z). This basic and classical problem
in population dynamics has been dealt with by many authors. Rescigno and Jones [30] were perhaps
the first to handle the problem using a general mathematical model of the form:

X XF(X,Y)
Y YG(X,Y, Z) (1.1)
Z = ZH(Y,Z).

Their analysis, mainly concerned with oscillations and cycles, was a bit naive and, indeed, their results
do not agree with many of the subsequent findings.
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A rich literature exists on the problem of persistence of food chains in all its versions: weak per-
sistence (i.e. limsup > O for all populations) [8, 10, 12]; strong persistence (i.e. liminf > 0 for all
populations) [6, 9]; and uniform persistence (i.e. liminf > & > 0 for all populations) [7, 11]. Since
the superpredator of a food chain goes extinct if one of the other populations does so, persistence
only depends on the behavior of the system in the vicinity of the plane Z =0, i.e. the face (X,Y") of
the state space. More precisely, the populations persist if the injection of a small number of super-
predators gives rise to the invasion into the positive octant (Z > 0) from a positive equilibrium z° or
from a limit cycle Lg lying on the face Z = 0. Thus, as noted by Freedman and Waltman [8], a food
chain is persistent if the function H in (1.1) evaluated at z° is positive, or if the average value of H
along Ly is positive. Obviously, the explicit conditions derived from the positivity of H, or through a
more elegant and effective technique based on Lyapunov-like persistence functions [10, 11, 12], do not
provide information on the number and structure of the attractors in the positive octant. This is a
very unfortunate situation, because the type of transients and the nature of the attractors are, after
all, the most interesting properties of a dynamical system.

More insights were obtained by Muratori [23] and by Muratori and Rinaldi [26, 27] who applied the
singular perturbation technique to food chains with trophic levels exhibiting diversified time responses.
In particular, they derived explicit conditions for the persistence of the three populations and for the
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Figure 1.1: Limit cycles in a food chain composed of prey (X), predator (Y') and superpredator (Z):
(a) high-frequency cycle (prey-predator interaction); (b) low-frequency cycle (predator-superpredator
interaction); (c) low-frequency cycle with a burst of high-frequency oscillations.

existence of limit cycles. Moreover, their analysis shows that, if the time responses are increasing with
the trophic level, the limit cycles can be of three distinct types: high-frequency cycles due to prey-
predator interactions (Figure 1.1(a)); low-frequency cycles due to predator-superpredator interactions
(Figure 1.1(b)); and very special low-frequency cycles, called “tea cup” limit cycles (Figure 1.1(c)),
containing prey-predator oscillations during a fraction of their period. The last is obviously the most
interesting case, in which the dynamics of the fastest component of the system, the prey, is not
completely filtered out and is periodically revealed by a burst of high-frequency oscillations. Similar
dynamics has also been found in models describing electrical activity in pancreatic cells [4, 33] and
dynastic cycles in ancient China [28]. For a theoretical discussion on bursting phenomena see Terman
[34, 35].

Many simulation studies have also shown that food chain models can have chaotic dynamics, gen-
erally obtained through a cascade of period doublings [1, 2, 14, 15, 21, 22, 29, 31, 36]. The most
interesting of these studies performed by Hastings and Powell [14] shows that food chains charac-
terized by time responses increasing with the trophic level have strange attractors which resemble
very much the cycle in Figure 1.1(c), and are, therefore, called “tea-cup” strange attractors. Not all
parameter values used in the above mentioned papers are biologically meaningful (see [21]) but some
of them are, like those used by Scheffer [31] for plankton and by Wilder et al. [36] for a study on
gypsy moths. This fact, together with the analysis carried out by Abrams and Roth [2, 1] and by
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McCann and Yodzis [21] on food chains composed of vertebrates and invertebrates, strongly supports
the conjecture that the irregular dynamics observed in many natural food chains and food webs might,
indeed, be that of a strange attractor.

The above results justify the interest for a deeper understanding of the complexity of food chains,
which naturally calls for bifurcation analysis of food chain models. This has been done in two recent
papers devoted to the standard food chain (logistic prey and Holling type II predator and superpreda-
tor). In the first paper, Klebanoff and Hastings [17] performed a theoretical analysis by deriving the
normal form of a degenerate bifurcation point (called point M from now on) and by showing that this
normal form might imply chaos for small perturbations of the parameters. This is conceptually related
to the above mentioned studies on persistence, because their degenerate bifurcation point corresponds
to parameter values giving rise to the following two singularities:

(i) the limit cycle Lo shrinks to the equilibrium x° on the (X,Y) face;

0

(i7) the function H is zero at x°, so that invasion from z° is neither guaranteed nor excluded.

In the second paper, McCann and Yodzis [22] performed mainly numerical analyses of the bifurcations
of the model by means of simulations and continuation. They started from the same degenerate point
M but showed that chaos arises in a different region of the parameter space. This discrepancy between
the normal form analysis and the numerical results is also evident in [17], where all simulations showing
strange attractors refer to parameter values far from those characterizing the degenerate point.

This paper is devoted to a more comprehensive bifurcation analysis of the standard food chain
model. In the next section, the model is described and the relationships among parameters giving rise
to the two degeneracies () and (4¢) are identified. In Section 3, the normal form of the degenerate point
is revisited and used to derive, by numerical continuation and further normal form analysis, a detailed
picture of the bifurcation structure. This picture includes Hopf, fold and transcritical bifurcations
of equilibria, as well as fold, flip and transcritical bifurcations of cycles, and shows that chaos is
obtained via a cascade of limit cycle bifurcations in a region of the parameter space that is far from the
degenerate point. This definitely proves that the origin of chaos in standard food chain systems cannot
be associated to point M, but rather to more complex and global dynamical phenomena. Indeed, the
singular-perturbation analysis of the food chain with diversified time responses, as presented in Section
4, indicates that chaos is related to the creation of a tea-cup attractor due to a singular Hopf bifurcation
and to its destruction via a double homoclinic bifurcation, which has the consequence of cutting this
attractor into two pieces. These are key features for a better understanding of the dynamics of food
chains, as pointed out in the last section, where some general interpretations of the results are given.
The details of the normal form derivation are confined to the Appendix.

2. THE MODEL
The food chain we analyse in this paper is the standard food chain composed of a logistic prey (X),
a Holling type II predator (Y') and a Holling type II superpredator (Z). It is, therefore, modelled by

dx X AY

aT X(R(l—f)—m)’ @1)
dY A X Ay Z

= = vY(E="__D - 2.2
dT ( 'Bi+x 1 Bz+Y>’ (2:2)
dz AY

o= Z(B2_-D 2.
dT ( By +Y 2)’ (2:3)

where T is time, R and K are intrinsic growth rate and carrying capacity of prey, the A;’s are
maximum predation rates, the B;’s are half saturation constants, the D;’s are death rates and the
E;’s are efficiencies of predator (i = 1) and superpredator (i = 2). Obviously, we assume that
E;A; > D;,i = 1,2, in order to avoid the case where predator and superpredator cannot survive even
when their food is infinitely abundant.
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In order to obtain simpler analytical forms, we rescale the variables following Klebanoff and Hastings

[17]7

X Y A
T1 K; Z2 KEl, Z3 KE]_EQ’ 5
thus obtaining
dxq a1z
—_— = 1-— - 2.4
dt n ( xl 1+ blml) ’ ( )
dxo a1 a3
R— - _dy - —= 2.5
dt 2 (1+b1x1 Y 14 bows ) (2.5)
d£173 ags o
A— 272 _d 2.
dt $3 (1 + bzmz 2) 9 ( 6)
where
. KA E; b — K di = Dy _ KAyFE Ey by — KE; dy = D,
ap = R317 l_Bla 1_R7a2_ RB2 » U2 — B2; 2—R-

Then, the above necessary conditions for the persistence of predator and superpredator become a; >
bid;, 1 =1,2.

Table 1 contains the numerical values of the parameters used by different authors to perform simu-
lations with model (2.4)-(2.6) or with very similar models. The parameter values used in this paper,
sometimes called the reference values, are the following

ai :5, a2:0.1, bl :3, b2:2,
while d; and ds are varied.
All coordinate axes and faces of the positive octant are invariant sets of system (2.4)-(2.6). Moreover,
there are three trivial equilibria:
- the origin (0,0,0), which is always a saddle;

- the point (1,0,0), corresponding to prey at carrying capacity and absence of predator and super-
predator;

- the point
0 _ 0 .0 _ d1 al—dl(b1+1)
@ =(ey,e2,0) = (a1 “bydi’  (ar — bidy)? 0) ’ 27)

| | a [ a | b | b | di|
Hogeweg and Hesper [15] 1.81 | 0.181 | 4.5* | 0.45* | 0.16 | 0.08
Scheffer [31] 8.0 2.88 | 6.66 | 24 0.87 | 0.25
Hastings and Powell [14 5.0 0.1 4.0f 2.0 0.4 | 0.01
Rai and Sreenivasan [29 0.22 | 0.011 | 5.0 0.25 | 0.02 | 0.02
Abrams and Roth [1] (ex.3) || 1.757 | 0.357 | 2.62T | 1.75T [ 0.1 | 0.04
Abrams and Roth [1] (ex.4) || 2.5 | 0.257 | 3.0 [ 2.0 | 0.2 | 0.025
McCann and Yodzis [22] 2.4 0.022 | 298 | 044 | 04 | 0.01

Table 2.1: Numerical values of the six parameters of the model (2.4)-(2.6) used by different authors
to simulate the behavior of food chains. Values indicated by * are estimates (because the functional
form of the model is slightly different from (2.4)-(2.6)). Values indicated by ! are the center values of
the range used in the simulations.
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which is positive for a; > di(by + 1) and corresponds to prey-predator coexistence and absence of
superpredator.

The point z° can be either stable or unstable in the face (z1,z2). When it is unstable, it is surrounded
by a stable limit cycle [20], which is unique and globally attracting in the plane 3 = 0 [5]. The
transition between the two situations, corresponding to degeneracy (i) mentioned in the preceding
section, is a supercritical Hopf bifurcation of the submodel (2.4)-(2.5) with z3 = 0, taking place at

b1d1(b1 + 1) = al(bl — ].) (28)

(note that b; > 1if the carrying capacity K is greater than the half saturation constant B;). Moreover,
the second degeneracy of the point 2° (condition (ii) above) takes place at

(U,]_ — b1d1)2d2 = ((l]_ — d]_(l + bl))(az - bzdz). (29)

It is a transcritical bifurcation giving rise to a strictly positive equilibrium for small perturbations of
the parameters.

The bifurcation analysis of (2.4)-(2.6) will be carried out with respect to two parameters. Although,
in principle, any pair of parameters might be selected, the results will be derived only for the pair
(d1,d2) for two independent reasons. First, because the death rates D; and Dj in (2.1)-(2.3) (and,
hence, dy and dy in (2.4)-(2.6)) can be strongly influenced, for example by harvesting the predator
and the superpredator or by contaminating or reclaiming their environments, so that this pair of
parameters is the most interesting one for interpreting and forecasting the consequences of management
actions. Second, because d; and dy influence, separately, only one state equation, thus facilitating
singular perturbation analysis. This does not mean that other bifurcation diagrams are of no interest.
For example, the effects of enrichment of food chain systems, recently discussed in [1, 2] through
simulations, could certainly be studied in a more compact form by producing bifurcation diagrams of
the model (2.1)-(2.3) with respect to R and K.

3. BIFURCATION ANALYSIS

The analysis starts from the point M giving rise to the singularities (¢) and (¢¢). This is a point in
the (dy,dy)-plane at which equations (2.8) and (2.9) are satisfied, so that the corresponding Jacobian
matrix has one zero eigenvalue and two purely imaginary eigenvalues. The parameter-dependent
normal form of the system near this point will be derived and used to show that, for meaningful
values of the other parameters, five bifurcation curves emerge from this point, none of which implies
chaos. Then, these curves will be continued in the parameter plane (d;, d2) by means of LOCBIF [16],
an interactive software implementing a powerful continuation technique in conjunction with detection
of high codimension bifurcation points. The normal form approach will be used to find out how many
and which bifurcation curves are rooted at each one of these high-codimension points. By alternating
these two phases (continuation and normal form analysis), the bifurcation structure will emerge and
indicate where strange attractors can be found in the parameter plane.

3.1 Normal form of codimension-two point M

If all parameters, except d; and ds, are fixed, the planar Hopf bifurcation and the transcritical bifur-
cation occur along two curves in the (d,ds)-plane, given by (2.8) and (2.9) and labeled by H, and
TC. in the following figures. These curves intersect at the point M with coordinates

a]_(bl — 1) a2(b1 + 1)2 )
bl(bl —+ ].), b2(b1 =+ 1)2 —+ 4a1b1 )

¢ = a5 =
The coordinates (see (2.7)) of the corresponding equilibrium point z° are

"  x % b —1 (b1+1)2
z :($1,$2,$3):( 2[)1 ’ 4a1b1 ;0




3. BIFURCATION ANALYSIS 6

The analysis of the bifurcations in the vicinity of * for parameter values close to d* can be performed
using the normal form technique [3, 13]. But the well-known results on bifurcations of equilibria
with a zero eigenvalue and two purely imaginary eigenvalues can not be merely applied here, since the
dynamical system (2.4)-(2.6) is not generic. Its functional form, as shown below, leads to the existence
of a tangent (fold) bifurcation curve T, passing through M. As noticed by McCann and Yodzis [22],
the existence of the two bifurcation curves T, and T'C, is rather peculiar, because only the curve T
is expected in general, while only the curve T'C, should be present in generic systems with invariant
coordinate planes.

The normal form analysis of (2.4)-(2.6) has already been carried out by Klebanoff and Hastings
[17]. However, it can be improved in two respects. First of all, it is possible to perform a parameter-
dependent normalization near the degenerate point M. Moreover, generically, the number of nonlinear
terms in the normal form can be reduced by a nonlinear time reparametrization. The normalization
and reparametrization procedures are described in the Appendix. The result is that system (2.4)-(2.6)
near point z* for parameter values close to d* can generically be written in the normal form

no= Bn+an’+ Aip’n+ Bn® + O([|(n, p)|*)
p = ap+Cinp+Ep®+0([(n,p)|*) (3.1)
0 = w+O(l(nnl),

where 7 is a coordinate in the z3-direction, while (p, 8) are polar coordinates in the plane z3 = 0.
At d = d*, this normal form differs from that derived by Klebanoff and Hastings [17], who, indeed
did not reparametrize time. For this reason, their normal form contains also an 72p-term in the
second equation. In (3.1) a, B,~ are functions of the parameters (d1,ds) and vanish at d = d*, while
w, A1, B,C1 and E do not vanish, in general, at d = d*. Explicit formulas for a, 8 and -, can be found
in the Appendix, together with those (already obtained by Klebanoff and Hastings) for w, A1, B, Cy
and E at the critical parameter values. It can also be shown that the Jacobian matrix of the map
(d1,d2) — (o, ) is nonsingular at d = d*. Therefore, one can consider (a,3) as new coordinates in
the parameter plane with their origin at d*, namely,

_ Ml gy o(d-ap)
@ B 4a1 1 1 ’
B = —(da—d5)+O(ld—d"|P)

and treat all other coefficients involved in (3.1) as functions of (a, 3). It follows from the parameter-
dependent normalization that the coefficient v in the first equation cannot be considered as an inde-
pendent parameter, as it was in [17]. Actually, it has the form

(e, B) = ma =728 + O(ll(«, B)|%),

where 7, 2 > 0 are suitable constants (see Appendix). It is this fact that gives rise to the existence of
both bifurcation curves T, and T'C,.

Truncating terms of order four and higher in (7, p) in (3.1), one obtains a system in which the first
two equations are independent of 6,

no= pn+m*+ Ap’n+ By’ (3.2)
p = ap+Cinp+ Ep’, '

while the third equation describes an azimuthal rotation with almost constant velocity.

Equilibria of (3.2) with p = 0 and 5 > 0 represent strictly positive equilibria of the original system
(2.4)-(2.6), while equilibria of (3.2) with 7 = 0 and p > 0 describe limit cycles in the invariant plane
z3 = 0. Finally, a strictly positive equilibrium of (3.2) corresponds to a strictly positive limit cycle
in the original system (2.4)-(2.6), while a limit cycle in (3.2) would correspond to a torus or to a
more complex invariant set of (2.4)-(2.6). Thus, bifurcations of the equilibria in (3.2) correspond to
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bifurcations of equilibria and cycles in (2.4)-(2.6). For example, a transcritical bifurcation of a nonzero
equilibrium on the n-axis of system (3.2) corresponds to the Hopf bifurcation of a strictly positive
equilibrium in (2.4)-(2.6).

The bifurcation diagram of the normal form (3.2) near the origin of the («, 3)-plane depends on
the signs of the coeflicients A;, B,C; and E at o = 8 = 0, as well as upon ;. However, as can be
seen from the Klebanoff-Hastings formulae, the coefficients A;, B and E are negative for all values
of the parameters. Therefore, only two general cases are possible, depending on the sign of the
coefficient C;. This conclusion differs from that of Klebanoff and Hastings [17] who considered more
cases than those actually occurring. In the following, only the case C; < 0 is considered, because all
the parameter settings reported in Table 1 fall into this category, as can be easily verified using the
Klebanoff-Hastings formula for C; (see Appendix).

In the considered case, the system (3.2) can be further simplified by rescaling its variables, param-
eters and time. In fact, the substitution

Gy

I—)g - —— al—»—c—%a ﬁ|—>—0—12,6 t|—>—£t
Ir) Blr)’p \/ﬁP) B ) B b

cz”
reduces (3.2) to
{ 7 = Pn+ [Tia—Tof+O(l(e, B)I)] #* + Azp?n — n° (3.3)
po= ap—np—p’
where the dots now mean differentiation with respect to the new time, and

A Ch
Ay = —— T = — k=1,2.
2 E7 k B’yk7 )

The bifurcation diagram of the normal form (3.3) (see Figure 3.1) can be interpreted in terms of
bifurcations of the original system (2.4)-(2.6). Point M (origin of the («, 8)-plane) is the root of five
bifurcation curves:

- the planar Hopf
HP = {(aaﬂ) o= 0}3

- the transcritical of equilibria

TC. ={(a, ) : B =0},

- the tangent (fold) of positive equilibria
1
T, = {(a,ﬂ) 1B =—T1e’ +0(a%), a> 0} :

- the Hopf of positive equilibria

H={(,8):8=(1~T1)a?+0(), a>0},

- the transcritical of limit cycles
TC,={(a,8): = —Asa, a > 0}.

If
4 —1)<I%

(as it is for the reference values of the parameters), the Hopf bifurcation curve H is located between
the transcritical curve T'C, and the fold bifurcation curve T,. To understand bifurcations of the system
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B
0 TCe
@ @ |0/, @
TCe TCe |
0 ®
—

Figure 3.1: Bifurcation diagram and corresponding phase portraits of the normal form (3.3) in the
vicinity of the codimension-two point M.

(2.4)-(2.6) corresponding to the diagram presented in Figure 3.1, a clockwise trip around the origin
of the parameter plane is useful.

In region 1, the equilibrium z° on the face x3 = 0 is stable and is the unique attractor of the system.

Crossing the boundary T'C, of regions 1 and 2, z° becomes a saddle and a stable strictly positive
equilibrium emerges from z° via the transcritical bifurcation. Then, at the boundary H,, separating
regions 2 and 3, the equilibrium 2° becomes a repellor and a saddle limit cycle Ly appears on the
face zz3 = 0 (planar Hopf bifurcation). The transition to region 4 through the line T'C, implies a
transcritical bifurcation of this cycle, which becomes stable, and leads to the appearance of a positive
saddle cycle. Then, a second strictly positive equilibrium appears in (2.4)-(2.6) on the line T'C,, so
that in region 5 there exist two strictly positive equilibria (only one of which is stable), a stable planar
cycle and a strictly positive saddle cycle. At the boundary H between regions 5 and 6, the saddle
limit cycle shrinks to the equilibrium and disappears via a Hopf bifurcation. Therefore, the planar
cycle Ly is the only attractor in region 6. Then, the two positive equilibria collide and disappear on
the curve T, separating region 6 from region 7, and finally the planar cycle Ly shrinks to z° on the
planar Hopf bifurcation curve H,.

So far, no chaotic behavior has been detected near the codimension-two point M in the truncated
system. Since system (3.3) has no limit cycles, then system (2.4)-(2.6) cannot behave chaotically near
point 20 for d close to d*. This means that the codimension-two point M can not be considered as
the “origin” of chaos in food chains, at least for the ranges of parameters which have been considered
up to now in simulations (see Table 1).

3.2 Bifurcation curves rooted at point M

The bifurcation curves in the parameter plane (d;,ds), which emanate from point M, have been
continued numerically using LOCBIF, see Figure 3.2. The curves T, and H), are horizontal and
vertical straight lines, respectively; the transcritical bifurcation curves T'C. and T'C, end at the ds-
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0.020 T T T
Te M
H+
TC TCe
0015 L TCe g i
D
TC
d2 0.010 T, - |
A
0.005 4
Hp
0.000 1 1 J
0.00 0.25 0.50 0.75 1.00

d

Figure 3.2: Bifurcation curves of system (2.4)-(2.6) originating at the codimension-two point M.
Parameter values are specified in the text.

axis, while the Hopf bifurcation curve H has a more peculiar form. Its associated first Lyapunov
coefficient (1.e., the real part of the cubic coefficient in the normal form) is positive close to M and
decreases between M and L, where it changes sign. This means that the Hopf bifurcation is subcritical
from M to L (on the segment H1) and supercritical elsewhere (on the segment H~). Therefore (for
example, see Arnold [3]), there exists a bifurcation curve 7T, originating at point L and corresponding
to the fold bifurcation (collision) of two limit cycles. Continuation shows that this latter curve has
another codimension two singularity, namely a cusp, at point A, where three limit cycles collide
simultaneously. The curve T, terminates at a point D on the transcritical bifurcation curve T'C,,
where a cycle passes through the invariant plane 3 = 0: when approaching point D along T, the two
colliding cycles “hit” the invariant face. Thus, the curve T, connects the codimension-two bifurcation
points L and D. We will not list all equilibria and cycles related to the bifurcation curves presented
in Figure 3.2, however note that a unique stable limit cycle exists for low values of d; just below curve

TC,.

3.3 Cycle bifurcations and chaos

The bifurcation curves obtained so far form a bifurcation diagram connected with the bifurcation
point M. However, further numerical analyses show that the actual bifurcation diagram is much more
complex and apparently involves an infinity of limit cycle bifurcation curves that are disconnected
from the above ones. Figure 3.3 shows some of the bifurcation curves relating to limit cycles. The
continuous curves denoted by Fj are period doubling (flip) bifurcation curves of cycles, while the
dotted curves labeled by T} refer to fold (tangent) bifurcations of cycles. The continuation with
respect to di of the stable limit cycle existing below curve T'C. near the vertical axis (see Figure
3.2) reveals a cascade of period doubling bifurcations as d; increases. An interesting feature of the
flip bifurcation curves is that they are properly ordered, giving rise to a Feigenbaum-like cascade, for
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0.015 T x T 1

T

0.012

T

d, 0.009

I

0.006

0.003

0.1 0.6

Figure 3.3: Bifurcation curves corresponding to limit cycle bifurcations.

d; < 0.25 but intersect for d; > 0.25.

In order to explain these intersections, one can consider a cycle manifold of the system, i.e. a
two-dimensional manifold in the (z;,d, d2)-space specified by the z;-coordinates of the cycles in a
cross-section z9 = const. Notice that for the same value (d;,ds) of the parameters, z; can have
different values since multiple cycles can exist: in other words the cycle manifold can be folded.
Consider now Figure 3.4, in which the region containing the intersection point of the flip curves Fj
and F» is magnified. The projection onto the (di,ds)-parameter plane of the cycle manifold has a
cusp singularity at point A;, where two fold branches Tl(l) and T1(2) meet tangentially, forming a
“horn”. Nearby this point, the flip bifurcation curves F; and F5 lie on two different sheets of the
manifold, so that their projections onto the (di,ds)-plane can intersect at the point B;. Similar
horns are associated to each intersection point of any pair of flip curves. Moreover, some of these
horns are connected. Figure 3.4 shows, for example, that the fold bifurcation curve Tl(z) ends at a
second cusp point, namely As, thus forming a second horn with the fold curve Tl(g) (which practically
coincides with Fy). This second horn is obviously associated to the nearby intersection point of the
flip bifurcation curves Fy and Fj.

In conclusion, putting together Figure 3.2 and Figure 3.3, one obtains the diagram depicted in
Figure 3.5. This diagram indicates that the chaotic region is bounded in a complicated manner by
flip and fold bifurcation curves that have little to do, if anything at all, with point M. FEntering
the chaotic region from the left (by increasing d;) implies a straightforward cascade of supercritical
period doublings. In other words, a high-frequency cycle, due to prey-predator interaction, like the one
existing close to the ds-axis below T'C., gradually becomes a low-frequency cycle. On the contrary,
entering the chaotic region from the right (by decreasing d;) might involve a much more complex
sequence of events, because frequency switches (i.e. catastrophic transitions between stable cycles
with different periods) are associated with the crossing of each horn.



3. BIFURCATION ANALYSIS 11

0.014

0.013

0.012

0.011
0.25 0.35 0.45 0.55

Figure 3.4: Details of the bifurcation diagram.
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Figure 3.5: Bifurcation diagram of system (2.4) - (2.6). Strange attractors can be found in a vertical
band confined between d; =2 0.2 and d; = 0.4.
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4. SINGULAR-PERTURBATION ANALYSIS

The bifurcation diagram obtained in the previous section shows that system (2.4)-(2.6) behaves chaot-
ically in a vertical band confined between d; = 0.2 and dy = 0.4 (see Figure 3.5). This feature of the
diagram can be explained, at least to a certain extent, by means of singular-perturbation analysis,
assuming that the superpredator has slow dynamics relative to prey and predator. This is, actually,
the case in all simulation studies referred to in Table 1, where the parameters as and dy of the su-
perpredator are smaller than the corresponding parameters a; and d; of the predator. The analysis
shows that the strange attractors of the system (2.4)-(2.6) have the form of a “tea-cup”, and that the
domain in the (di,ds)-plane where strange attractors can be found is specified by some bifurcations
of the reduced order system (2.4)-(2.5) with constant superpredator zs.

Deliberately leaving out all the technical details which support the singular perturbation approach
(the interested reader can refer to Muratori and Rinaldi [27], where the standard food chain is studied),
the analysis is carried out in two steps, described in the following two subsections. In the first step, all
the stable equilibria and limit cycles of the fast (prey-predator) subsystem (2.4)-(2.5) are determined
for all constant values of z3. In the second step, the equilibrium manifold of the slow equation (2.6)
is introduced and used to derive “singular” orbits that approximate the real orbits of the system.

4.1 Bifurcation diagram of the fast subsystem
The second-order “fast” prey-predator system

dxq a1
= 1—g — ——2 4.1
dt n ( n 1 + b1$1> ’ ( )
d(l?z a1y agX3
A - —d - —= 4.2
dt 2 <1+b1$1 ! 1+ bazo ’ ( )

where z3 is a parameter, is now considered. This system is of interest per se, because in many natural
food chains the superpredator has alternative sources of food and is, therefore, roughly constant. The
dynamic behavior of (4.1)-(4.2) is already well-understood. Its Hopf, fold and transcritical bifurcations
have been analyzed by Muratori and Rinaldi [24, 25], while homoclinic bifurcations have been detected
through simulations by Scheffer [32], and then studied analytically and numerically by Kuznetsov et
al. [19], where a complete two-parameter bifurcation diagram has been obtained.

Figure 4.1 presents the bifurcation diagram of (4.1)-(4.2) in the parameter plane (d;,z3) together
with generic phase portraits. The diagram has been computed with all parameters fixed at the refer-
ence values used in the preceding analysis. The parameter d; has been selected as control parameter
because our target is the interpretation of the bifurcations of (2.4)-(2.6) with respect to d; and ds.
Reading this bifurcation diagram is quite simple. The equilibrium (1,0) of (4.1)-(4.2) undergoes a
transcritical bifurcation along the line T'C'. Point D on this line is a codimension-two bifurcation
point corresponding to a degenerate transcritical bifurcation. This point is, therefore, the root of a
fold bifurcation curve T, along which two strictly positive equilibria (a saddle and a node) appear.
Also the fold curve T contains a codimension-two bifurcation point, namely a Bogdanov-Takens point
BT, at which system (4.1)-(4.2) has an equilibrium with a double zero eigenvalue. Point BT is located
outside the positive quadrant of the (d;, z3)-plane but, nevertheless, plays an important role, since a
Hopf bifurcation curve H and a homoclinic bifurcation curve P originate at this point [3] and then
enter the positive quadrant. Notice that the Hopf curve H intersects the transcritical line T'C at
di 22 0.46, while the homoclinic curve P has a turning point at d; = 0.165.

For each value of d, the invariant sets (equilibria and cycles) of (4.1)-(4.2) can be drawn in the
(21, 22, z3)-space. In such a representation, an equilibrium appears as a curve, while a cycle gives rise
to a paraboloid-like surface with the vertex corresponding to a Hopf bifurcation point. The invariant
sets of (4.1)-(4.2) are shown in Figure 4.2 for three values of di corresponding to the vertical lines
(a),(b) and (c) in Figure 4.1. The bifurcation sequences appearing along these lines are different and
along line (c) they are five, instead of three, because of two extra bifurcations, namely a “direct” and
a “reverse” homoclinic bifurcation. The appearance of these two homoclinic bifurcations leads to the
cutting of the paraboloid-like surface into two pieces.
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Figure 4.1: Parametric and typical phase portraits of the fast system (4.1)-(4.2) for the reference
values of the parameters.

4.2 Creation and cutting of a “tea-cup” attractor
The nontrivial equilibrium manifold of the slow (superpredator) equation

dm?, agxo
ik e d 4.3
= (T ) (43)
is the plane given by
2= ag — bady ’

which approaches the coordinate plane (z1,z3) as do — 0. Above this plane, the superpredator
increases (23 > 0), so that orbits move to the right, while below, orbits move to the left (3 < 0).
Moreover, if ds is sufficiently small, the plane lies entirely below both the paraboloid-like surface and
the segment HT of the stable equilibrium coming out from its vertex (see Figure 4.2). This is assumed
in the following discussion.

Singular-perturbation analysis, then, says that the orbits of system (4.1)-(4.3) are approximated
by so called “singular” orbits, which are composed of slow motions along the stable equilibrium (or
cycle) manifolds of the fast subsystem in the direction dictated by the sign of z3, and fast jumps near
catastrophic bifurcation points of the fast subsystem. Some of the delicate mathematical problems
arising in this context, including “canard solutions”, are dealt with by Muratori and Rinaldi [27] and
Terman [35].

In the case presented in Figure 4.2(a), the configuration of the invariant manifolds implies the
existence of a singular limit cycle composed of four concatenated segments. An initial slow motion
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Figure 4.2: Equilibria and cycles of the fast system (4.1)-(4.2) plotted against z3 for the values of
dy corresponding to lines (a),(b) and (c) in Figure 7. The bold curves indicate orbits of (2.4)-(2.6).
Double (single) arrows indicate fast (slow) motion.
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along the equilibrium manifold HT is followed by a fast jump from the bifurcation point T' to the
trivial equilibrium on the (z,z3)-plane. During this fast transition, the orbit crosses the manifold
23 = 0 so that the third segment of the singular cycle develops from right to left along the line of trivial
equilibria. For technical reasons described in [27], the slow motion continues beyond the transcritical
point T'C and then jumps back to the branch HT, thus closing the cycle. In Figure 4.2(a), the real
cycle of a slow-fast food chain is sketched and its fast parts are indicated with double arrows.

In the case depicted in Figure 4.2(b), the resulting singular cycle is more complex. It has the
peculiar form of a “tea-cup” with a long handle. The real motion in the slow-fast system can be
either cyclic or chaotic. In some of the papers devoted to simulations of food chains, there are figures
showing this latter type of attractor.

Finally, in the case of Figure 4.2(c), which was not studied in [27], the “tea-cup” attractor is
“shorter”. The comparison of Figure 4.2(b) and Figure 4.2(c) shows that the loss of the bottom of
the cup is due to the appearance of a double homoclinic orbit in the fast system (4.1),(4.2). If the
gap between the two emerging homoclinic bifurcations is wide enough, all orbits starting near the
right piece of the paraboloid eventually reach the left one and then never visit the right piece any
more. The motion near the left part of the “tea-cup” can also be chaotic or can degenerate into a
high-frequency predator-prey cycle (see Figure 1.1(a)).

The described sequence of figures corresponds to decreasing values of d; (see the vertical lines (a),(b)
and (c) in Figure 4.1). Thus, Figure 4.2 implies that, for decreasing values of dy, the attractor of
the system undergoes significant transformations: from a simple low-frequency cycle, to a “tea-cup”
attractor and, finally, through a “cut tea-cup” attractor, to a high-frequency cycle. The “tea-cup”
attractor appears at a value of d; corresponding to the intersection of the Hopf and the transcritical
curves, H and T'C, i.e. for d; =2 0.46. The cutting takes place at the value of d; which corresponds
to the turning point of the homoclinic bifurcation curve P in the (d;,z3)-plane (see Figure 4.1). As
we have noticed above, for the reference parameter setting this value of d; is approximately equal to
0.165. Notice that the chaotic band of Figure 3.5 is located between these two critical values of d;.

5. DISCUSSION AND CONCLUDING REMARKS

A bifurcation diagram of the standard food chain model (logistic prey and Holling type II predator
and superpredator) has been produced and discussed in this paper with the aim of classifying the main
modes of behavior of food chains. The bifurcations have been determined by studying the normal
form of a codimension-two point and by extending the bifurcation curves emerging from that point
by means of a continuation technique. The analysis is more systematic than those recently published
by Klebanoff and Hastings [17] and McCann and Yodzis [22] and confirms some of their results and
conjectures. The normal form derived in this paper is parameter-dependent and takes into account
the specific functional form of the model. This simplifies the analysis because it reduces to two the
number of possible cases (identified by the sign of a strategic parameter of the normal form). Actually,
only one of these two cases is analysed in the paper because all the known studies on the standard
food chain (see Table 1) fall into the same class.

The bifurcation diagram (see Figure 3.5) indicates that strange attractors are present in a region
of the parameter space which is far from the codimension-two point, thus proving that the existence
of chaos has nothing to do with this point. This is confirmed by a singular-perturbation analysis in
which the superpredator is assumed to be the slow component of the system, while the prey-predator
subsystem is the fast component. This is very often the case in natural food chains, algae-zooplankton-
fish being a typical example. A purely geometric approach showed that a simple low-frequency cycle,
as sketched in Figure 1.1(b), can turn into a “tea-cup” attractor (see Figure 1.1(c)) under variation of
some parameter. This happens when a Hopf bifurcation in the second-order fast subsystem coincides
with a transcritical bifurcation. Under further parameter variation, this attractor can split into two
pieces. This event is associated with the appearance of a double homoclinic orbit in the fast subsystem.
The “cut tea-cup” attractor finally becomes a simple high-frequency cycle, as sketched in Figure 1.1(a).
The numerical analysis carried out on this problem clearly suggests that the appearance and cutting
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of the tea-cup are the indicators of chaos. Further work is needed on this subject, since what is
known on third-order slow-fast systems is not enough to tackle the problem. In particular, it would
be very interesting to know if the existence of the tea-cup is related with the presence of Shil’nikov’s

homoclinic orbits in the model. Indeed, examples of such kind of orbits (not shown in the paper) have
been obtained numerically (see also [22]).

Many curves appearing in Figure 3.5 refer to bifurcations involving only unstable equilibria and/or
unstable cycles. Of course, these bifurcation curves are needed to fully understand the transformations
and the matching of all attracting, repelling and saddle invariant sets. But, if the final target of the
analysis is the classification of the stable modes of behavior, these bifurcation curves are of no help

and can, therefore, be erased from the final diagram, which then becomes much more simple. Figure
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Figure 5.1: Reduced bifurcation diagram of system (2.4)-(2.6) identifying regions of coexistence of
populations: E steady coexistence; L cyclic coexistence; C chaotic coexistence.

5.1 shows a reduced diagram obtained from Figure 3.5 (recall that d; and dy are the rescaled death
rates of predator and superpredator). Food chains corresponding to points in region O of this diagram
are characterized by the extinction of the superpredator, while in all other regions stable coexistence
of the three populations is possible. More precisely, in region E, only steady coexistence is possible
because the unique positive attractor existing in that region is an equilibrium. Similarly, in region L
coexistence is possible only on a limit cycle, while in region C stable chaotic behavior is also present.
Nevertheless, in some parts of these regions, coexistence is not guaranteed for all initial conditions.
This happens when there exists also a trivial attractor involving the extinction of the superpredator.
For example, in the left upper part of region E (actually, above curve T'C.. of Figure 3.5), the system
has also a stable prey-predator limit cycle and, indeed, in that region the fate of the superpredator

depends upon the initial population densities. Moreover, in region L there are also subregions, where
there are two (or more) stable positive limit cycles.
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The multiplicity of the attractors is certainly one of the most interesting features of food chains.
It explains, for example, why after an exogenous shock (like a forest fire, a flood or an epidemic) a
food chain might radically change its mode of behavior. In fact, a shock can suddenly transfer the
state of the system from its usual basin of attraction into another basin of attraction, so that, after
a transient, the system will behave in a different way. The multiplicity of the attractors can also
explain why small perturbations of the environment (like temperature or pH variations in a lake) can
entail macroscopic consequences on the populations (like frequency switches in the cyclic regime of
the food chain or extinction of the top predator). This happens when the parameter perturbation is
interpretable as the crossing of one of the catastrophic bifurcation curves (indicated with continuous
lines in Figure 5.1). Thus, for example, a slow but continuous increase of the rate of harvest of the
superpredator (increase of dy) will inevitably end up with the extinction of such population, but in
two substantially different ways: with a clear evidence of decay, in food chains with very high or very
low death rate d;, and with almost no warning, for intermediate values of d; .

Figure 5.1 also shows where the food chain can be chaotic (region C). This region is a rather narrow
vertical band in the parameter space (di,dz). Its left boundary is very regular and corresponds to
the limit of a sequence of flip bifurcation curves. In contrast, the right boundary is more complex,
because the flip bifurcation curves (see Figure 3.5) intersect, giving rise to infinitely many “horns”.
Near the edge of each of them there are two stable cycles. Going into the limit, these horns become
infinitely thin and form the right boundary of the chaotic region. Thus, a chaotic food chain should
be stabilizable either by decreasing or by increasing d; (for example, by varying the rate of harvest
of the predator). In the first case (d; decreasing), one would emerge from chaos through a reverse
cascade of period doublings, thus tending towards a high-frequency prey-predator cycle, as predicted
by the singular-perturbation analysis. In the second case (d; increasing), one would emerge from
chaos passing through the above described horns, each one implying a catastrophic transition. In
conclusion, while the left route to chaos is a classical cascade of period doublings with no catastrophic
transitions, the right route to chaos is much more spectacular and implies a cascade of catastrophic
transitions.
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1. APPENDIX: NORMAL FORM DERIVATION
This Appendix is devoted to the derivation of the parameter-dependent normal form (3.1) for the
codimension-two point at which system (2.4)-(2.6) has an equilibrium z° on the face z3 = 0 with
associated eigenvalues

A =0, /\2,3 = +iwg, wo > 0.

The invariant technique based on adjoint eigenvectors (see [18]) is used.

1.1 Preliminary linear transformations
Write system (2.4)-(2.6) for d close to d* near the equilibrium z° in the new coordinates y = z — 2,
thus obtaining

y=Jy+9(y), y=(y1,92,y3)7 € R, (1.1)

where J is the Jacobian matrix of (2.4)-(2.6) evaluated at z° (the dependence upon the parameters
d = (dy,dz) is not shown for simplicity). At d = d*, one has

_al(bl—l)
0 b1(b1+1) (0 )2
* = 1 as(bi+1
J b1 0 _bz(b1{1-11)2+4a151
0 0 0



1. APPENDIX: NORMAL FORM DERIVATION 18

The function ¥(y) has a Taylor expansion starting with quadratic terms that can be written as

¢1(y15 y2)
U(y) = | Y2(v1,92,93) |
y3p(y2)

where the form of the last component reflects the invariance of the face (21, z3) in model (2.4)-(2.6),
and ¢ = I'ys + O(y2), with the critical value at d = d*

16a% as bf

I =
[bz(bl =+ 1)2 + 4a1b1]2

> 0.

The Jacobian matrix J has a real eigenvalue

_ bidi(aq —bydy — dy) —aydy

A1 =p(d 1.2
1 ﬂ( ) 2al(al_b1d1) ? ( )
and a pair of complex-conjugate eigenvalues Ay = A, Az = A, where
Ad) = a(d) +iw(d),
with
—bid; —d — bady) — — bydy)?d
o(d) = (a1 —bid; 1)(:2 ody) — (a1 — bydy) 2 (1.3)
(a1 —bidy)? + ba(ar — bidy — dy)
and

1 al(bl - ].)
d*) = = —y |/ — .
w(d*) = wy ™ A/ b1 >0

Obviously, 8(d*) = a(d*) = 0. Moreover, a real eigenvector g is associated to A, and a complex
eigenvector w is associated to A,

Jq = Bq, Jw = \w.

Thus, any real vector y can be decomposed, for all parameter values d close to d*, as

y=£&q+ zw + zZw,

where £ is real and z is complex. These new “coordinates” (£, z) can be expressed explicitly in terms
of the eigenvectors p and v of the transposed Jacobian matrix J7:

JTp=8p, JTv=2Xv

Provided the eigenvectors are normalized so that (p,q) = (v,w) = 1, where {(p, ¢) = P1q1 + P2g2 + P3g3
is the standard scalar product in C3®, the following simple formulae are valid:

§=(»y), z={(v,9),

since (p, w) = (v,q) = 0. In the coordinates (¢, z), (1.1) takes the form

{:

BE+G(E,2,2)
Az + H(£7 Z’ 2)7 (1.4)
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where the functions G and H (depending also on d) have the following expressions:
G(€,2,2) = (p, U(Eq + 2w + Z0)), H(E,2,2) = (v, W(Eq + 2w + 20)).

These functions can be developed into Taylor series as

1 1
G(&,2,2) = 662 + gr10€z + g101€Z + g1 €| 2)* + 59120522 + 59102552 + O(||(&, 2, 2)[|*)

and
) 1 i i}
HEz2)= ) i€’ 2+ 0162 ).
a<itith<s I

Here all the coefficients g’s and h’s, as well as §, are functions of the parameter d. Note that £ can
be factored out in the function G because of the invariance of the plane y3 = 0. A more important
and less obvious property is that the coefficient § of the £2-term vanishes at d = d*. Indeed, the third
component of the eigenvector w is zero: ws = 0, while the eigenvector p is orthogonal to the face
ys = 0, so that p; = po = 0. Moreover, p3qs = 1 due to the normalization. Thus,

G = (p, ¥(zw + 20 + £q)) = P3gz€p(2ws + 22 + €ga) = Tpagaqe€® + ... =T +.... (L.5)
At d = d*, the normalized eigenvectors can be selected in the form

* ( a2(b1 + 1)2 1
= 4a1b1 + bz(b]_ + 1)2, ’ b]_

T
) ) p* = (03 05 bl)Ta

and

w*_(z’blwo 1 O)T v*_< i, iag(by + 1) )T
o 2 ’ 2, ’ a ble’ ’ w0[4a1b1 +b2(bl + 1)2] )

As one can see, g5 = 0, so that § =0 for d = d*.
The critical values of the coefficients used in the following are given by the formulae:

* ok __ 80‘%“21)% * ok 32@%@2})?[)2
9110 = 9101 = [daiby + by(by + 1)2]2 9111 = Jro2 = [daiby + ba(by + 1)2J3°

_2&%([)1 + 1)3[2(.4)0171 - Z(bl - ].)]

h200 a wob1 [4a1b1 + bz(bl + 1)2]2 ’
B _w0b1[2w0b1 — i(bl — 1)]
ot 2(by + 1) ’
h* _ 2w§b%(b1 + 1) - 4@1 - inbl(b% —-1- 4a1)
020 2(by +1)2 ’
Re hno _ 2@1&2[)2(1)1 + 1)2 CLQ(b% - 1)

[4a1b1 +ba(b1 + 1)2]2  4a1by + by(by + 1)2°
w2b3[3(by + 1) + 2a4]
(b1 1) ’
4a2by(by + 1)[3(by + 1) + 2a4]
by + bo(by + 1)2)2

Re h021

Re haio
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1.2 Normalization
Normalization starts by applying a quadratic transformation of variables to (1.4),

n = &+ Vio€z + Vipéz
u = z+ $Waeol? + §Wo202? + §Woo22? + Wi01£Z + Wor1 2%,

where 7 is real and w is complex, and V;j;, and W;j;;, are suitable coefficients.

The resulting equations can be simplified to

{ n o= PBn+én’+ Ei+j+k:3 i!ﬁk! Gijrn'uiu® + O(_||(?7,U,ﬁ)||4) (1.6)
@ = (a+iwhu+hionu+ Y ks g Hien v o + O(ll(n, u, w)||*), '
by setting
giio gio1 haoo hoz2o
V = — V = — = — = —
110 Y Vo P Waoo Y Wo2o Y
hio1 hoo2 ho11
= —-— = — = —,
Wio1 o) 7 V002 3\ Wo11 h\

Of couse, the above transformation modifies the coefficients of the cubic terms. The cubic coefficients
which are needed in the following are given (at d = d*) by the formulae (see [18]):

6
G300 = _w_olm (9110P200)>
2
Gin = 911 — w_gIm (gfwh;n)a
) 9 -
Hyo = hyot w_o [hsoo(hazo —29710) — |Pio1|" — héuhéoo] >
) 1
H0*21 = h321 + w_o hanhzm - 2|h311|2 - §|h302|2 .

By performing a transformation involving cubic terms, system (1.6) can be reduced to the following
form (where the same notation as in (1.6) is used):

0= o+ + §Gsoon® + Grunlul? + O([[(n,u, 7)||*)
@ = (a+iw)u+hionu+ 5Haon*u + 5 Hooulul® + O(||(n, w, @)|[*).

If the complex variable u is written in the exponential form u = pe®®, the above normal form reduces
to that given in [17]:

Bn + én° + Ap*n+ By + O(||(n, p)||*)
ap+ Cnp+ Dn?p + Ep* + O(||(n, p)||*) (1.7)

w + O([[(n, p)II),

SR
Il

where A = G111, B = %Gmo, C =Re h119, D = %Re Hsyg, E = %Re Hys1, and the O-terms depend
on (n, p,0). The coefficients in (1.7) for d = d* have the following expressions

N 3 32a3asbibs 3 8aZasb3(by — 1)

[4a1by + ba(br +1)2]3 (b1 + 1)[4a1by + ba(by + 1)2]2’
B* 3 16a1a3b3 (b +1)*

[4a1by + ba(by + 1)2]*°
or - 2a1a2by(by +1)2 az(b? —1)

[40,1b1 + bZ(bl + 1)2]2 B 4a1b1 + bg(bl + 1)2’
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D* = 16a1agb§(b1 =+ 1)4 B 2a§b1(b1 + 1)3
[4a1b1 + bg(bl + 1)2]4 [4a1b1 + bz(bl + 1)2]2 ’
E* _ _albl(bl — 1)
2(by + 1)

These formulae, first obtained by Klebanoff while developing his doctoral thesis, have been published
(with some misprints) in [17]. It is worthwhile to point out that the coefficients in (1.7) are not uniquely
defined. Indeed, one can multiply the eigenvector ¢ by a real number k # 0 and the eigenvector w by a
complex number € # 0, and rescale the adjont eigenvectors p and v to preserve relative normalization
(p,q) = (v,w) = 1. Then the coefficients A, B,C, D, and E will change. The Klebanoff-Hastings
expressions are obtained with the above choice of the eigenvectors.

Finally, a linear approximation to the function § = §(d) near d = d* can be derived. Notice that
(a, B) can be considered as new parameters near d*, since the map (d;,ds) — («, 3), with a and 8
given by (1.3) and (1.2) is regular at d = d*. The Inverse Function Theorem then gives

4 = di- et Ol ),
& = d5-5+0(l@ )P,

The second component of the eigenvector g can then be written in terms of (a, 3) as

agbl(bl —+ 1)3
al(bl — 1)[4a1b1 + b2(b1 + 1)2]

provided that g1 = ¢f for all d close to d*. Thus, taking into account (1.5),

[2a — B] + O(ll (e, B)II*),

g2 =

16a1a3b3(by +1)3

S =
(bl — 1)[b2(b1 =+ 1)2 + 4&11)1]3

[2a = 8] + O(||(ex, B)II*)- (1.8)

1.8 Time reparametrization
The normal form (1.7) can be further simplified by introducing a new time 7 related to the original
time t by

dt = (1 + pn)dr,

where p is a free parameter. In the new time, (1.7) takes the form

n = B+ 6+ pb)n® + (A+ pbé)p*n+ Bn* + O(||(n, p)||*)
p = ap+(C+pa)np+ (D + pC)n?p+ Ep® + O([|(n, p)||*)
0 = w+O0(ln, o)),

where dots now mean differentiation with respect to 7. If C* # 0, which is generically true, then the
n?p-term in the second equation can be annihilated by setting

D
=—o
The following simplified normal form is therefore obtained
0= Pn+yn’+Ap’n+ B+ O(||(n, p)||*)
p = ap+Cinp+Ep*+O0(|(n,p)*) (1.9)
0 = w+O(lm )

where

D D D
’Y—(S—ﬂE, Al—A—(sE, Cl—C-O{E.

Notice that v =0, A; = A* and C; = C* at d = d*. Moreover, the time reparametrization does not
change the linear dependence of v upon « (see (1.8)). The normal form (1.9) coincides with (3.1).
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