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REMARKS ON GLOBAL HYPOELLIPTICITY

BY

STEPHEN J.GREENFIELD(l) AND NOLAN R. WALLACH(2)

ABSTRACT. We study differential operators D which commute with a fixed

normal elliptic operator E on a compact manifold M. We use eigenfunction ex-

pansions relative to E to obtain simple conditions giving global hypoellipticity.

These conditions are equivalent to D having parametrices in certain spaces of

functions or distributions. An example is given by M = compact Lie group and

and E = Casimir operator, with D any invariant differential operator. The con-

nections with global subelliptic estimates are investigated.

0. Introduction.   We say a differential operator D on a manifold  M is glob-

ally hypoelliptic (GH) if when  Df = g (with / 6 ®'(/Vf),  g e Cx (M)) then / e

Cx (M).   We begin this paper by recalling some Fourier analysis relative to an el-

liptic operator  E on a compact manifold   M, and apply this to obtain simple con-

ditions on the rate of growth of the Fourier transform (relative to   E) of  D which

are equivalent to (GH).   The growth conditions are interpreted as global solva-

bility conditions.

We apply these theorems to the case:   M = compact homogeneous space, E =

invariant Laplace-Beltrami operator, and  D = any invariant differential operator.

Some new examples are discussed.   We note that global hypoellipticity seems to

be quite directly connected with questions of number theory—unlike the (analyt-

ically) more delicate questions of local hypoellipticity.   We connect the eigen-

function estimates of  E-Fourier analysis with global subelliptic estimates.

Almost every result in this paper can be extended to differential operators

on vector bundles (see Wallach [il] for the basic ideas).

We thank Carl Hoel and William Sweeney for patiently teaching us about dif-

ferential equations.   We also thank Richard Bumby for suggesting the use of

Pell's equation in   §3.

1. Fourier analysis relative to an elliptic operator.   Let  M be a compact

manifold without boundary of dimension  n with a fixed volume element dv.   Let

E be an elliptic, normal (EE   = E  E) differential operator of order e on  M.   We
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154 S. J. GREENFIELD AND N. R. WALLACH

review some basic results on Fourier analysis relative to E. Most of the state-

ments here can be found in papers of Seeley ([8], \9i) or are easily derived from

work there. We shall assume that Al, dv, and E are either C or real analytic.

The eigenvalues of E are a sequence iA.S,with A./A, when j ¿ k. Each

A. corresponds to a finite dimensional eigenspace F. of C°° (real analytic) func-

tions on AI. We put d. = dim F.. We take Fn = ker E, and A. = 0. Note that ¡A.Sr ; j 0 '0 }'

is subject to the restriction

z¿.iy-2n<~.
,->o

We now analyze  Cx functions and distributions relative to E.   L (Al) is the

direct sum of the   F.  (;' > 0).   On each  F ■ we put the induced Hilbert space struc-

ture.   (Here, and in much that follows, the actual computational details depend

greatly on the choice of dv.)   Let  P.: L  (Al)—>F. be the corresponding projec-

tion.

Suppose   T e £ (Al) (the distributions on  Al).   Let /' be a nonnegative integer.

1. Definition.   T(j)  € F* is defined by  T (/)(/) = Tf, for f € F..

T generalizes various notions of discrete Fourier transform.   See §3.

2. Theorem.   Each  T{j) ° P.  is in 3)'(M), and

T= £ f(/)oP.    ¿„ 3)'(M).
y>o

3. Theorem.   Tèere ¿s  T e ÍD'(M) wzrè  f = 5 z'/ and only if  || $(/') || <

K(|A.|+l)     for some   K>0  (i.e. || 5(/) ||   is of polynomial growth).

We can define  H    spaces relative to  E.

4. Definition.   Wg(M)= ¡formal Fourier series  5 with  5(;') £ F.   so that

2;>0|Ay|2*||5(;)||2<~i.

Wp(Al) is a Hilbert space with the obvious inner product.   And  H%{M) =

r75e(M), where the latter is the usual Sobolev space on  M.

We realize the   C°°  functions as distributions using dv:   if / e CX(M), put

/(g) = ffifgdv, for all g e C^M).   Then there are simple criteria in terms of the

E-Fourier series for an element of jJ'(M) (= U Hg(Al) by Theorem 3) to be in

Cx (Af).

5. Theorem.   T € íD'(Al) is in  Cx (Al) ¿//

II T( ')ll
^ ||f(/)||2|A.|K<oo    for every   K       iff sup-^- < ~>    /or ei;ery   X.

;>0 />0     lA-l
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REMARKS ON GLOBAL HYPOELLIPTICITY 155

In the real analytic case, we can give a similar recipe for real analytic func-

tions, the set  A(M).

6. Theorem.   T e D'(M) ¿5 in A{m) iff

X  l7^/)||2'Sri- < °°    for some s > 1    iff sup ||T(/)||Sfx. < oo    for some s > 1

(where p. = (|A. \)l/e, e = deg  E).

The continuous linear forms on  A(M) are the analytic functionals, A (M).   We

characterize them simply:

7. Theorem.   An E-Fourier series S is an element of A'(M) iff 1\\S(j)\\ lp.

< +<x,for all t  between  0 and 1.   (p.. as in Theorem 6.)

8. Remark. The characterizations of Theorems 3, 5, and 6 are classical for

(multiple) Fourier series on the :«-torus,   T" (see Schwartz [7]).

2.   Global hypoellipticity for operators commuting with an elliptic operator.

We continue the assumptions of §1   on  M, dv, and  E.

1. Definition.   A differential operator  P on  M is  E-invariant iff  EP = PE.

If  P is   E-invariant, P(F.) CF..   In the remainder of this section we assume

that  P is E-invariant.

2. Definition.   P{j) is the linear endomorphism of F. given by   P.

We note that, in general, there may be no elliptic operator commuting with a

given operator   P.   (If there were, then   P would have discrete spectrum.)

We need to measure the rate of growth of P(j) as / —> oo. We introduce two

measurements.

3. Definition.   Let   L : V —> W be a linear map between normed vector

spaces.   M(L) = sup! || L(v) \\;   || v \\ = 1 !, and  m(L) = inf 11| L(v) ||;   || j, || = 11

4. Remarks.   Of course, m and  M measure how much   L deforms the unit

sphere.   If  L is invertible,  M(L~ l ) = (m(L))~ l.   If  V = W, dim  V < <*>, then   L

is invertible iff m(L) ¿ 0.

5. Definition.    P is globally hypoelliptic  (GH) iff whenever   Pf= g, f e

2)'(M),  g e C00^), then f € CX(M).

6. Theorem. P ¿s (GH) if and only if there are positive real numbers L, M

so that

(LM) m(P(y))>L|A.|M/e,

/or /' sufficiently large.
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156 S. J. GREENFIELD AND N.R.WALLACH

Proof.   Suppose   P/-g,with f, g e î>'(Ml   Then  ßij)f{j) = g{j).

(LM)=»(GH).   By  (LM), m{P{j)) ¿ 0 if ;' is large.   So  P{j) is invertible and

f(j) = (P(/))~ 1g(j) for j large.   (LM) becomes an estimate controlling the growth

of / in terms of the growth of g and Al(P~   )= m(P)~   .   Theorem 1.5 applies to

show if g 6 Coû(Al),then / € C°°(Al).

(GH) => (LM).   Suppose (LM) is false.   Then there is a sequence \fa\ €

CX(M) with fa€ F.a, ||/J = 1, and  || P(ja)fJ < l/|A/al' (as   a -... /a-*.«).

Consider /= 2/a. Using Theorems 1.3 and 1.5 we see easily that / € ®'(Al)-

C0C(Al),and  Pf € CX(M).   So (GH) is false.   (Other versions of this proof are

used in [l], [2], and   Öl.)

7. Remarks.   If   P has order  N, then  Al(P(/)) < C(|Ay|)N/e?.   If  P is elliptic,

Garding's inequality implies that we can take  Al = N in (LM).   (These are the

reasons we put  Al/e rather than  M in condition (LM).   Also, the same Al will do

if we consider Ep Fourier series, p an integer.   See Remark 1.8.)

We define  hip) » exponent of hypoellipticity of P to be the supremum of the

A) for which (LM) holds.   Put h(P) = -~   if (LM) is false for all Al.   Then h(P)

< N.   Note that  h(P) can vary erratically with the coefficients of  P if  P does

not have any of the more gross properties of hypoellipticity.   (See the first order

examples in [l], [2j,and  L3J.   Also see the appendix.)

The estimate (LM) can be interpreted in the context of Sobolev spaces as a

simple "subelliptic estimate".   We discuss this in the appendix.

We consider adjoints of   E-invariant  (GH) operators, using the following

simple lemma.

8. Lemma.   Let  W be a finite dimensional Hilbert space, and T:W —» W a

linear map.   Then m(T) = m{T ).

dv identifies   F. and  F., so that   P (/) = P(;') .   P    is the  L2-adjoint dif-

ferential operator of   P.   Then Lemma 8 and Theorem 6 immediately give the fol-

lowing result.

9. Theorem.   // P is (GH), then so is  P*.

Note that there are hypoelliptic operators whose adjoints are not hypoelliptic.

The condition (LM) also gives information on solvability.   The results below

can be considered (in view of Theorem 9) as very simple examples of the "hypo-

ellipticity implies solvability for adjoint" idea.   We give a convenient definition

of parametrix.

10. Definition.   Let  G be a vector space of formal  E Fourier series invari-

ant for  P (i.e., PG C G).   A map Q : G —> G is called a parametrix for P on G if
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REMARKS ON GLOBAL HYPOELLIPTICITY 157

PQ and QP are the identity on G (except possibly for a finite dimensional sub-

space). If F.C G (all ;'), then Q is an E-parametrix for P on G if, in addition,

G(F.)C F. for all /.

11. Theorem.   Let  P be an E-invariant differential operator.   The following

are equivalent:

(a) P is (GH).

(b) P has a parametrix on C°° ilA).

(c) P has an E-parametrix on C°° (M).

(d) P has a parametrix on J)'(M).

(e) P has an E-parametrix on -ß'(M).

Proof.   Since  PF C F.,(b) and  (c) (respectively, (d) and  (e)) are equiva-

lent.   If there exists a parametrix  Q on ±>'(M) or  C0'(M), then  Q(F.) C F.   (/

large), and  g(j) (q restricted to F) must be   (P(j))~l, for ; large.   Suppose

(GH) is false.   We construct a sequence i/a! as in Theorem 6.   Put gN = ^-a>Nfa.

gN € S'(/V1)- C^AO, and PgN  e C^i/M).   Thus  P can have no parametrix on C°°(M).

P has no parametrix on ÍD'(M), for  PT = gN has no solution in j)'{M).   If (GH) is

true, it is easy to construct  Q as desired.

The estimate  (LM) also suffices to insure the continuity of parametrices for

P.   In suitable cases, Rellich's lemma applies to give compactness.

12. Theorem.   Suppose  P  is (GH).   Then the parametrices for P are contin-

uous.   If h(P)> 0, the parametrices for  P on  C°° (lú) are compact.

13. Theorem.   Suppose  P is (GH).  Then P : C°°(M) —» C°°(M) has closed range,

and is Fredholm with index 0.

This is true since   P and   P   are both  (GH), and   P(j) is invertible for  /

large.

We define a different type of hypoellipticity.

14. Definition.   P is globally analytic hypoelliptic (GAH) iff whenever  Pf =

g, f € §'(M), g e A(M), then /  € A(M).

15. Remarks.   We could substitute  A'(M) for j)'(m) in Definition 14.   There

would be no difference in the results to follow.   We note that Seeley proves   [9]

that if  P is an  E-invariant operator, with  E real analytic, then  P(A(M)) C A(M).

16. Theorem.   P is  (GAH) if and only if for any positive number K, there is

a positive integer N„ so that

(KN) w(P(/))>exp(-K|A.|1/e),    for j > NK-

Proof.   Use Theorem 1.6 as Theorem 1.5 was used in the proof of Theorem 6.
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158 S. J. GREENFIELD AND N. R. WALLACH

17. Theorem.   // P  is (GH), then  P is (GAH).

Proof.   (LM) implies  (KN).

18. Remark.   The converse is not true (see [2]).

Theorems 9, 11, 12, and 13 remain true if for (GH), C°°(Al), and 3)'(Al) we

substitute  (GAH), A(AI), and A'(AI).   The proofs would use (KN) as  (LM) was

used.   The real-analytic version of Theorem 11 thus implies, in particular, that

even if m(PÍj))¿ 0 for ; large,   P is not (approximately) invertible in  A'(Al)when

(KN) is false.   That is, if (KN) is false, P is not solvable even in the space of

analytic functionals, even though it is solvable on finite sums of eigenfunctions.

(An example of such  P is given in  [2].)

It is clear now that any simple "E" growth condition  ÍCX , A) will give

equally simple  "E" global hypoellipticity and solvability criteria  (LM, KN).

3.   Applications to compact homogenous spaces.    Let  G be a compact Lie

group and let   K be a closed connected subgroup of  G.   Let  ( ,) be a   G-invariant

Riemannian structure on   G/K = Al derived from a bi-invariant one on   G.   Let A

be the Laplace-Beltrami operator of (Al,  ( , ) ).   The Peter-Weyl theorem combined

with Frobenious reciprocity (see e. g. [ll]) implies that

L2(AI)=   £   Vy.

yeC

Here   G is the set of all equivalence classes of irreducible unitary (hence finite

dimensional) representations of  G.    Vy is a closed subspace if  L   (Al) such that

if  W is an irreducible subspace of   V     then the action of  G on   Vf is in the class

y.   Furthermore, Vy  is equivalent to the sum of  m     copies of y where  my is

computed as follows:   let \y De the character of y.   Then

mv = Sk *y{k)dk-

(Here  dk will denote Haar measure on   K,  dg Haar measure on   G.)   The projec-

tion   Py : L2(A1) — Vy is

PyfM- fGdiy))ö;ig)fig-1x)dg.

As is well known A ° P    = P    ° A.   Hence A | V    = A   /.   Let now  X be in

the Lie algebra of G, ®.  Then X induces a vector field X    on  Al by

(X*/)(X) = 4/(exp(-rX)x)
at t = o

Since  X    is a Killing field  X A = AX .   Let  c/(@) be the complexified universal
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REMARKS ON GLOBAL HYPOELLIPTICITY 159

enveloping algebra of  @ (the left invariant differential operators on   G).   Then we

have a map D \-> D    of  (i(@) into the differential operators on  M.   If  D is in

U(®) then  D A = AD    since  D    is just a linear combination of products of the

X*.

Let  T be a maximal torus of G and let  P be a Weyl chamber of  T.   If y is

in  G  let A     be its highest weight.   Then since A     £ T and   T is a lattice we

may put an inner product on   T (indeed take a basis of   T and call it orthonormal).

Define, for y in   K, \\ y || = ||Ay||.

Lemma.   There are constants  C., C?  so that

c2\\y\\2<K\<cih\\2-

For a proof see [ll].

Let (n1-,? U ) be an element of the class y € G. Then rt is a unitary rep-

resentation of G and if X is in ® we define 77 (X) = (d/dùny(exp /X) | . We

therefore find that  77   (D) makes sense for each  D in  (7(<3).   Define

m   (D)=        inf        -4--.
7 vetv^-.o}      HI

Then  m     is independent of the choice of inner product on   T.

Theorem 6 now says

Theorem. Let D be in L/(®). Then D is (GH) if and only if there are con-

stants L, M (L positive) such that m (D) > L || y || for all but a finite number of

the y in G such that  V    4 (0).

Examples.   1.   Let  G = SU(2).   We take a basis   X., X , X,  of  ® so that

[X1,X2] = 2X3,   [Xj, X3] = -2X2,   [X2,X3] = 2Xr   The representations of  G

are indexed by nonnegative integers   k.   Take  A = X. + X2 + X2.   Then  77, (A) =

— k(k + 2).   We can find a basis of   U    (the representation space of 77, ) so that

ttAX.)v. = iik - 2j)v.,       n,(X)v. = -jv.   ,+(k-j)v...
k     3    ; '    1 k     2    ; ';-l '     1*1

and

Let  D = X. + X2 = A - X,.   Then itAD) is diagonalizable with eigenvalues

-k(k +2)+(k- 2j)2 =-2k- Ajk + Aj2,      j = 0,...., k.

Thus the smallest eigenvalue in norm is greater than or equal to 2k.   Hence

mk(D)>2k.   Thus  D is  (GH) and  è(D) = l.

2.   (Example 1 continued).   Let  D = X2 + X2 - X2.   This time  D = A - 2X2

and has eigenvalues
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160 S. J. GREENFIELD AND N. R.WALLACH

-kik + 2) + 2{k - 2j)2 = k2 -2k- 8jk + 8/2 = A(/),      / = 0, • • • , k,

on   U .   Solving for A,(/')= 0 we find that the solutions are

jl=lAik±^k(k + 2)/2).

j~ is an integer if and only if   ^kik + 2)/2  is an integer.   That is, if and only if

kik + 2)= 2m    with  m an integer.   This clearly implies that /    is an integer only

if k is even, say  k = 2r.   But then  m must be even, say,  m = 2s.   We find

r(r + l)/2 = s .   If  u is an integer such that 2u   + 1 = v    then, setting r = 2z/2,

rir + 1 )/2 = u v .   Hence if k = 4u  ,   /    = 2u2 + uv, an integer.   Now the equation

v   - 2u   = 1  is Pell's equation  (x   - dy2 = l) with d= 2, a nonsquare.   Hence

there are an infinite number of integral solutions to v   - 2u   = 1   (see Landau

[12, pp. 76-84]).   This implies that  D = X2 + X2 - X2  is not globally hypo-

elliptic.

3 (Example 2 continued).   Let  D = X2 + X2 - CX2 with  C an integer.   Then

on   U , D has eigenvalues

-kik + 2) + (1 + C)ik - 2j)2 = \k(j).

Thus if Xkij) = 0 we have  k{k + 2) = (1 + C)(k - 2/)2.   Set d = 1 + C;   m = k - 2j.

Then  k2 + 2k - dm2 = 0 or

k = y2(-2 ± V4 + 4dm2 ) = -l±yJl+dmi

Thus  A, (;') = 0 if and only if there is an integer  n so that  1 + dm    = n  .   If  d is

a square there  is only a finite number of such  n, m.   Thus if  C = p   — 1   with   />

an integer there   is only   a finite number of  k such that A, (/) = 0.   Now A, (/') is

always an integer.   Hence   |A.(/)| > 1   for all but a finite number of  k, j.   This

implies   D = X?+ X2 - ip2 - l)X2  is globally hypoelliptic for each integer  p.

iNote.  for p = 1   we have Example 1 but with a weaker estimate.)

Comparing this example with the analogous operators on  T   (that is, let 6,

iff, 7] be  mod 1   coordinates, X    <-» d/dd, X2 <-> d/àp', X   *-* d/dr¡), then  d2/dd2

+ d2/diff2 - ip2 - l)d2/drj2  is  (GH) if and only if there are only a finite number

of solutions to k2 + I   — ip   — l)m   = 0 ip an integer) k, l, m integers.  Setting

k = am,   I = bm we are left with solving  a2 + b2 - ip2 - 1 ) = 0 or a2 + b2 = p2

— 1, for  a, b integers.   There are many such  p.   For example, p = 1,  p = 3   (a = 2,

b = 2).   Thus  d2/dd2 + d2/dif/2 - ip2 -l)d2/dr¡2 is not generally (GH) for p an

integer.   (Note that on both  5(7(2) and  T3 the operators considered above are not

locally hypoelliptic when  p>\.   See §2 of [6] for example.)

4. Let D = X2 + X2. Then applying the result of Hörmander [6] we find that

D is (GH) (indeed locally hypoelliptic) and h(D) = 1. This implies that there is

a constant   C and  n > 0 so that if   k > n then
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(*) \\nk(D)v\\>Ck\\v\\

for all  v in   U  .    (* ) is by no means obvious" from the formulas for the action of

<3 on  I/*.

5.   Let  G be a compact Lie group.   Let  ® be its Lie algebra and let  X.,

• • • , X    generate   Sasa Lie algebra.   Applying Ho'rmander's theorem again we

find that if  D = X2 + • • • + X2   . + X    or D = X? + • • • + X2 (cf. Example 1 )
I n—\ n 1 n r        '

there are constants   C., C2 such that for some  d > 0

for all v in  Vy and   || y || > Cr

Note.   In particular if ® is semisimple,  there exist   X., X2 generating  @.

Appendix.   Subelliptic estimates.   Let  M, dv, and  E be as in  §1.

Let   D be a differential operator of degree  d commuting with   E.   We decom-

pose / e C00 (/M) into its   E-Fourier series:   /= 2/(/),  f. e F..   Then  Df =

2D(/)/"(/),and

llWll2 = Z l\-l2s/lô</)/(/)|2 > E.^I^-WlA;)«2-

If / 1 ker D, we see (when (LM) is valid):

iiwii2 > L2 £ix/i2'/*ix/i2i,/*iA/)i2 > L2\\nuM

when  M < ä(D).   We have shown the following result:

1. Proposition.   Suppose D commutes with  E, and D  is (GH).   Then for any

m < h{D),

(a) \\Df\\s Ï CWfWs+m'    when / 1 ker D  in  HS(M), and ker D C C°°(,M).

Remark.   If  D is   E-invariant with finite dimensional kernel / i ker D for one

Hs inner product implies perpendicularity for any  Hs.   In what follows we will

not have  E-invariance, and it is necessary to be explicit in our choice of perpen-

dicularity.

2. Proposition.   Let D be any differential operator on M, and suppose m > 0.

Then (a) is equivalent to

O) ll/IUm<C(U/l + llD/U    forfeC-(M).

Proof.   We first prove a lemma:

3. Lemma.   // D  is a differential operator on M, and ker D C C1* (M), then

dim ker D < +«>.

Proof.   If  d = deg D, then  D : /Y^M) —» Hs~d(M) is a continuous linear map.
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162 S. J. GREENFIELD AND N. R.WALLACH

Put   Ks = ker DC HSÍM).   Ks inherits a Hilbert space structure from HSÍM).   Let

z: H  (Al) —» H (Al) be the usual injection,   i maps   K    onto  KQ   (since   ker D C

Coc(Al)).   But  z is compact (Rellich's lemma).   So ker D = K. = KQ is finite di-

mensional.

To prove (a) => (/3):   If / e C00 (Al), write f = lx+ /2, where /j £ ker D, and

/2 1 ker  D in  r/s(Al).   Since dim ker D < °c, all norms on ker D are equivalent.

Thus   ||/. \\s      < C || /j ||^, for some  C independent of /,.   Using (a), we obtain

< H/iL + «/2IU < c("/.l + «D/2lls> < cdl/l + HD/lls>-
'II

"s+m —  '" 1 "s + m 2 "s + m

iß) =» (a):   If  iß) holds, and / 6 ®'(Al)nker D, then / e WS(A1), for some  s.

iß) immediately applies to show that  / £ Ss*m(M), etc.   We continue, and obtain

fen HsiM) = C^Al).   So ker D C DX{M).   To prove the inequality in (a), we as-

sume that it is false and derive a contradiction.   Thus we assume the existence of

a sequence  \f.\C Cx (Al) so that   ||/.||s  m = 1,   \\Df.\\s —» 0, and /. 1 ker D in

HS(M).   Rellich's lemma again applies to show that some subsequence (which we

take again to be  \f. \) converges in  HS(M) : f. —> g £ HsiM).   Then Df. —» Dg, but

|| Df.\\    — 0.   So g € ker D.   But /. 1 ker D in  HS(M), and (/3) applies to show
J    s !

that the set ! || /. ||   ! is bounded away from  0.   g e ¡ker Z) O (ker £>)    ! - {0 }, a

contradiction.

3.    Proposition.   Lei  D  èe any differential operator on Al, and suppose m >

0.   Then iß) implies

ker D C C°°iM), and D(C°°(Al))  ¿s c/oW i«  C°°(Al) wiii

(y) \ ièe J) (Al) relative topology ithat is: suppose Df. —»g

n some  HSÍM), f., g e C°°iM).  Then g e im D).

Proof.   Certainly  ker D C C°°(A1) as in Proposition 2.   The remainder of  (y)

is a "classical" proof.   We seek to show  g e im D.   We can assume each  /. 1

ker D in  HSÍM).   First, suppose  !||/||   ! is bounded.   Then  iß) combined with

Rellich's lemma as before permits us to go to a subsequence (which we persist in

calling  j/.|5 so that  /. -» h in   /7S(A1).   Then  Dh = g in  Hs~d(M).   Since   m > 0

and g   e C"* (At)» it is easy to see that  h e C°° (Al).

If ! || /. ||   ! is unbounded, we pass to a subsequence (which we persist in

calling (/.}) so that   || /. \\s - .«.   Consider f. = //|| /y ||s>   D¡. = l/||/y ||sD/. - 0

as   ; = oo   (since   Df. —. g in   HS(M)).   Using the previous argument, we see that

7. _ t 6 ///(Al), and  D/ = 0.   But / . 1 ker D in  /7S(A1).   So t must be  0.   But

|| /1|    = lim.,,^ ||/yHs = 1.   This is a contradiction-the set i||/-||   I must be

bounded after normalization to be perpendicular to ker D.
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4. Proposition.   Let D  be any differential operator on M.   Then (y) implies

that D  is  (GH).

Proof.   Suppose  Df = g,  f e íD'(Aí),  g e CX(MÏ   Then / e H^M), for some

s.   We can find a sequence  ¡/.} C CX(M)   so that /—/in ¿7s (M).  Then Df .-> Df in

if-^M).   D/=g is in the closure (in CX{M)) of D(C°°(Al)), in the ©'(M) topology.  Thus

by  (y) there is  h € CX(M) with  Dh = g.   But  D(f - h) = 0.   So f - h e C°°(M), and

/ e C^i/Vl).   Thus  D is (GH).

5. Some comments on these conditions and their possible connections with

hypoellipticity.   We suspect that (GH) implies  (y), and perhaps even that  (y) im-

plies (a) for some  m e R.   (Note that  (ß) is vacuous for m < 0.)   If D is E-in-

variant, then it is easy to see that (a) is equivalent with condition (LM).   In the

examples we know of (GH) vector fields, we have always found (a) holding, with

m negative.

We say  D  is locally hypoelliptic (LH) if, for any open set  iî C Ml, Df = g,

g £ Cx(ü),  f e 3)'(0), then / e Cx (il).

What additional conditions on an  E-invariant operator besides (LM) imply

(LH)?

If deg D = d, then it is known that iß) with  d - 1 < m < d implies that  D is

(LH).   See [lOj.   Even if  D is   E=invariant,  (ß) with  m = d — 1  does not imply

(LH)—for there is the following example of C. Hoel:   let  L be the constant coef-

ficient third order operator on  R    whose Fourier transform   L(£, rj) is  1 + £   + r¡

+ i¿jr¡ .   Since   L has constant coefficients, L defines an operator on the  2-torus,

T , commuting with the constant coefficient Laplacian there.   Because of the

first three terms of  L,   L satisfies   (ß) with m = 2.   So  L is (GH).   If  L were

(LH) on T2, then   L would be  (LH) on R2-but it is not (see Theorem 4.1.3 of

[5]).

{Note. It is well known that if M = R" and if D is a constant coefficient

operator of principal type (D = p(d/dxl, • • • , d/dx^), 2"_j| dp.¿ Jdx. \2 /= 0 if

P(f ) = 0, £ 4 0), then D satisfies a subelliptic estimate that looks like (ß)

with m = d — 1 where d = deg P (Hörmander [5, Theorem 3.3.7]). However, this

subelliptic estimate is for compactly supported C functions. It does not carry

over to periodic functions (e.g., d /d0 - d /dif/ on T2 is principle type but

not (GH)).I

This example shows that  "complete continuity" of the associated Dirichlet

norm is not enough.   A very weak connection of (LH) with (GH) which we have

not been able to prove (even in the  E-invariant case) is:   if the sup of the  m for

which (a) holds is negative, then  D is not (LH).   (So, for example, our vector

fields would not be   (LH)—which is obvious.)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



164 S. J. GREENFIELD AND N.R.WALLACH

BIBLIOGRAPHY

1. A. Cerezo and F. Rouviere, Solution élémentaire d'un operateur différentiel lin-

éaire invariant a gauche sur un groupe de Lie reel compact et sur un espace homogene ré-

ductif compact, Ann. Sei. Ecole Norm. Sup. (4)2 (1969), 561-581.    MR 42 #6869.

2. S. Greenfield, Hypoelliptic vector fields and continued fractions, Proc. Amer.

Math. Soc. 31 (1972), 115-118.

3. S. Greenfield and N. Wallach, Global hypoellipticity and Liouville numbers, Proc.

Amer. Math. Soc. 31 (1972), 112-114.

4.  -, Globally hypoelliptic vector fields, Topology (to appear).

5. L. Hörmander, Linear partial differential operators, Die Grundlehren der math.

Wissenschaften, Band 116, Academic Press, New York;  Springer-Verlag, Berlin, 1963.

MR 28 #4221.

6.  -, Hypoelliptic second order differential equations, Acta Math. 119 (1967),

147-171.    MR 36 #5526.

7. L.Schwartz, Theorie des distributions. Tome I,   Actualités  Sei. Indust., no. 1091,

Hermann, Paris, 1950.    MR 12, 31.

8. R. T. Seeley, Integro-differential operators on vector bundles, Trans. Amer. Math.

Soc. 117 (1965), 167-204.    MR 30 #3387.

9.  -, Eigenfunction expansions of analytic functions, Proc. Amer. Math. Soc.

21 (1969), 734-738.    MR 39 #2180.

10. F. Trêves, An invariant criterion of hypoellipticity, Amer. J. Math. 83 (1961),

645-668.    MR24#A2732.

11. N. Wallach, Harmonic analysis on homogeneous spaces, Dekker, New York, 1973.

12. E. Landau, Elementare Zahlentheorie, Teubner, Leipzig, 1927;   English transi.,

Chelsea, New York, 1958.    MR 19, 1159.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY

08903

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


