77. Remarks on Hadamard's Variation of Eigenvalues of the Laplacian

By Shin Ozawa
Department of Mathematics, University of Tokyo
(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1979)

§1. Introduction. The study in this note is a continuation of our previous paper [6]. Let Ω be a bounded domain in $\mathrm{R}^{n}(n \geq 2)$ with \mathcal{C}^{∞} boundary γ. Let $\rho(x)$ be a smooth function on and ν_{x} be the exterior unit normal vector at $x \in \gamma$. For any sufficiently small $\varepsilon \geq 0$, let Ω_{ε}, be the bounded domain whose boundary γ_{s} is defined by $\gamma_{\varepsilon}=\left\{x+\varepsilon \rho(x) \nu_{x}\right.$; $x \in \gamma\}$. Let $U_{s}(x, y, t)$ be the Green kernel of the heat equation in $\Omega_{\text {。 }}$ with the Dirichlet boundary condition on γ_{s}. Let $T_{r}(t ; \varepsilon)$ be the trace of U_{s} on Ω_{s}. When t tends to zero, we have the asymptotic expansion $T_{r}(t ; \varepsilon) \sim \sum_{j=0}^{\infty} a_{n-j}(\varepsilon)(\sqrt{t})^{-n+j}$ which was given by MinakshisundarumPleijel [5]. In [6], the author gave the asymptotic expansion $\delta T_{r}(t)$ $\sim \sum_{j=0}^{\infty} b_{n-j}(\sqrt{t})^{-n+j}$ near $t=0$ of the variational term $\delta T_{r}(t)$ of the trace which was defined by $\delta T_{r}(t)=\lim _{\varepsilon \rightarrow 0} \varepsilon^{-1}\left(T_{r}(t ; \varepsilon)-T_{r}(t ; 0)\right)$. We proposed the following problem (E$)_{k}^{n}$ in [6] and gave an affirmative answer for the case $k=0$.

Problem (E) $)_{k^{+}} \quad$ Can we say that the following is valid? $(\mathrm{E})_{k}^{n}$

$$
b_{n-k}=\lim _{\varepsilon \rightarrow 0} \varepsilon^{-1}\left(a_{n-k}(\varepsilon)-a_{n-k}(0)\right) .
$$

In this paper, we shall prove the following
Theorem 1. (E$)_{1}^{n}$ is valid for any $n \geq 2$.
The aims of this note are verification of Theorem 1 and an application of Theorem 1 to some eigenvalue problem which will be stated in this section.

We now mention the following
Problem (Q). Characterize the bounded domain Ω with smooth boundary γ having the following property.
(I) For any $\rho(z) \in \mathcal{C}^{\infty}(\gamma)$ such that $\int_{r} \rho(z) d \sigma_{z}=0$, we have $\delta \lambda_{1}=0$, where $\delta \lambda_{1}$ is the variational term of the first eigenvalue $\lambda_{1}<0$ of the Laplacian with the Dirichlet condition. Here d σ_{z} denotes the surface element of γ at z.

The condition $\int_{r} \rho(z) d \sigma_{z}=0$ means that the perturbation of domain we considered preserves the volume of domains infinitesimally. We
call the domain Ω satisfying the property (I) stationary domain. By the theorem of Hadamard-Garabedian-Schiffer we conclude that Ω is stationary if and only if

$$
\left\{\begin{align*}
\Delta \varphi_{1}(x)-\lambda_{1} \varphi_{1}(x)=0 & \text { in } \Omega \tag{1}\\
\varphi_{1}(x)=0 & \text { on } \gamma \\
\frac{\partial \varphi_{1}}{\partial \nu_{x}}(x)=C & \text { on } \gamma,
\end{align*}\right.
$$

where φ_{1} is the normalized eigenfunction of the Laplacian with the Dirichlet condition and C is a constant. See [4] and [2].

The classical Faber-Krahn theorem states that the two dimensional domain Ω with the fixed area A which maximize the first eigenvalue $\lambda_{1}(\Omega)<0$ of the Laplacian with the Dirichlet condition is the disk of radius $\left(A \pi^{-1}\right)^{1 / 2}$. In connection with this fact, we conjecture that any n-dimensional stationary domain is an open n-ball. For the n-ball with radius p, we have (1), so our problem may be restated as follows.
$(Q)^{\text {bis }}$: Are the following two statements equivalent?
$(\mathrm{Q})_{1}: \Omega$ is an open n-ball.
$(\mathrm{Q})_{2}: \quad \Omega$ is an n-dimensional stationary domain.
Even if $n=2$, the implication from $(\mathrm{Q})_{2}$ to $(\mathrm{Q})_{1}$ is not trivial. It should be remarked that in general there is a gap between the concept of stationary value and that of maximum value in variational problem. In this paper, we give a partial answer to the problem ($Q)^{\text {bis }}$ by using Theorem 1.

The domain satisfying the following property will be called to be T-stationary :
(II) For any $\rho(z) \in \mathcal{C}^{\infty}(\gamma)$ such that $\int_{\gamma} \rho(z) d \sigma_{z}=0$ and for any $t>0$, we have $\delta T_{r}(t)=0$.

By Theorem 3 in [6], we know that any T-stationary domain is stationary. We have the following

Theorem 2. Assume that Ω is T-stationary. Then for $n=2 \Omega$ is a disk, and for $n \geq 3$ every component of γ is a hypersurface of constant mean curvature.

In §2, we consider some geometry of hypersurfaces and the asymptotics of heat equation. In $\S 3$, we give proofs of Theorems 1 and 2.
§2. Geometry of hypersurfaces and asymptotic expansion. We proved in [9] that

$$
\begin{equation*}
\delta T_{r}(t)=\left.t \int_{r} \frac{\partial^{2} U(y, w, t)}{\partial \nu_{y} \partial \nu_{w}}\right|_{y=w=z} \rho(z) d \sigma_{z} . \tag{2}
\end{equation*}
$$

Here we abbreviate $U_{0}(x, y, t)$ in $\S 1$ as $U(x, y, t)$. In [8], we proved the following proposition by using the hard calculus of pseudo-differential operators such as [10].

Proposition 1. If t tends to zero, then

$$
\begin{equation*}
\left.t \cdot \frac{\partial^{2} U(y, w, t)}{\partial \nu_{y} \partial \nu_{w}}\right|_{y=w=z} \sim \sum_{k=0}^{\infty} B_{n-k}(z) t^{-(n-k) / 2} \tag{3}
\end{equation*}
$$

for any $z \in \gamma$. Here $B_{n-k}(z) \in \mathcal{C}^{\infty}(\gamma)$.
We fix an arbitrary point z on γ. Without loss of generalities we can assume that z is the origin of R^{n}. We take the z_{n}-axis as being coincident with the direction of the interior normal and the hyperplane $z_{n}=0$ as being coincident with the tangent hyperplane of γ at z. We take an orthonormal coordinate system $z^{\prime}=\left(z_{1}, \cdots, z_{n-1}\right)$ on this hyperplane. Then γ can be locally written as $z_{n}=\theta\left(z_{1}, \cdots, z_{n-1}\right)$. Here $\theta \in C^{\infty}\left(\mathbf{R}^{n-1}\right)$ and it has the Taylor expansion $\theta\left(z_{1}, \cdots, z_{n-1}\right)=\sum_{|\alpha| \geq 2}^{\infty} \omega_{\alpha} z^{\prime \alpha}$. In [8], we also proved the following proposition by using the calculus of pseudo-differential operators. See also [7].

Proposition 2. For any k, there exists a constant $w(k)$ such that $B_{n-k}(z)$ is a polynomial of the variables $\left\{\omega_{\alpha}\right\}_{2 \leq|\alpha| \leq w(k)}$ whose coefficients depend only on k.

We write $B_{n-k}(z)=B_{n-k}\left(\left\{\omega_{\alpha}\right\}\right)$. Following the idea of [1] and [3], we use the notion of the weight of polynomials. We give the weight $|\alpha|-1$ to the variable ω_{α}, and we give the weight $\sum_{j=1}^{s} \beta_{j}\left(\left|\alpha_{j}\right|-1\right)$ to the monomial $\prod_{j=1}^{S}\left(\omega_{\alpha_{j}}\right)^{\beta_{j}}$. If P is the sum of the monomials of the same weight, we say that P is homogeneous. Now we prove the following

Theorem 3. $B_{n-k}(z) \equiv B_{n-k}\left(\left\{\omega_{\alpha}\right\}\right)$ is the homogeneous polynomial of the weight k.

Proof. Fix $q>0$. We take a new coordinate system \tilde{z} as follows; $\tilde{z}_{j}=q z_{j}(j=1, \cdots, n)$. Then γ can be locally written as $\tilde{z}_{n}=\tilde{\theta}\left(\tilde{z}_{1}, \cdots, \tilde{z}_{n-1}\right)$ $=\tilde{\theta}\left(\tilde{z}^{\prime}\right)=\sum_{|\alpha| \geq 2} \tilde{\omega}_{\alpha} \tilde{z}^{\prime \alpha}$. We have the relation

$$
\begin{equation*}
\tilde{\omega}_{\alpha}=q^{-(|\alpha|-1)} \omega_{\alpha} . \tag{4}
\end{equation*}
$$

On the other hand, the fundamental solution $\tilde{U}(\tilde{x}, \tilde{y}, t)$ of the heat equation $\frac{\partial}{\partial t}-\Delta_{x x}$ with the Dirichlet boundary condition in new coordinates is related to $U(x, y, t)$ by

$$
\begin{equation*}
\tilde{U}(\tilde{x}, \tilde{y}, t)=q^{-n} U\left(x, y, q^{-2} t\right) \tag{5}
\end{equation*}
$$

where $\Delta_{\tilde{x}}$ is the Laplacian in x-coordinates. It is easy to see

$$
\begin{equation*}
\left.\frac{\partial^{2} U(\tilde{y}, \tilde{w}, t)}{\partial \nu_{\tilde{y}} \partial \nu_{\tilde{w}}}\right|_{\tilde{y}=\tilde{w}=\tilde{z}}=\left.q^{-n-2} \frac{\partial^{2} U\left(y, w, q^{-2} t\right)}{\partial \nu_{y} \partial \nu_{w}}\right|_{y=w=z}, \tag{6}
\end{equation*}
$$

where $\frac{\partial}{\partial \nu_{z}}$ is the derivative along the exterior normal vector. We compare the asymptotic expansion of both sides of (6). Then we get

$$
\begin{equation*}
\boldsymbol{B}_{n-k}\left(\left\{\tilde{\omega}_{\alpha}\right\}\right)=q^{-k} \boldsymbol{B}_{n-k}\left(\left\{\omega_{\alpha}\right\}\right) . \tag{7}
\end{equation*}
$$

By (4) and (7), we obtain Theorem 3.
We transform $z^{\prime}=\left(z_{1}, \cdots, z_{n-1}\right)$ to another orthonormal basis $\hat{z}^{\prime}=\left(\hat{z}_{1}, \cdots, \hat{z}_{n-1}\right)=\left(z_{1}, \cdots, z_{n-1}\right) V$. Here $V \in 0(n-1, \mathbf{R})$. Then γ can be locally written as $z_{n}=\hat{\theta}\left(\hat{z}_{1}, \cdots, \hat{z}_{n-1}\right)=\sum_{|\alpha| \geq 2} \hat{\omega}_{\alpha} \hat{z}^{\prime \alpha}$. We can represent $\left\{\hat{\omega}_{\alpha}\right\}$ explicitly by $\left\{\omega_{\alpha}\right\}$ and $V \in 0(n-1, \mathrm{R})$. It should be remarked that (8)

$$
B_{n-k}\left(\left\{\hat{\omega}_{\alpha}\right\}\right)=q^{-k} B_{n-k}\left(\left\{\omega_{\alpha}\right\}\right),
$$

since both sides are equal to $B_{n-k}(z)$ which does not depend on the choice of orthonormal basis on the tangent hyperplane of γ at z.

We have the following
Proposition 3. $B_{n}(z)=e_{n}$ on γ, and $B_{n-1}(z)=\beta H_{1}(z)$ on γ. Here $H_{1}(z)$ denotes the first mean curvature of γ at z, and e_{n}, β are constants depending only on n.

Proof. Since $B_{n}(z)$ is homogeneous of weight 0 , it must be a constant. Next we study $B_{n-1}(z)$. If we transform z^{\prime} to $z^{\prime}=z^{\prime} V$, where $V \in 0(n-1, \mathrm{R})$, then the following relation holds.

$$
\begin{equation*}
\hat{\omega}_{k h}=\sum_{i, j=1}^{n-1} V_{k i} \omega_{i j} V_{i n} . \tag{9}
\end{equation*}
$$

The above relation can be rewritten as

$$
\begin{equation*}
\hat{\omega}=V \omega V^{-1}, \tag{10}
\end{equation*}
$$

where ω and $\hat{\omega}$ is the matrix with the components $\left\{\omega_{i j}\right\}$ and $\left\{\hat{\omega}_{k h}\right\}$ respectively. Since $B_{n-1}(z)$ is homogeneous of weight 1, it must be written as $B_{n-1}(z)=\sum_{i, j=1}^{n-1} s_{i j} \omega_{i j}$, where $s_{i j}$ is a constant which depend only on n. So we have also $B_{n-1}(z)=\sum_{i, j=1}^{n-1} s_{i j} \hat{\omega}_{i j}$ for any $\hat{\omega}_{i j}$ with respect to any other orthonormal coordinates \hat{z}^{\prime}. Finally by the theory of orthogonal invariants such as [11], we conclude that $s_{i j}=\tau \delta_{i j}$ where τ is a constant and $\delta_{i j}$ is the Kronecker delta. It is well known that $H_{1}(z)$ $=2(n-1)^{-1} \sum_{i=1}^{n-1} \omega_{i i}$. The proof is over.
§3. Proofs of Theorems 1 and 2. The coefficients $a_{n}(\varepsilon)$ and $a_{n-1}(\varepsilon)$ in the asymptotic expansion of $T_{r}(t ; \varepsilon)$ are represented as $a_{n}(\varepsilon)$ $=C_{n}\left|\Omega_{\mathrm{s}}\right|, a_{n-1}(\varepsilon)=C_{n-1}\left|\gamma_{\mathrm{c}}\right|$. Here C_{n} and C_{n-1} are non zero constants which depend only on n. And here $\left|\Omega_{\varepsilon}\right|$ denotes the volume of Ω_{ε} and $\left|\gamma_{c}\right|$ denotes the area of γ_{c}. Therefore we have to show

$$
\begin{equation*}
b_{n}=C_{n} \int_{r} \rho(z) d \sigma_{z} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{n-1}=(n-1) C_{n-1} \int_{r} H_{1}(z) \rho(z) d \sigma_{z} . \tag{12}
\end{equation*}
$$

By Theorems 1 and 2 in [6], we have

$$
b_{n-k}=\int_{r} B_{n-k}(z) \rho(z) d \sigma_{z} .
$$

So we can restate (E) $)_{k}^{n}(k=0,1)$ as follows.
(E) ${ }_{0}^{n}$ (E) ${ }_{1}^{n}$

$$
\begin{gathered}
e_{n}=C_{n}, \\
e_{n-1}(z)=(n-1) C_{n-1} H_{1}(z) .
\end{gathered}
$$

Let B_{R} be the open ball with radius R centered at the origin. Let $0 \geq \lambda_{1}(R) \geq \lambda_{2}(R) \geq \cdots$ be the eigenvalues of the Laplacian with the Dirichlet boundary condition at ∂B_{R}. We arrange them according to their multiplicities. We have $\lambda_{i}(R)=\lambda_{i}(1) R^{-2}$. Put $T_{r}\left(t \mid B_{R}\right)=\sum_{j=1}^{\infty} e^{\lambda_{j}(R) t}$. And put $\rho(z)=1$ on $\gamma=\partial B_{R}$. Then we have

$$
\delta T_{r}(t)=\frac{\partial}{\partial R} T_{r}\left(t \mid B_{R}\right)=-2 t R^{-1} \frac{\partial}{\partial t} T_{r}\left(t \mid B_{R}\right) .
$$

On the other hand, by the calculus of pseudo-differential operators we can get the following proposition. We need nontrivial calculations to prove it. See [8].

Proposition 4. When t tends to zero, $\frac{\partial}{\partial t} T_{r}\left(t \mid B_{R}\right)$ has the asymptotic expansion

$$
\frac{\partial}{\partial t} T_{r}\left(t \mid B_{R}\right) \sim \sum_{k=0}^{\infty} M_{n-k}(R) t^{-(n+2-k) / 2} .
$$

By Proposition 4, we can differentiate with respect to t the asymptotic expansion $T_{r}\left(t \mid B_{R}\right) \sim \sum_{k=0}^{\infty} a_{n-k}(\sqrt{t})^{-n+k}$ term by term. Therefore we have
(13) $\delta T_{r}(t) \sim n a_{n} R^{-1}(\sqrt{t})^{-n}+\cdots+(n-k) a_{n-k} R^{-1}(\sqrt{t})^{-n+k}+\cdots$. On the other hand, we have

$$
\begin{equation*}
\delta T_{r}(t) \sim e_{n}|\gamma|(\sqrt{t})^{-n}+\beta \int_{T} H_{1}(z) d \sigma_{z} \cdot(\sqrt{t})^{-n+1}+0\left(t^{-n / 2+1}\right) . \tag{14}
\end{equation*}
$$

By (13) and (14), we have $|\gamma| e_{n}=n a_{n} R^{-1}$ and $\beta|\gamma| R^{-1}=(n-1) a_{n-1} R^{-1}$. Since $a_{n}=C_{n}\left|B_{R}\right|, a_{n-1}=C_{n-1}\left|\partial B_{R}\right|$, we get Theorem 1 .

By Theorem 1 we have the following
Corollary. If tends to zero, then

$$
\begin{align*}
\delta T_{r}(t)= & C_{n} \int_{r} \rho(z) d \sigma_{z} \cdot t^{-(n+2) / 2} \tag{15}\\
& +(n-1) C_{n-1} \cdot \int_{r} H_{1}(z) \rho(z) d \sigma_{z} \cdot t^{-(n+1) / 2}+0\left(t^{-n / 2}\right),
\end{align*}
$$

where $C_{n} \neq 0, C_{n-1} \neq 0$.
Proof of Theorem 2. The proof of Theorem 2 is obvious for $n \geq 3$, since we have (15). Now we study the case $n=2$. By (15) we can conclude that γ consists of finite disjoint union of circles. Since we know that any T-stationary domain is stationary by Theorem 3 in [6], we have (1). Let γ be the largest circle contained in γ. By the uniqueness theorem of Holmgren we conclude that the level set $\gamma(s)$ $=\left\{z ; \varphi_{1}(z)=s, z \in \Omega\right\}$ consists of the finite disjoint union of circles with the same center as γ. It is well known that $\varphi_{1}(z)$ does not take zero in
Ω. Summing up these facts we conclude that Ω must be the disk or the annulus. For the annulus $\left\{z \in \mathrm{R}^{2} ; r_{1}<|z|<r_{2}\right\}, \varphi_{1}(z)$ can be calculated explicitly. If $r_{1}>0$, then $\varphi_{1}(z)$ with respect to this domain does not satisfy (1). The proof is over.

References

[1] Atiyah, M., R. Bott, and V. K. Patodi: Invent. math. 19, 279-330 (1973).
[2] Garabedian, P. R., and M. Schiffer: J. Anal. Math. 2, 281-368 (1952-53).
[3] Gilkey, P. B.: The Index Theorem and the Heat Equation. Publish or Perish Inc., Boston (1974).
[4] Hadamard, J.: Oeuvres. C.N.R.S. 2, 515-631 (1968).
[5] Minakshisundarum, S., and A. Pleijel: Canad. J. Math. 1, 242-256 (1949).
[6] Ozawa, S.: Proc. Japan Acad. 54A, 322-325 (1978).
[7] -: Studies on Handamard's variational formula. Master's Thesis, Univ. of Tokyo (1979) (in Japanese).
[8] -: Asymptotics of eigenvalues and eigenfunction of the Laplace operator (in preparation).
[9] -: Hadamard's variation of the Green kernels of heat equation and their traces (in preparation).
[10] Seeley, R.: Amer. J. Math. 91, 889-919 (1969).
[11] Weyl, H.: The Classical Groups. Princeton N.J. (1946).

