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1. INTRODUCTION

In this note we give a unified treatment of two inertia results on the Ljapunov
matrix equation

A*H + HA = C, C 20 (positive semidefinite), H = H*.
For a complex n X n matrix A the inertia, In A4, of A4 is defined as the triple
InA = (n(A), v(4), 6(4))

where n(4), v(A) and 6(A4) are respectively the numbers of eigenvalues of A with
positive, negative and vanishing real part. If {,1 ; I j=12,.., k} is the set of distinct
eigenvalues of A, then 4 can be written in the form (see e.g. [11])

k
(1) A =j;l(AjP,- + N))
where {N} is a set of nilpotent matrices and {P;} is a set of projection matrices such

that

k
j\élpj =1, PpP;=P,P,=6,P;,, P.N;=N;P,=35,N,.

Equation (1) is easily derived from the Jordan form of 4. We define

P,= ) P; and P_= ) P;.

Re;>0 Rei;<0

In the case 6(4) = O we have P, + P_ = I. — H shall always denote a hermitian
n x n matrix. §(H) = 0, then means H is nonsingular.
Our main tool will be the following theorem.
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Theorem 1. If A has no eigenvalues on the imaginary axis and

) A*H + HA = C

holds, then

3) PXH — HP_ = %J [(4 = iv)™*] *C(4 — iyl)~* dy.
T —

Starting from (3) we will prove the following inertia theorems.
Theorem 2 [1, p. 432]. Let A be a matrix with 6(A) = 0. If

A*H+ HA=C, C=0,
then

4 n(H) £ n{A) and v(H) < v(A).
Theorem 3 [2], [9]. If A*H + HA = C, C 2 0 and

(%) rank [C, A*C, A*’C, ..., A*""'C] = n,

then In A = In H and 6(A) = 6(H) = 0.

There are applications of Theorem 3 to continued fractions [10] and to the linear
vibration equation [9].

2. TWO LEMMAS

For the proof of Theorem 1 we need the following lemma.

Lemma 1. Let P, and P, be two n x n matrices with

(6) rank P, + rank P, = n.
If H satisfies

@) » P{HP, 20 and PiHP, <0,
then
(8) n(H) < rank P, and (H) < rank Pz .

Proof. Let H have the spectral decomposition
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where y, are the eigenvalues of H and the Q,’s are hermitian projection matrices
with 0,0, = §,,0,. We put

Q+=2Qr and Q—=2Qr'

ne>0 1r<0

We show that
) 0.Cn P;C" = {0}.
Suppose that @ ,u = P,v, then
(10) (HQ ., Q1) = ¥ 1O, Q) 2 0.
On the other hand
(HQ.u, Q.u) = (HP,v, Pyv) = (P3HP,v,v) £ 0.
Thus (HQ,u, Q.u) = 0 and by (10) (Q,u, Q,u) = 0 for each r with g, > 0 and
therefore Q,u = 0. (9) implies rank Q, + rank P, < n. Similarly rank Q_ +

+ rank P; < n. The inequalities (8) are now immediate consequences of (6).

Lemma 2. Let Py and P, be two n x n matrices with P; + P, =1 and P;P; =
= 0;;P;, i,j = 1, 2. If H satisfies

(11) v PYH — HP, > 0 (positive definite) ,
then In H is given by
6(H)=0, n(H)=rankP,, v(H)=rankP,.

Proof. Suppose Hv = 0, then (v(PfH — HP,), v) = 0 and because of (11) v = 0.
This means §(H) = 0 and n(H) + v(H) = n, so that in (8) the equality signs hold.
3. PROOFS

Proof of Theorem 1. Let I' be a positively-orientated simple closed curve that
consists of a segment of the imaginary axis and of a left semi-circle of radius R

around the origin. If R is greater than the spectral radius of 4, then

(12) L.J‘(zl-—A)’ldz=P~ and - [‘(ZI-E-A)_I dz=P, .
2mi r r

2mi,
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The integrals in (12) exist and the formulas follow easily from (see e.g. [11])

k
(@ = A)7t =Y [z = 4)7" Py + Mj] .
=
For z e I' we write (2) as
(zI + A% H + H(A — zI)™" = (4* + zI)"' C(4 — zI) ',

divide both sides of this equation by 27i and integrate around I'. The integrals on
the left-hand side are evaluated with (12) and since the right-hand side is O(z™2)
at infinity, we obtain (3). — Let us remark that (3) is a generalisation of a result
of SMITH [5, p. 425] which was stated for the case of a stable matrix 4, i.e. P, = 0,
P_ =1

Proof of Theorem 2. For C = 0 the matrix

(13) M = f [(4 — iy)~ '] C(4 — iyD)~* dy

is also positive semidefinite, so PxH — HP_ = 0. If we put P, = P, and P, = P_
and observe that rank P, = n(4) and rank P_ = v(4), then the inequalities (4)
follow from Lemma 1.

Proof of Theorem 3. We first show that §(4) = 0. Assume the contrary, then
there is a u, u + 0, and a real « such that Au = iau. Let r be a nonnegative integer,
then A*(A*HA") + (A*HA") A = A*'CA". Hence

(A*CA"u, u) = (—io + io) (A¥HA"u, u) = 0.

C =2 0 implies u*4*C =0 for r=0,1,...,n — 1. Thus rank (C, A*C, ...
.., A¥*"71C) < n, which contradicts to (5). Now that we know that 6(4) = 0, we
can write equation (3). We next show that M > 0 where M is given by (13). Sup-
pose u is a vector such that (Mu, u) = 0. Then ((4* + iyI)™' C(4 — iy])™ ' u, u) =
= 0or C(4 — iyI)"" u = 0 for all real y. Therefore

(14) Clzl — A) ™ u =0

holds for all complex z which are not eigenvalues of A. Multiplying (14) by z" and
integrating around a curve which surrounds the eigenvalues of A we find that
CAu=0,r=0,1,...,n — 1. (5) implies v = 0 which means M > 0. Theorem 3
now follows directly from Lemma 2.

The important special case of Theorem 3 where C is a positive definite matrix
is due to TAUsSKY [7] and OSTROWSKI and SCHNEIDER [4].

559



4. STEIN’S EQUATION

Theorems corresponding to those on Ljapunov’s equation (2) can be derived
for Stein’s equation

(15) A*HA - H=C.
If A is given in the form (1), we define

P,= Y P; and P, = ) P;.
14j1<1 1451>1

Let A4 be the positively orientated unit circle. Suppose 4 has no eigenvalue of
modulus 1. Then

(16) P, = .1_ (zI - A)—l dz and P, = _L A(ZA _ I)—l dz .
2ni J 4 _ 2ni J 4

For z € 4 write (15) as
HA(zA —I)™' + (A* — zI)™* H = (4* — z2I)"' C(z4 — I)™".
Using (16) we obtain

(17) HP, — P}H = —1—'[ (4* —zI)" ' C(zA = 1)" ' dz =
27Ti 4

1 —iop) - 17% — o)1
=§;L[(A—e 1)1T* C(4 — e~ 1)1 0.

Equation (17) is a generalisation of another result of Smith [6, p. 214]. There it was
assumed that P, = I and P, = 0. — By the same method we used for Theorem 3
we can refine a theorem which is mentioned in [8].

Theorem 4. If A*HA — H =C, C 20 and rank (C, 4*C, ..., A*""'C) = n,
then A has no eigenvalues of modulus 1. The number of eigenvalues of A with
modulus less [greater] than 1 is equal to the number of negative [ positive] eigen-
values of H. ,

The results derived in this note for the equations (2) and (15) can not be extended
to the more general matrix equation

m

Y ¢ A*HA® = C, ¢, = C,

o (14 o0
2,0=
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as the following example shows. Take

A=02,H1=10,H2=10.
01 01 0 -1

Then
ATH A+ H, = 1o >0, ATH,A+ H, = 10 >0,
06 02
but In H, + In H,. — Generalisations of inertia theorems of a different type are

contained in [3].
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