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Abstract. A motive over a field k is of abelian type if it belongs to the thick and rigid

subcategory of Chow motives spanned by the motives of abelian varieties over k. This pa-
per contains three sections of independent interest. First, we show that a motive which

becomes of abelian type after a base field extension of algebraically closed fields is of abelian
type. Given a field extension K/k and a motive M over k, we also show that M is finite-
dimensional if and only if MK is finite-dimensional. As a corollary, we obtain Chow–Künneth

decompositions for varieties that become isomorphic to an abelian variety after some field
extension. Second, let Ω be a universal domain containing k. We show that Murre’s con-
jectures for motives of abelian type over k reduce to Murre’s conjecture (D) for products of
curves over Ω. In particular, we show that Murre’s conjecture (D) for products of curves
over Ω implies Beauville’s vanishing conjecture on abelian varieties over k. Finally, we
give criteria on Chow groups for a motive to be of abelian type. For instance, we show
that M is of abelian type if and only if the total Chow group of algebraically trivial cy-

cles CH∗(MΩ)alg is spanned, via the action of correspondences, by the Chow groups of
products of curves. We also show that a morphism of motives f : N → M , with N finite-

dimensional, which induces a surjection f∗ : CH∗(NΩ)alg → CH∗(MΩ)alg also induces a
surjection f∗ : CH∗(NΩ)hom → CH∗(MΩ)hom on homologically trivial cycles.

Introduction

Let k be a field. A motive over k is a motive for rational equivalence defined over k with
rational coefficients. The motive of a smooth projective variety X over k is denoted by h(X).
We refer to [18] for definitions and basic properties. Our notations will only differ from loc.
cit. by the use of a covariant set-up rather than a contravariant one. For instance, with our
conventions, h(P1

k) = 1 ⊕ 1(1). A motive M is said to be effective if it is isomorphic to the
direct summand of the motive of a smooth projective variety, equivalently if it is isomorphic
to a motive of the form (X, p, n) for some smooth projective variety X, some idempotent
p ∈ End(h(X)) := CHdimX(X×X) and some integer n ≥ 0. A motiveM is said to be of abelian
type if it is isomorphic to a motive that belongs to the thick and rigid subcategory of motives
over k spanned by the motives of abelian varieties. Equivalently, M is of abelian type if one of
its twist M(n) := M ⊗ 1(n) is isomorphic to the direct summand of the motive of a product
of curves. Finally, we refer to Kimura [15] for the notion of finite-dimensionality of motives.
Motives of curves are finite-dimensional and finite-dimensionality is stable under tensor product,
direct sum and direct summand. As such, motives of abelian type are finite-dimensional. It
is conjectured that all motives are finite-dimensional. Given a finite-dimensional motive M , a
crucial result of Kimura [15, Proposition 7.5] states that Ker

(
End(M) → End(M)

)
, where M

denotes the reduction modulo numerical equivalence of M , is a nilpotent ideal of End(M).

This paper contains three independent sections.

0.1. Let k be an algebraic closure of k and let K/k be an extension of k which is algebraically
closed. Our first result is the following rigidity property for motives of abelian type.
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Theorem 1. Let M be a motive over k. Then Mk is of abelian type if and only if MK is of
abelian type.

The proof, which is given in Subsection 1.1, proceeds through a standard specialization
argument. More interesting is the following descent theorem the proof of which is given in
Subsection 1.2.

Theorem 2. Let M be a motive over k. Then M is finite-dimensional if and only if MK is
finite-dimensional.

The main point in the proof of Theorem 2 consists, assuming the existence of a decomposition
ofMK into a direct sum of an odd-dimensional part and an even-dimensional part, in exhibiting
a similar decomposition of M . This is a priori not obvious as the size of the Chow groups of
a variety might strictly increase after base-change to a field extension. Abelian varieties (and,
more generally, motives of abelian type) are known [8] to have a Chow–Künneth decomposition.
As a consequence of Theorem 2, we obtain in Corollary 1.9 the existence of a Chow–Künneth
decomposition for varieties over k that become isomorphic to an abelian variety after some
field extension, thereby generalizing the case of abelian varieties which was taken care of by
Deninger–Murre [8].

0.2. Let now Ω be a universal domain, that is, an algebraically closed field of infinite tran-
scendence degree over its prime subfield, containing k. Our second main result is concerned
with Murre’s conjectures (recalled in Conjecture 2.1) in the case of motives of abelian type. It
is known that any abelian variety A over k is endowed with a Chow–Künneth decomposition
which diagonalizes the induced action of the multiplication-by-m maps on the Chow groups
of A; see Remark 2.10. Proposition 2.7 shows that Murre’s conjecture (B) does not depend
on the choice of a Chow–Künneth decomposition for A, so that Beauville’s vanishing conjec-
ture [4] on abelian varieties is equivalent to Murre’s conjecture (B). Proposition 2.8 shows that
Murre’s conjecture (B) for motives of abelian type implies Murre’s conjecture (C) for motives of
abelian type. Finally, that Murre’s conjecture (D) for motives of abelian type implies Murre’s
conjecture (B) for motives of abelian type relies on the main theorem of K. Xu and Z. Xu [23]
which we reproduce as Theorem 2.6. A combination of Theorems 2.9 and Remark 2.10 is the
following.

Theorem 3. Assume Murre’s conjecture (D) for product of curves defined over Ω. Then
Murre’s conjectures (A), (B), (C) and (D) hold for all motives of abelian type over k. In
particular, Beauville’s vanishing conjecture [4] on abelian varieties over k holds.

In particular, as is explained in Section 2, Beauville’s vanishing conjectures on abelian
varieties over k reduce to Beauville’s conjecture that the cycle class map CHl(AΩ) →

H2 dimA−2l(AΩ,Qℓ) be injective when restricted to CH
(2l)
l (AΩ) for all l and for all abelian

varieties A over k.
Theorem 3 confirms that conjecture (D) plays a prominent role among Murre’s conjectures.

For instance, given a smooth projective surface S over k with H1(S) = 0 and H2(S) supported
on a divisor, it is well known that Murre’s conjecture (D) for S × S implies that CH0(S) = Q.
HereH• denotes any Weil cohomology theory, e.g. ℓ-adic cohomologyH•(Sk,Qℓ). In particular,
Murre’s conjecture (D) for fourfolds implies Bloch’s conjecture on surfaces.

0.3. Let M be a motive over Ω. Given an adequate equivalence relation “∼” on cycles (e.g.
∼ could be trivial, numerical, homological, smash-nilpotent, algebraic, or, when k = C, Abel-
Jacobi equivalence), we denote by CHl(M)∼ the sub-group of CHl(M) consisting of cycles that
are ∼ 0. In [21], we proved that if CH∗(M)alg is generated by the Chow groups of zero-cycles on
a (possibly non-connected) curve, then M splits as a direct sum of direct summands of twisted
motives of curves. The following theorem generalizes the main result of loc. cit. and gives a
criterion for a motive to be of abelian type.
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Theorem 4. Let ∼ be an adequate equivalence relation on cycles which, when restricted to
0-cycles, is coarser than albanese equivalence on 0-cycles. Let M be a motive over Ω. Then M
is of abelian type if and only if CH∗(M)∼ is generated, via the action of correspondences, by
the Chow groups of products of curves.

Theorem 4 is proved in Subsection 3.4. There we actually state and prove Theorem 3.11
which is the main theorem of Section 3 and from which is derived Theorem 4. Here is an
outline of the proof. Let f : N → M be a morphism of motives. By Jannsen’s semi-simplicity
theorem [13], the numerical motive M splits as M1 ⊕M2 where M1 is the image of f . If N is
of abelian type, then, by finite-dimensionality of N , this splitting lifts to a splitting M1 ⊕M2

of M such that M1 isomorphic to a direct summand of N , and such that the induced map
N → M2 is numerically trivial and such that CH∗(N)∼ → CH∗(M2)∼ is surjective. Writing
M2 = (X, p, n), we then proceed by induction on the dimension of X to show that M2 is of
abelian type. Lemma 3.10 is the key lemma for that matter. Its proof relies on a refined version
of a theorem of Bloch and Srinivas [5] which is expounded in Subsection 3.2; see Proposition
3.5. Note that when ∼ is the trivial equivalence relation, Theorem 4 can be proved without
using the finite-dimensionality of the motives of curves; see Theorem 3.18.

When M is the motive of a smooth projective variety X over Ω, Theorem 4 can be made
more precise and one need not consider the Chow groups of X in all degrees. For instance, we
have the following two theorems.

Theorem 5. Let ∼ be as in Theorem 4. Let X be a smooth projective variety of dimension 2n or
2n+1 over Ω. Then the motive of X is of abelian type if and only if CH0(X)∼, . . . ,CHn−1(X)∼
are generated, via the action of correspondences, by the Chow groups of products of curves.

Theorem 6. Let ∼ be as in Theorem 4. Let X be a smooth projective variety of dimension
2n − 1 or 2n over Ω. Assume that CH0(X)∼, . . . ,CHn−2(X)∼ are generated, via the action
of correspondences, by the Chow groups of products of curves. Then X has a Chow–Künneth
decomposition.

Some applications of these two theorems are discussed in Subsections 3.5 and 3.6. For
instance, we consider X a smooth projective variety rationally dominated by a product of
curves and we show that if dimX ≤ 4, then X has a Chow–Künneth decomposition; and if
dimX ≤ 3, then X is finite-dimensional in the sense of Kimura. We also show, based on
a classification result of Demailly–Peternell–Schneider [7], that a complex fourfold with a nef
tangent bundle has a Chow–Künneth decomposition.

An interesting consequence of Theorem 3.11 is that, among finite-dimensional motives, a
motive M is entirely determined, up to direct factors isomorphic to Lefschetz motives, by its
Chow groups of algebraically trivial cycles. Another consequence of Theorem 3.11 and its proof
is the following theorem which is concerned with Griffiths groups. We write Griffi(X) for
CHi(X)hom/CHi(X)alg.

Theorem 7. Let ∼ be as in Theorem 4. Let f : N →M be a morphism of motives. Assume that
N is finite-dimensional and that there is an integer l such that f∗ : CHi(NΩ)∼ → CHi(MΩ)∼ is
surjective for all i < l. Then f∗ : Griffi(N) → Griffi(M) is surjective for all i ≤ l. If moreover
∼ is algebraic equivalence, then f∗ : CHi(NΩ)hom → CHi(MΩ)hom is surjective for all i < l. �

In the spirit of Theorem 7, we are able to extend a result of R. Sebastian [19]. We show in
Theorem 3.17 that if M is an effective motive over k such that CH0(MΩ) is spanned via the
action of correspondences by 0-cycles on products of curves, then numerical equivalence agrees
with smash-nilpotence equivalence on 1-cycles on M .

Finally, Theorem 4 can be viewed as an analogue modulo rational equivalence of the following
result which gives yet another characterization of motives of abelian type.
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Theorem 8. Let X be a smooth projective complex variety, the motive of which is finite-
dimensional and the cohomology of which is spanned, via the action of correspondences, by the
cohomology of products of curves. Then X is of abelian type.

This result is essentially due to Arapura [3]: a homological motive whose cohomology is
spanned by the cohomology of curves is “motivated” by the homological motives of curves. A
standard lifting argument for finite-dimensional motives then proves Theorem 8. We however
include a paragraph to prove this result as we slightly improve on Arapura’s result; see §3.8.

1. Descent and motives of abelian type

Proof of Theorems 1 and 2

Let’s first consider the following situation. Consider a scheme X over an algebraically closed
field k such that XK is K-isomorphic to an abelian variety A over K for some field extension
K/k. TheK-isomorphism f : XK → A is defined over a subfield ofK which is finitely generated
over k. Therefore, we may assume that K is finitely generated over k and that there is a smooth
irreducible variety U over k with function field K such that A spreads to an abelian scheme
A over U and such that f spreads to a U -isomorphism fU : X ×k U → A . Specializing at a
closed point u of U , i.e., pulling back along the closed immersion u → U , the U -isomorphism
fU gives a k-isomorphism fu : X = Xu → Au. Thus, X is isomorphic to an abelian variety.

1.1. Proof of Theorem 1. Let k be an algebraically closed field and let M be a motive over
k, say M = (X, p, n). We assume that there is a field K/k such that MK is isomorphic over K
to a motive of abelian type. We want to show that M is of abelian type. Since M becomes of
abelian type over K, it actually becomes of abelian type over a subfield of K which is finitely
generated over k. We can thus assume that K is finitely generated over k. Let then A be an
abelian variety over K such that we have a K-isomorphism MK = (XK , pK , n) ∼= (A, q,m).
Up to tensoring with the Lefschetz motive, which can be thought of as a direct summand of
the motive of an elliptic curve defined over k, we may assume that n = m = 0. Let Y be a
smooth quasi-projective variety defined over k with function field K. Let then U be a Zariski-
open subset of Y such that A spreads to an abelian scheme A → U , q ∈ CHdimA(A ×K A)

spreads to a relative idempotent κ ∈ CHdimA(A ×U A ), and such that the K-isomorphism
(XK , pK) ∼= (A, q) spreads to an isomorphism (XU , pU ) ∼= (A , κ) of relative motives over U .
Here, (XU , pU ) denotes the constant motive over U whose closed fibers are (X, p). A Zariski-
open subset of Y that satisfies the last two properties exists by the localization exact sequence
for Chow groups.

Let t be a closed point of U . By assumption, t is a smooth point and the inclusion jt : t →֒ U
is thus a regular embedding. Therefore, by [9, §6], there is a Gysin morphism j∗t defined on Chow
groups which commutes with flat pull-backs, proper push-forwards and intersection products.
It follows that relative idempotents over U specialize to idempotents and that the relative
isomorphism (XU , pU ) ∼= (A , κ) specializes to an isomorphism (X, p) = (Xt, (jt, jt)

∗pU ) ∼=
(At, (jt, jt)

∗κ) defined over k. �

1.2. Finite-dimensionality of motives is stable under descent. Let k be a field and let
K/k be a field extension. In this paragraph, we wish to study the stability under descent of
two notions attached to motives: finite-dimensionality and Chow–Künneth decompositions.

Definition 1.1. A motive M over k is said to be finite-dimensional if there exists a splitting
M = M+ ⊕M− such that SnM− = ΛnM+ = 0 for n >> 0. A motive M− whose symmetric
powers SnM− vanish for n >> 0 is said to be oddly finite-dimensional and a motiveM+ whose
exterior powers ΛnM+ vanish for n >> 0 is said to be evenly finite-dimensional. The notion
of finite-dimensionality is due independently to Kimura [15] and O’Sullivan.

The motiveM is said to have a Künneth decomposition if there is a finite-sum decomposition
of the homological motive Mhom =

⊕
i∈Z

(Mhom)i such that H∗((M
hom)i) = Hi(M

hom).
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The motiveM is said to have a Chow–Künneth decomposition if there is a finite-sum decom-
position M =

⊕
i∈Z

Mi such that this decomposition defines modulo homological equivalence
a Künneth decomposition of M .

First recall the following lemma.

Lemma 1.2. Let X be a scheme over k. Then the map CH∗(X) → CH∗(XK) induced by base-
change is injective. If K/k is finite, then the composite with proper push-forward CH∗(X) →
CH∗(XK) → CH∗(X) is multiplication by [K : k]. Moreover, if K/k is a purely inseparable
extension, then CH∗(X) → CH∗(XK) and CH∗(XK) → CH∗(X) are both isomorphisms. �

Proof. This is classical; see for instance [6, Lemma 1.A.3]. When K/k is finite, the proof is
immediate by definition of flat pull-back and proper push-forward of cycles; see [9, Example
1.7.4]. As for the purely inseparable case, consider a cycle γ ∈ CH∗(XK) defined over a finite
purely inseparable extension K of k of degree pr, say. The cycle 1

pr γ is then defined over k.

Thus, γ is the image of the cycle pr · ( 1
pr γ) under the map CH∗(X) → CH∗(XK). �

Let us mention the basic fact that a motive that becomes zero after base-change is zero.

Proposition 1.3. Let M be a motive over k. Then M = 0 if and only if MK = 0.

Proof. By definition, a motive (X, p, n) is zero if and only if p = 0 ∈ CH∗(X × X). The
proposition then follows from Lemma 1.2. �

Theorem 1.4. Let M be a motive over k. Then M is finite-dimensional if and only if MK is
finite-dimensional.

Proof. If M is finite-dimensional then it is clear that MK is finite-dimensional. Indeed, if M
splits as M+ ⊕M− with SnM− = ΛnM+ = 0 for some n, then we have that MK splits as
(M+)K ⊕ (M−)K with Sn(M−)K = Λn(M+)K = 0 in view of Proposition 1.3 and the fact
that symmetric powers and exterior powers of motives commute with base-change,.

Assume now that MK is finite-dimensional. This means that MK has a splitting (MK)+ ⊕
(MK)− with Sn(MK)− = Λn(MK)+ = 0 for some n >> 0. Such a splitting is defined over a
finitely generated field over k and we may assume that K is finitely generated over k. By a
specialization argument as in the proof of Theorem 1, we may even assume that K is a finite
extension of k. By Lemma 1.2, we may further assume that K is a finite Galois extension of k
with Galois group G, say. Let then pK := idMK

= p+ + p− ∈ End(MK) be the decomposition
corresponding to the decomposition MK = (MK)+ ⊕ (MK)−. The group G acts on End(MK)
as follows : for all g ∈ G and all f ∈ End(MK) we have g · f := g ◦ f ◦ g−1. This is well-defined
since pK is defined over k (so that pK ◦ g = g ◦ pK). Consider the G-invariant correspondence

p̃+ :=
1

|G|

∑

g∈G

g · p+ ∈ End(MK).

The correspondence p+ defines in End(Mhom
K ) the projector on the even-degree homology of

MK and sinceMK is defined over k, the ℓ-adic cohomology class of p+ is clearly invariant under
the Galois group of k. This yields that p̃+ and p+ are homologically equivalent. We can thus
write

p̃+ ◦ p̃+ = p̃+ + n

for some correspondence n ∈ End(MK) that is homologically trivial, and hence nilpotent by
finite-dimensionality of MK [15, Prop. 7.5]. Since p̃+ is G-invariant, it follows that p̃+ ◦ p̃+ is
G-invariant and hence that n is G-invariant. Looking at p̃+◦ p̃+◦ p̃+, we see that n◦ p̃+ = p̃+◦n.
Following Beilinson, we compute

(
p̃+ + (1− 2p̃+) ◦ n

)◦2
= p̃+ + (1− 2p̃+) ◦ n+ n◦2 ◦ (4n− 3).

A straightforward descending induction on the nilpotence index of n shows that there is a
homologically trivial correspondence m such that q+ := p̃+ +m is a G-invariant idempotent in
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End(MK). Thus p+ is homologically equivalent to the G-invariant idempotent q+. Likewise,
p− is homologically equivalent to the G-invariant idempotent q− := idMK

− q+. By finite-
dimensionality of MK , it follows that Im q+ and Im q−, which are motives defined over k,
are respectively isomorphic over K to (MK)+ and (MK)−. In particular, we obtain that
Sn(Im q−) = Λn(Im q+) = 0 over K for n >> 0. By Proposition 1.3, we conclude that
Im q+ ⊕ Im q− is a decomposition of M into an evenly finite-dimensional motive and an oddly
finite-dimensional motive. �

Proposition 1.5. Let M be a motive over k. Then Mk has a Chow–Künneth decomposition if
and only if there exists a field extension K/k such thatMK has a Chow–Künneth decomposition.

Proof. The “only if” part of the proposition is obvious and the “if” part follows from a special-
ization argument as in the proof of Theorem 1 together with the compatibility of specialization
with the cycle class map [9, §20.3]. �

Question 1.6. Let M be a motive over k. Assume that MK has a Chow–Künneth decomposi-
tion. Then does M have a Chow–Künneth decomposition?

This question has a positive answer modulo homological equivalence, as is observed in the
following proposition.

Proposition 1.7. Let M be a motive over k. Then Mhom has a Künneth decomposition if and
only if MK has a Künneth decomposition.

Proof. The “only if” part of the proposition is obvious. Recall that, for any extension F ′/F
of algebraically closed fields and for any smooth projective variety X over F , the base-change
map CH∗(X) → CH∗(XF ′) is an isomorphism modulo homological equivalence. If MK has a
Künneth decomposition, then it follows by specialization that, for some finite extension l/k,
Ml has a Künneth decomposition. By Lemma 1.2, we may assume that l/k is Galois. Let us
write M = (X, p, n) with d = dimX. Since Ml is defined over k, the Künneth projectors are
invariant in End(Mhom

l ) ⊆ H2d
et (Xk̄ ×k̄Xk̄,Qℓ(d)) under the action of the Galois group of k. It

follows that Gal(l/k) acts trivially on those. Thus, the Künneth decomposition ofMl is defined
over k and hence defines a Künneth decomposition of M . �

The following theorem shows that, assuming finite-dimensionality for M , Question 1.6 has a
positive answer.

Theorem 1.8. Let M be a motive over k. If MK is finite-dimensional and has a Künneth
decomposition, then M is finite-dimensional and has a Chow–Künneth decomposition.

Proof. By Theorem 1.4,M is finite-dimensional; and by [15, Prop. 7.5], it follows that the kernel
of End(M) → End(Mhom) is nilpotent. Therefore, by [12, Lemma 5.4], a sum of idempotents
in End(Mhom) that adds to the identity lifts to a sum of idempotents in End(M) that adds to
the identity in End(M). Now M has a Künneth decomposition by Proposition 1.7. We thus
find that this Künneth decomposition lifts to a Chow–Künneth decomposition for M . �

For instance, if M is a motive such that Mk is of abelian type, then M has a Chow–
Künneth decomposition. In particular, we obtain the following result that extends the classical
result of Deninger–Murre [8] according to which every abelian variety has a Chow–Künneth
decomposition.

Corollary 1.9. Let X be a variety over k such that Xk has the structure of an abelian variety.
Then X has a Chow–Künneth decomposition. �
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2. Murre’s conjectures and motives of abelian type

Proof of Theorem 3

Murre’s conjectures [17] were originally stated for smooth projective varieties. Here, we give
a statement for motives which contains the original statement of Murre for smooth projective
varieties.

Conjecture 2.1 (Murre [17]). Let M be a motive defined over a field k.

(A) M has a Chow–Künneth decomposition : M splits as a finite direct sum
⊕

i∈Z
Mi, where

H∗(Mi) = Hi(M) for all i.
(B) CHl(Mi) = 0 for i < 2l.
(C) F ν CHl(M) :=

⊕
i≥2l+ν CHl(Mi) does not depend on the choice of a Chow–Künneth

decomposition.
(D) CHl(M2l)hom = 0 for all l.

There are several remarks to be made about the formulation of Murre’s conjectures given
above; see Remarks 2.2, 2.3 and 2.4. On the behavior of those conjectures with respect to
field extensions, we refer to Propositions 2.5 and 2.5. On the independence of conjectures (B)
and (D) with respect to the choice of a Chow–Künneth decomposition as in (A), we refer to
Proposition 2.7 for a partial answer. Finally, on links between conjectures (B) and (C), we refer
to Proposition 2.8.

Remark 2.2 (On conjecture (B)). Usually, conjecture (B) for varieties is stated in a stronger
form which takes the following form for motives: if M = (X, p, n) has a Chow–Künneth decom-
position M =

⊕
i∈Z

Mi, then CHl(Mi) = 0 for i < 2l and for i > l − n + dimX. However, a
combination of Murre’s conjectures with the Lefschetz standard conjecture for M implies the
strong form of conjecture (B). In particular, ifM = (X, p, n) is of abelian type, then it is known
that CHl(Mi) = 0 for i > l− n+dimX. Also, the formulation given in Conjecture 2.1 has the
advantage of not involving a variety X and an integer n such that M = (X, p, n).

Remark 2.3 (On conjecture (C)). Let G be the filtration on CHl(M) induced by a Chow–
Künneth decompositionM =

⊕
M ′

i . In (C), F ν CHl(M) and Gν CHl(M) are meant to coincide
as sub-vector spaces of CHl(M) (not to be merely isomorphic, as would be the case, for instance,
were M finite-dimensional).

Remark 2.4 (On conjecture (D)). First, for a motive N , the notation CHl(N)hom is unambigu-
ous: if N = (Y, q, n), then q∗

(
CHl−n(Y )hom

)
=

(
q∗ CHl−n(Y )

)
hom

. Indeed, the inclusion ⊆ is
obvious because the action of correspondences preserves homological equivalence of cycles. The
inclusion ⊇ follows from the fact that q is an idempotent.

Secondly, given an integer l, CHl(M2l)hom vanishes if and only if Ker
(
(p2l)∗ : CHl(M) →

CHl(M)
)
= CHl(M)hom. As such, our formulation really is equivalent to Murre’s original

formulation [17] of conjecture (D) for smooth projective varieties. To see this, recall that the
idempotent p2l has homology class the central projection on H2l(M) and, as such, acts as the
identity on H2l(M). Then note that, by functoriality of the cycle class map with respect to the
action of correspondences, we always have Ker

(
(p2l)∗ : CHl(M) → CHl(M)

)
⊆ CHl(M)hom. It

is obvious that Ker
(
(p2l)∗ : CHl(M) → CHl(M)

)
= CHl(M)hom implies that CHl(M2l)hom van-

ishes. Conversely, CHl(M2l)hom = 0 clearly implies that Ker
(
(p2l)∗ : CHl(M) → CHl(M)

)
⊇

CHl(M)hom.

Proposition 2.5. Let K/k be a field extension and let N be a motive over k. Assume that
N has a Chow–Künneth decomposition

⊕
i∈Z

Ni and that NK is endowed with the induced
Chow–Künneth decomposition

⊕
i∈Z

(Ni)K . Consider the following statements :

(1) N satisfies Murre’s conjecture (B) ;
(2) NK satisfies Murre’s conjecture (B) ;
(3) N satisfies Murre’s conjecture (D) ;
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(4) NK satisfies Murre’s conjecture (D).

Then (2) ⇒ (1) and (4) ⇒ (3).
Moreover, if k is a universal domain, then (2) ⇔ (1) and (4) ⇔ (3).

Proof. That (2) ⇒ (1) and (4) ⇒ (3) follows immediately from the fact that the base-change
map CHl(N) → CHl(NK) is injective for all l; see Lemma 1.2.

Assume now that k is a universal domain. Consider F ⊂ k a field of definition of N and
of its Chow–Künneth decomposition

⊕
i∈Z

Ni which is finitely generated. Let K/K be an
algebraic closure of K. By the above, it is enough to show that if N satisfies Murre’s conjecture
(B) or (D), then NK endowed with the induced Chow–Künneth decomposition

⊕
i∈Z

(Ni)K
satisfies Murre’s conjecture (B) or (D), respectively. Fix a field isomorphism K ∼= k which
restricts to the identity on F . Pulling back along that isomorphism, we get isomorphisms
CHl(Ni) ∼= CHl((Ni)K) and CHl(Ni)hom ∼= CHl((Ni)K)hom for all l and all i. This finishes the
proof of the proposition. �

Theorem 2.6 (K. Xu & Z. Xu [23]). Assume that k is algebraically closed. Let X be a smooth
projective variety over k and let C be a smooth projective curve over k with function field
K = k(C). Assume that X has a Chow–Künneth decomposition and that XK endowed with the
induced Chow–Künneth decomposition satisfies Murre’s conjectures (B) and (D). Then X × C
has a Chow–Künneth decomposition that satisfies (B).

Proof. Let’s consider a Chow–Künneth component M = (X, p) of h(X) of weight j such that
MK satisfies Murre’s conjectures (B) and (D). Consider a closed point c of C. The idempotents
[C×{c}] and [{c}×C] in End(h(C)) induce a Chow–Künneth decomposition h(C) = 1⊕h1(C)⊕
1(1), where h1(C) = (C, π1) and π1 := ∆C − [C × {c}]− [{c} × C]. It is clear that M ⊗ 1 and
M ⊗1(1) satisfy (B). The motive M ⊗ h1(C) = (X ×C, p×π1) has weight j+1 and, therefore,
we only have to prove that CHl(M ⊗ h1(C)) = 0 for j +1 < 2l (and for j +1 > d+ l+1, if one
cares about the stronger form of (B); see Remark 2.2). In other words, we have to show that
p× π1 acts trivially on CHl(X × C) for j + 1 < 2l (and for j + 1 > d+ l + 1).

Let γ ∈ CHl(X × C). Since π1 acts trivially on [C] ∈ CH1(C), we see that p × π1 acts
trivially on cycles of the form α× [C] where α ∈ CHl−1(X). Because

γ = (γ − γ|X×c × [C]) + γ|X×c × [C],

we may assume that γ|X×c = 0. It is then enough to show that p×∆C acts trivially on cycles
γ ∈ CHl(X × C) such that γ|X×c = 0 for j + 1 < 2l (and for j + 1 > d+ l + 1).

Let η be the generic point of C. The cycle γ|X×η ∈ CHl−1(XK) is then algebraically
equivalent to the cycle γ|X×cK ∈ CHl−1(XK). The latter cycle is obtained as the image of
γ|X×c by the base-change map CHl(X) → CHl(XK) and is thus zero by assumption. Therefore,
γ|X×η ∈ CHl−1(XK) is algebraicallly trivial and hence homologically trivial. Since (XK , pK) is
assumed to satisfy Murre’s conjecture (D), it follows that (pK)∗(γ|X×η) = 0 if j = 2l − 2; and
since (XK , pK) is assumed to satisfy Murre’s conjecture (B), it follows that (pK)∗(γ|X×η) = 0
if j < 2l − 2 (and if j > d+ l − 1).

Now, we have the following key formula; see the proof of Lemma 3.4 or [23, Lemma 3.2(ii)].

(
(p×∆C)∗γ

)
|X×η = (pK)∗(γ|X×η).

We deduce, from the localization exact sequence (C(1) denotes the set of closed points of C)
⊕

d∈C(1)

CHl(X × d) −→ CHl(X × C) −→ CHl−1(X × η) −→ 0,

that, for j < 2l − 1 (and for j > d+ l − 1),

(p×∆C)∗γ =
∑

i

γi × [di]
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for finitely many cycles γi ∈ CHl(X) and for finitely many closed points di in C. The corre-
spondence p×∆C is an idempotent and this yields that

(p×∆C)∗γ =
∑

i

(p∗γi)× [di].

But then, because (X, p) is pure of weight j and because (XK , pK) satisfies Murre’s conjec-
ture (B), it follows from Proposition 2.5 that (X, p) satisfies Murre’s conjecture (B), i.e., that
p∗ CHl(X) = 0 for j < 2l (and for j > d + l). Thus, (p × ∆C)∗γ = 0 for j < 2l − 1 (and for
j > d+ l). �

Proposition 2.7. Let M be a motive over k which is finite-dimensional. Assume that M has
a Chow–Künneth decomposition that satisfies Murre’s conjecture (B) or (D). Then any other
Chow–Künneth decomposition of M satisfies Murre’s conjecture (B) or (D), respectively.
Moreover, if N is a direct summand of M , then N satisfies Murre’s conjecture (B) or (D),
respectively.

Proof. Let
⊕

i∈Z
Mi and

⊕
i∈Z

M ′
i be two Chow–Künneth decompositions forM . By definition

of a Chow–Künneth decomposition,Mi andM
′
i are isomorphic modulo homological equivalence

for all i. Therefore, by finite-dimensionality, Mi is isomorphic to M ′
i for all i. It follows

that CHl(Mi) = 0 if and only if CHl(M
′
i) = 0, and that CHl(M2l)hom = 0 if and only if

CHl(M
′
2l)hom = 0.

The Chow–Künneth decomposition
⊕

i∈Z
Mi of M defines a Künneth decomposition of M

modulo homological equivalence. The Künneth projectors are central in End(Mhom). Therefore,
as a direct summand of M , the motive N has a Künneth decomposition. Thus, by finite-
dimensionality, N has a Chow–Künneth decomposition

⊕
i∈Z

Ni, where each Ni is isomorphic
to a direct summand of Mi. This yields the proposition. �

The following proposition and its proof are very similar to [22, Proposition 3.1].

Proposition 2.8. Let M be a motive over k which has a Chow–Künneth decomposition. As-
sume that Murre’s conjecture (B) holds for M and for M ⊗M∨ with respect to any choice of
Chow–Künneth decomposition. Then M satisfies Murre’s conjecture (C).

Proof. Let
⊕

i∈Z
Mi and

⊕
i∈Z

M ′
i be two Chow–Künneth decompositions for M , and let F

and F ′ be the induced filtrations on CHl(M). We first show that Hom(Mi,M
′
j) = 0 for all

i > j. Indeed, (M ⊗M∨)k :=
⊕

k=j−iM
′
j ⊗M∨

i defines a Chow–Künneth decomposition for

M ⊗M∨. By assumption, CH0

(
(M ⊗M∨)k

)
= 0 for all k < 0. Therefore,

Hom(Mi,M
′
j) := CH0(M

′
j ⊗M∨

i ) = 0 for all i > j.

This implies that F is finer than F ′, i.e., that F ⊆ F ′. By symmetry, we conclude that
F = F ′. �

We are now in a position to prove the main result of this section.

Theorem 2.9. Let Ω be a universal domain that contains k. Murre’s conjecture (D) for
products of curves over Ω implies Murre’s conjectures (A), (B), (C) and (D) for motives over
k which are of abelian type.

Proof. Let M be a motive over k which is of abelian type. Then MΩ is isomorphic to a direct
summand of the motive of a product of smooth projective curves over Ω. We claim that, under
the assumption that products of curves over Ω satisfy Murre’s conjecture (D), products of curves
over Ω satisfy Murre’s conjectures (A)–(D). Indeed, a product of smooth projective curves over
Ω is finite-dimensional [15, Corollaries 4.4 & 5.11] and has a Chow–Künneth decomposition. By
(3) ⇒ (4) in Proposition 2.5, products of curves defined over the function field of a curve over Ω
satisfy Murre’s conjecture (D). It follows from Theorem 2.6, by a straightforward induction on
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the number of curves involved in the product, that Murre’s conjecture (B) holds for products
of curves over Ω.

Now, by Proposition 2.7, we find that MΩ satisfies Murre’s conjectures (A), (B) and (D). A
combination of Propositions 2.5 and 2.7 shows thatM satisfies Murre’s conjectures (A), (B) and
(D). Finally, the motive M ⊗M∨ is also of abelian type over k. Therefore Murre’s conjecture
(B) also holds forM⊗M∨. Thus, thanks to Proposition 2.8,M also satisfies Murre’s conjecture
(C). �

Remark 2.10. Let A be an abelian variety of dimension d over k. Let m be an integer and let
[m] : A → A denote the multiplication-by-m endomorphism of A. Then there exists a Chow–
Künneth decomposition {Πi} for A such that Πi ◦ Γ[m] = Γ[m] ◦ Πi = mi · Πi ∈ CHd(A × A);
see [8]. Moreover, there is a decomposition

CHl(A) =
⊕l+d

l CH
(i)
l (A), where CH

(i)
l (A) := {α ∈ CHl(A) | [m]∗α = miα, ∀m ∈ Z}.

Beauville [4] conjectured that CH
(i)
l (A) = 0 for i < 2l, and Murre checked [17, Lemma 2.5.1]

that
(Πi)∗ CHl(A) = CH

(i)
l (A).

We thus see, thanks to Proposition 2.7, that Beauville’s conjecture for A equipped with
the Chow–Künneth decomposition {Πi} above is equivalent to Murre’s conjecture (B) for A
equipped with any Chow–Künneth decomposition.

Beauville [4] also conjectured that the cycle class map CHl(A) → H2 dimA−2l(Ak,Qℓ) to

ℓ-adic cohomology is injective when restricted to CH
(2l)
l (A). The identity (Πi)∗ CHl(A) =

CH
(i)
l (A) shows that this conjecture is actually equivalent to Murre’s conjecture (D) for A.

Since motives of abelian type are spanned either by motives of curves or by motives of abelian
varieties, Proposition 2.7 implies that Murre’s conjecture (D) for products of curves is equivalent

to Beauville’s conjecture that CH
(2l)
l (A) → H2 dimA−2l(Ak,Qℓ) is injective for all l and all

abelian varieties.
We have thus showed that if CH

(2l)
l (AΩ) → H2 dimA−2l(AΩ,Qℓ) is injective for all l and all

abelian varieties A over k, then Beauville’s vanishing conjecture holds, i.e., CH
(i)
l (A) = 0 for

all abelian varieties A over k and all i < 2l.

3. Chow groups and motives of abelian type

Proof of Theorem 4

3.1. Chow groups and field extensions. The following lemma is certainly well known.

Lemma 3.1. Let f : M → N be a morphism of motives defined over k. Assume that, for
some field extension K/k, (fK)∗ : CH0(MK) → CH0(NK) is surjective or injective. Then
f∗ : CH0(M) → CH0(N) is surjective or injective, respectively.

Proof. Given a smooth projective variety X over k, by Lemma 1.2, the base-change map
CHl(X) → CHl(XK) is injective for all l. Besides, we have the following commutative dia-
gram

CH0(M) //

f∗

��

CH0(MK)

(fK)∗

��

CH0(N) // CH0(NK).

It is then straightforward to see that if (fK)∗ is injective, then f∗ is injective.
Let’s now assume that there is a field K/k such that (fK)∗ : CH0(MK) → CH0(NK) is

surjective. Let’s pick a cycle γ ∈ CH0(N) and let’s denote by γK its image in CH0(NK). There
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is a cycle β ∈ CH0(MK) such that (fK)∗β = γK . The cycle β is defined over a finitely generated
extension of k. We may therefore assume that K is finitely generated over k and that it is the
function field of a smooth quasi-projective variety Y over k. Let y be a closed point in Y and
let k(y)/k be its residue field. Such a point defines a regular embedding y →֒ Y , so that, for
any smooth projective variety X over k and for any integer l, there is a specialization map
σ : CHl(XK) → CHl(Xk(y)) which commutes with flat pull-backs, proper push-forwards and
intersection product; see [9, §§6 & 20.3]. Moreover, for a cycle α ∈ CHl(X), we have σ(αK) =
αk(y) because σ(αK) is obtained as the intersection of α × Y with X × k(y). It immediately
follows, after specialization, that (fk(y))∗σ(β) = αk(y). Now, for any smooth projective variety
X over k, the composite map CH0(X) → CH0(Xk(y)) → CH0(X) is multiplication by [k(y) : k];
see Lemma 1.2. These maps commute with the action of correspondences and this yields that
α lies in the image of f∗ : CH0(M) → CH0(N). �

The converse to Lemma 3.1 is not true in general. Consider for instance a smooth projective
curve C over a finite field F with positive genus, a closed point c on C, and the correspondence
f := [C × c] ∈ CH1(C × C) = End(h(C)). Then f∗ : CH0(C) → CH0(C) is an isomorphism
(both Chow groups are spanned by [c]). However, (fK)∗ : CH0(CK)hom → CH0(CK)hom is zero
for all field extensions K/F , and CH0(CK)hom 6= 0 for some extension K/F (for instance, a
finite extension of F (t) over which Pic0(CK) acquires a non-torsion rational point). Thus, for
such a choice of field K, (fK)∗ : CH0(CK) → CH0(CK) is neither injective, nor surjective.

Anyhow, when the base-field k is a universal domain, the converse does hold:

Lemma 3.2. Let f :M → N be a morphism of motives defined over Ω. Then, for all fields K
over Ω, f∗ : CH0(M) → CH0(N) is surjective or injective if and only if (fK)∗ : CH0(MK) →
CH0(NK) is surjective or injective, respectively.

Proof. Let us first prove the lemma for fields K that have same cardinality as Ω. Let k ⊂ Ω be
a field of definition of f : M → N which is finitely generated. Let K be an algebraic closure

of K and fix a field isomorphism σ : K
≃
→ Ω which restricts to the identity on k. We have the

following commutative diagram

CH0(M) //

f∗

��

CH0(MK) //

(fK)∗

��

CH0(MK)

(fK)∗

��

CH0(N) // CH0(NK) // CH0(NK)

where the horizontal arrows are induced by base-change and are therefore injective by Lemma
1.2. We note, by pulling back along σ or σ−1, that f∗ is surjective or injective if and only if
(fK)∗ is surjective or injective, respectively. The lemma then follows from Lemma 3.1.

Now, assume that K/Ω is any field extension and that f∗ is surjective or injective, respec-
tively. Let α be a cycle in CH∗(NK) and let β be a cycle in Ker (fK)∗. These cycles are defined
over a subfield L of K which is finitely generated over Ω. By the above, (fL)∗ is surjective
or injective, respectively. It is then straightforward to see that α ∈ Im (fK)∗ and that β = 0.
Thus, (fK)∗ is surjective or injective, respectively. �

3.2. A refinement of a theorem of Bloch and Srinivas. In order to prove the key Lemma
3.10, we need a slight refinement of the decomposition of the diagonal argument of Bloch and
Srinivas which appears in [5]. This is embodied in Proposition 3.5.

First we prove a lemma which seems to be known as Lieberman’s lemma and which is quoted
in [2, 3.1.4] and [18, 1.10] without proof. Let X, X ′, Y and Y ′ be smooth projective varieties
over a field k. Let a ∈ CHp(X

′×X), b ∈ CHq(Y ×Y ′) and γ ∈ CHr(X×Y ) be correspondences.
Let’s write (ta, b) := τ∗(

ta × b), where τ : X × X ′ × Y × Y ′ → X × Y × X ′ × Y ′ is the map
permuting the two middle factors.
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Lemma 3.3. We have the formula

(ta, b)∗γ = b ◦ γ ◦ a ∈ CHp+q+r−dimX−dimY (X
′ × Y ′).

Proof. The lemma is proved in [9, 16.1.1] in the case when a and b are either graphs of morphisms
or the transpose thereof. We reduce to this case by showing that every correspondence is the
sum of the composite of graphs of morphisms and their transpose.

If X1, X2, X3 are varieties, let’s write, for i ∈ {1, 2}, pX1X2

Xi
for the projection X1×X2 → Xi;

let’s also write, for i 6= j ∈ {1, 2, 3}, pX1X2X3

XiXj
for the projection X1 ×X2 ×X3 → Xi ×Xj .

Let’s consider the case X = X ′ and b = [W ], where W is an irreducible subvariety of Y ×Y ′

of dimension q. We are going to prove that b is the composite of the graph of a morphism with
the transpose of the graph of another morphism. For this purpose, let’s consider an alteration

σ : W̃ →W and let’s define the composite morphism h : W̃ →W →֒ Y × Y ′. Then, by proper

pushforward, we have deg(σ) · b = h∗[W̃ ]. Now,

deg(σ) · b ◦ γ = (pXY ′)∗
(
(p∗Y Y ′h∗[W̃ ]) ∩ p∗XY γ

)

= (pXY ′)∗
(
(idX × h)∗(p

XY ′

Y ′ )∗[W̃ ] ∩ p∗XY γ
)

= (pXY ′)∗
(
(idX × h)∗(idX × h)∗p∗XY γ

)

= (idX × (pY Y ′

Y ′ ◦ h))∗(idX × (pY Y ′

Y ◦ h))∗γ
= (∆X ,ΓpY Y ′

Y ′
◦h)∗(∆X ,

tΓpY Y ′

Y
◦h)∗γ

= ΓpY Y ′

Y ′
◦h ◦ tΓpY Y ′

Y
◦h ◦ γ.

Here, we have omitted the superscript “XY Y ′”. The first equality is by definition of the
composition law for correspondences. The second equality follows from the fibre square

X ×W

pXW
W

��

idX×h
// X × Y × Y ′

pY Y ′

��

W
h

// Y × Y ′.

The third equality follows from the projection formula. The fourth equality follows from the
equalities pXY ◦ (idX × h) = idX × (pY Y ′

Y ◦ h) and pXY ′ ◦ (idX × h) = idX × (pY Y ′

Y ′ ◦ h). The
fifth equality is [9, 16.1.2.(c)]. Finally, the last equality follows from [9, 16.1.1].

This last equality holds for all smooth projective varieties X, all integers r and all corre-
spondences γ ∈ CHr(X × Y ). By Manin’s identity principle [2, 4.3.1], we get

deg(σ) · b = ΓpY Y ′

Y ′
◦h ◦ tΓpY Y ′

Y
◦h.

Thus, as claimed, every correspondence is the sum of the composite of graphs of morphisms
and their transpose. �

Lemma 3.4. Let X and Y be smooth projective varieties over a field k. Let Γ ∈ CHn(X × Y )
be a correspondence. Let ηX be the generic point of X and let [ηX ] ∈ CH0(Xk(X)) be the class
of ηX viewed as a rational point of Xk(X). Then, under the natural map CHn(X × Y ) →
CHn−dimX(k(X)× Y ), Γ is mapped to (Γk(X))∗[ηX ].

Proof. Let d := dimX. Since the map CHd(X × X) → CH0(k(X) × X) is obtained as the
direct limit, ranging over the open subsets U of X, of the flat pullback maps CHd(X ×X) →
CH0(U ×X), we see that [∆X ] ∈ CHd(X ×X) is mapped to [ηX ] ∈ CH0(k(X)×X). Besides,
by Lemma 3.3, (∆X ,Γ)∗∆X = Γ ◦∆X = Γ. The lemma then follows by commutativity, for all
integer r, of the diagram
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CHr(X ×X)

(∆X ,Γ)∗

��

// CHr−d(k(X)×X)

(Γk(X))∗

��

// 0

CHn+r−d(X × Y ) // CHn+r−2d(k(X)× Y ) // 0.

Let us prove commutativity of the diagram. It is obtained as the direct limit over the open
inclusions jU : U →֒ X of the diagrams

CHr(X ×X)

(∆X ,Γ)∗

��

(tΓjU
,∆X)∗

// CHr(U ×X)

(∆U ,Γ)∗

��

CHn+r−d(X × Y )
(tΓjU

,∆Y )∗
// CHn+r−d(U × Y ).

The action of (∆U ,Γ) on CHr(U×X) is well-defined because (∆U ,Γ) has a representative whose
support is proper over U × Y , cf. [9, Remark 16.1]. These diagrams commute for all U for the
following reason. Let U , V and W be nonsingular open varieties and let α ∈ CHi(U ×V ) (resp.
β ∈ CHj(V ×W )) be a correspondence which has a representative which is proper over U and
V (resp. V and W ). Then, by loc. cit. , it is possible to define the composite β ◦α and to show
as in [9, Proposition 16.1.2(a)] that (β ◦ α)∗ = β∗ ◦ α∗ on cycles. We may now conclude that
the diagram is commutative by checking that (∆U ,Γ) ◦ (

tΓjU ,∆X) = (tΓjU ,∆Y ) ◦ (∆X ,Γ) =
(tΓjU ,Γ). �

Proposition 3.5. Let M = (X, p) and N = (Y, q, n) be two motives over a field k and let
ϕ : N →M be a morphism. Suppose that (ϕk(X))∗ : CH0(Nk(X)) → CH0(Mk(X)) is surjective.
Then there exist a morphism Γ1 :M → N , a smooth projective variety Z of dimension dimX−1
over k and a morphism Γ2 :M →M that factors through the motive (Z,∆Z , 1) such that

p = ϕ ◦ Γ1 + Γ2.

Proof. As in the proof of Lemma 3.4, we have the following commutative diagram whose rows
are exact by localization.

CHd−n(X × Y )

(∆X ,ϕ)∗

��

// CH−n(k(X)× Y )

(ϕk(X))∗

��

// 0

CHd(X ×X) // CH0(k(X)×X) // 0.

Let ηX be the generic point of X and view it as a rational point of k(X) × X over k(X).
Then p ∈ CHd(X × X) maps to (pk(X))∗[ηX ] ∈ CH0(k(X) × X) by Lemma 3.4. Because
(ϕk(X))∗ : CH0(Nk(X)) → CH0(Mk(X)) is surjective, there exists y ∈ CH−n(k(X) × Y ) such
that (ϕk(X))∗y = (pk(X))∗[ηX ]. Let α be a lift of y in CHd−n(X×Y ). By commutativity of the
diagram, we have that Γ2 := p− (∆X , ϕ)∗α maps to zero in CH0(k(X)×X). Therefore, by the
localization exact sequence for Chow groups, Γ2 is supported on D×X for some codimension-
one closed subscheme D of X, i.e., there is a β ∈ CHd(D × X) that maps to Γ2. Let’s write
ι : D →֒ X for the inclusion map. Consider then σ : Z → D an alteration of D, that is, σ is
a generically finite morphism with Z smooth. Such a morphism exists for any variety D over
k by de Jong’s alteration theorem. Using the alteration σ : Z → D, we see that there is a
cycle γ ∈ CHd(Z ×X) that maps to Γ2 under the natural map CHd(Z ×X) → CHd(X ×X).
By Lemma 3.3, we then have Γ2 = ((ι ◦ σ) × idX)∗γ = Γι◦σ ◦ γ, so that Γ2 factors through
(Z,∆Z , 1). By Lemma 3.3 again, we have (∆X , ϕ)∗α = ϕ ◦ α, so that if we set Γ1 := q ◦ α ◦ p,
then we have p = ϕ ◦ Γ1 + Γ2. �
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3.3. Three lemmas. The following three lemmas are the building blocks to the proof of The-
orem 3.11 which is the main theorem of Section 3.

Given a motive M , we denote M its reduction modulo numerical equivalence. Recall the
following. Let f : N → M be a morphism of motives and let f : N → M be its reduction
modulo numerical equivalence. If N is finite-dimensional and if f has a left-inverse, then f has a
left-inverse. Indeed, consider a morphism h :M → N such that h◦f = idN . By [15, Proposition
7.5], h ◦ f − idN ∈ End(N) is nilpotent. It is then clear that f has a left-inverse. A similar
statement holds if M is finite-dimensional and if “left-inverse” is replaced with “right-inverse”.

Lemma 3.6. Let f : N → M be a morphism of motives defined over a field k. Assume that
N is finite-dimensional in the sense of Definition 1.1. Then M splits as M1 ⊕M2, where the
induced morphism N → M1 has a right-inverse and where the induced morphism N → M2 is
numerically trivial.

Proof. The morphism f : N → M reduces modulo numerical equivalence to a morphism f :
N → M . By Jannsen’s semi-simplicity Theorem [13], N admits a splitting N1 ⊕ N2 and M

admits a splitting Im f ⊕M
′
such that f induces an isomorphism N1 → Im f and such that

N2 → M and N → M
′
are zero. By finite-dimensionality of N , N1 lifts to a direct summand

N1 of N . Let s : N1 → M be the restriction of f to N1 and let r : M → N1 be a left-inverse
to s : N1 → M . By finite-dimensionality of N1, we find a morphism r : M → N1 which is a
left-inverse to s : N1 → M . The idempotent s ◦ r : M → M thus defines a direct summand
M1 of M which is isomorphic to N1 and it is clear that the induced morphism N →M1 has a
right-inverse. We can therefore write M = M1 ⊕M2, where M2 is defined by the idempotent
idM − s ◦ r. That the induced morphism N →M2 is numerically trivial follows from the facts
that f is zero on N1 and that r ◦ s = idN1

. �

For convenience, for a motive M , when we say that there exist a smooth projective variety
Z of dimension at most a negative integer over k and an idempotent q ∈ End(h(Z)) such that
M ∼= (Z, q, l), we mean that M = 0.

Lemma 3.7. Let M = (X, p, n) be a motive over k and let l be an integer greater than n such
that CHi(MΩ) = 0 for all i < l. Then there exist a smooth projective variety Z of dimension
at most dimX − l + n over k and an idempotent q ∈ End(h(Z)) such that M ∼= (Z, q, l).

Proof. This is due to Kahn–Sujatha [14]. Let’s however give a proof. Clearly, we may assume
n = 0. Let’s proceed by induction on l. If l ≤ 0, there is nothing to prove. Assume that
CH0(MΩ) = 0 and hence CH0(Mk(X)) = 0. Then, by Proposition 3.5, there is a smooth
projective variety W of dimension dimX − 1 and an idempotent r such that M is isomorphic
to (Z, r, 1). Assume now that CHi(MΩ) = 0 for all i < l (and hence that CHi(Mk(X)) = 0 for
all i < l) and that there is a smooth projective variety Y of dimension dimX − l + 1 and an
idempotent qY such thatM is isomorphic to (Y, qY , l−1). The motive (Y, qY , l−1) is such that
CH0((Y, qY )Ω) = 0 and hence CH0((Y, qY )k(Y )) = 0. The case l = 1 has been settled above,
and we may thus conclude to the existence of a smooth projective variety Z of dimension at
most dimX − l and of an idempotent q such that M ∼= (Z, q, l). �

Remark 3.8. Lemma 3.7 gives a necessary and sufficient condition for a motive M over k to
be effective, namely that CHl(MΩ) = 0 for all l < 0. Indeed, after choosing an embedding
k(X) →֒ Ω, we see that CHl(MΩ) = 0 for all l < 0 implies that CHl(Mk(X)) = 0 for all l < 0.
It then follows from Lemma 3.7 that M is effective. Conversely, if M is effective, then MΩ is
also effective. It is then clear that CHl(MΩ) = 0 for all l < 0.

Remark 3.9. Further to Remark 3.8, Lemma 3.7 gives a necessary and sufficient condition for
a motive M over k to be isomorphic to a direct summand of a twisted motive of a variety of
dimension at most d. Given a motive M over k, there exist a smooth projective variety X
of dimension at most d and an integer l such that M is isomorphic to a direct summand of



REMARKS ON MOTIVES OF ABELIAN TYPE 15

h(X)(l) if and only if there exist integers l and l′ with −l − l′ = d such that CHi(MΩ) = 0
for all i < l and CHj(M

∨
Ω ) = 0 for all j < l′. The condition is indeed clearly sufficient

and it is necessary by the following. That CHi(MΩ) = 0 for all i < l implies that M is
isomorphic to a motive of the form (Y, q, l) for some smooth projective variety Y over k. That
CHj(M

∨
Ω ) = CHj+l+dimY (YΩ, qΩ) = 0 for all j < l′ implies thatM∨ is isomorphic to a motive of

the form (X, p, l+ l′+dimY ) for some smooth projective variety X of dimension at most −l− l′

over k and some idempotent p ∈ End(h(X)). Dualizing this isomorphism gives M ∼= (X, tp, l).

Lemma 3.10. Let f : N →M be a morphism of motives defined over a field k withM = (X, p).
Assume that f is numerically trivial and that N is finite-dimensional in the sense of Definition
1.1. If (fk(X))∗ : CH0(Nk(X)) → CH0(Mk(X)) is surjective, then CH0(MK) = 0 for all field
extensions K/k.

Proof. By Proposition 3.5, we get the existence of Γ1 ∈ Hom(M,N), and of Γ2 ∈ End(h(X))
which factors through (Z,∆Z , 1) for some variety Z, such that p = γ ◦Γ1 +Γ2. The arguments
below work equally well after base change to K and, without loss of generality, we therefore
assume K = k. The action of Γ2 on CH0(X) factors through CH0(Z,∆Z , 1) = CH−1(Z) = 0,
so that Γ2 acts trivially on CH0(X). Therefore, p∗x = (γ ◦ Γ1)∗x for all x ∈ CH0(X). Since p
is an idempotent, we also get p∗x = (γ ◦ Γ1)

◦n
∗ x for all positive integers n and all x ∈ CH0(X).

By assumption, γ is numerically trivial. Hence, Γ1 ◦ γ ∈ End(N) is numerically trivial. Now,
N is finite-dimensional and [15, Proposition 7.5] yields that Γ1 ◦ γ is nilpotent. We have thus
proved that p∗x = 0 for all x ∈ CH0(X), i.e., that CH0(M) = 0. �

3.4. Proof of the main theorem. Let X be a smooth projective variety over k. Two 0-cycles
α and β on X are said to be albanese equivalent if α− β has degree zero and lies in the kernel
of the albanese map CH0(X) → Alb(X)(k)⊗Q. From now on, ∼ denotes an adequate equiv-
alence relation on algebraic cycles which is, when restricted to 0-cycles, coarser than albanese
equivalence on 0-cycles. For instance, ∼ could be homological equivalence, algebraic equiva-
lence, smash-nilpotent equivalence, Abel-Jacobi equivalence (when k = C) or any intersection
thereof. By Remark 2.4 applied to ∼ instead of homological equivalence, given a motive M , we
may consider cycles that are ∼ 0 on M and the notation CHi(M)∼ is unambiguous.

Theorem 3.11. Let f : N →M = (X, p, n) be a morphism of motives over k. Assume that

• there exists an integer l such that the induced maps (fΩ)∗ : CHi(NΩ)∼ → CHi(MΩ)∼
are surjective for all i < l;

• N is finite-dimensional.

Then M splits as Q⊕R(l), where

• Q is isomorphic to a direct summand of N ⊕
⊕l−1

i=n h(Ci)(i) for some curves
Cn, . . . , Cl−1;

• R is isomorphic to a direct summand of h(Z) for some smooth projective variety Z of
dimension at most dimX − l + n over k.

If, in addition M ∼= M∨(d) for some d (e.g. M = h(X) with d = dimX), then M splits as
Q′ ⊕R′(l), where Q′ is isomorphic to a direct summand of N ⊕N∨(d)⊕

⊕
i h(Ci)(i) for some

curves Ci, and where R′ is isomorphic to a direct summand of h(Z ′) for some smooth projective
variety Z ′ of dimension at most d− 2l over k.

Proof. Up to working with each irreducible component of X separately, we may assume that
X is irreducible. Up to replacing k with a field of definition of f : N → M which is finitely
generated, we may assume that k is finitely generated and that Ω is not only a universal
domain but also a universal domain over k. Let then k(X) be the function field of X and
pick an embedding k(X) ⊂ Ω which extends that of k. Let us write M = M1 ⊕ M2 as in
Lemma 3.6, with respect to the morphism f : N → M , so that M1 is isomorphic to a direct
summand of N and the composite morphism N →M →M2 is numerically trivial. This latter
morphism induces, after base-change to Ω, surjective maps CHi(NΩ)∼ → CHi((M2)Ω)∼ for all



16 CHARLES VIAL

i < l. Thus, up to replacing M with M2, we need only show, provided that f is numerically
trivial, that M splits as Q⊕R(l) as in the theorem with Q isomorphic to a direct summand of⊕l−1

i=n h(Ci)(i) for some curves Cn, . . . , Cl−1.
We proceed by induction on dimX. If l ≤ n, there is nothing to prove. Up to twisting, we

can assume that n = 0, and that l > 0. We thus have a surjection CH0(NΩ)∼ → CH0(MΩ)∼ =
CH0(XΩ, pΩ)∼. By Bertini, let ι : C → X be a smooth linear section of dimension 1 of
X. By the Lefschetz hyperplane theorem, the induced map AlbC → AlbX is surjective. By
functoriality of the albanese map, we find that h := f ⊕ g : N ⊕ h(C) →M induces a surjective
map (fΩ ⊕ gΩ)∗ : CH0(NΩ ⊕ h(CΩ)) → CH0(MΩ), where g := p ◦ Γι : h(C) → M . Lemma 3.1
then implies that (hk(X))∗ : CH0(Nk(X) ⊕ h(Ck(X))) → CH0(Mk(X)) is surjective.

Let us now write M = M ′ ⊕ M ′′ as in Lemma 3.6, with respect to the morphism g :
h(C) →M , so thatM ′ is isomorphic to a direct summand of h(C) and the composite morphism
f ⊕ g : N ⊕ h(C) →M →M ′′ is numerically trivial. This latter morphism induces, after base-
change to k(X), a surjective map CH0(Nk(X)⊕h(Ck(X))) → CH0(M

′′
k(X)). Lemma 3.10 implies

that CH0(M
′′
k(X)) = 0. We then deduce, thanks to Lemma 3.7, that there exist a smooth

projective variety Z of dimension at most dimX − 1 over k and an idempotent q ∈ End(h(Z))
such that M ′′ ∼= (Z, q, 1). Now the motive (Z, q) is such that there is a numerically trivial
morphism N(−1) → (Z, q) inducing surjective maps (fΩ)∗ : CHi(N(−1)Ω)∼ → CHi((Z, q)Ω)∼
for all i < l − 1. We can thus conclude by the induction hypothesis that M ′′ = (Z, q, 1)

splits as P ⊕ R(l), where P is isomorphic to a direct summand of
⊕l−1

i=1 h(Ci)(i) for some
curves C1, . . . , Cl−1 and where R is isomorphic to a direct summand of the motive of a smooth
projective variety of dimension at most dimX − l.

Assume now that there is an isomorphismM ∼=M∨(d). LetM = Q⊕R(l) be a decomposition
as in the first part of the theorem with R = (Z, r). The isomorphism M ∼= M∨(d) gives a
morphism N →M ∼=M∨(d) → R∨(d) ∼= (Z, tr, d− l−dimZ) which satisfies the assumptions of
the first part of the theorem. Thus, there exist a direct summand S of N⊕

⊕
j h(Dj)(j) for some

curvesDj , a smooth projective variety Z ′ of dimension at most dimZ−l+(d−l−dimZ) = d−2l
over k and an idempotent q ∈ End(h(Z ′)) such that the motive R∨(d) splits as S ⊕ (Z ′, q, l).
Let us then define Q′ := Q ⊕ S∨(d). This is a direct summand of N ⊕ N∨(d) ⊕ h(Ci)(i) for
some curves Ci and M is isomorphic to Q′ ⊕ (Z ′, tq, l) with dimZ ′ ≤ d− 2l. �

Proof of Theorems 4 and 5. If M is of abelian type over Ω, then a twist of M is isomorphic to
a direct summand of the motive of a product of curves

∏
Ci. Therefore, clearly, CH∗(M)∼ is

spanned by CH∗

(∏
Ci

)
∼
for any adequate equivalence relation. Conversely, assume that there

is a finite-dimensional motive N over Ω (e.g. the motive of a product of curves Ci over Ω) and a
correspondence f : N → M such that f∗ : CH∗(N)∼ → CH∗(M)∼ is surjective, then Theorem
3.11 shows that M is isomorphic to a direct summand of N ⊕

⊕
j h(Dj)(j) for some curves Dj ,

so that if N is the motive of a product of curves then M is of abelian type. As for the proof
of Theorem 5, let X be a smooth projective variety of dimension d = 2n or 2n+ 1 over Ω and
let f : N → h(X) be a morphism inducing surjections (fΩ)∗ : CHi(NΩ)∼ → CHi(XΩ)∼ for all
i ≤ n− 1. Then, since h(X) ∼= h(X)∨(d), by Theorem 3.11 h(X) splits as Q⊕R(n− 1), where
Q is a direct summand of N ⊕ N∨(d) and where R is a direct summand of the motive of a
variety of dimension at most one. In particular, if N is of abelian type, then h(X) is of abelian
type. �

Proof of Theorem 6. We actually prove the following more general statement. Let X be a
smooth projective variety of dimension 2n − 1 or 2n over k and let f : N → h(X) be a
morphism inducing surjective maps (fΩ)∗ : CHi(NΩ)∼ → CHi(XΩ)∼ for all i ≤ n− 2. Assume
that N has a Künneth decomposition and is finite-dimensional. Then X has a Chow–Künneth
decomposition. Indeed, by Theorem 3.11, h(X) splits as a direct sum Q ⊕ R(n − 2), where
Q is the direct summand of N ⊕ N∨(d), a motive that is finite-dimensional and satisfies the
Künneth standard conjecture, and where M2 is the direct summand of the motive of a curve or
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surface depending on the parity of dimX. The motive Q has a Chow–Künneth decomposition
because it is finite-dimensional and has a Künneth decomposition (see the proof of Theorem
1.8). The motive R(n− 2) has a Chow–Künneth decomposition by [20, Theorem 3.5]. �

3.5. Applications to Chow–Künneth decompositions. As a straightforward consequence
of Theorem 3.11, we deduce finite-dimensionality of the motive of certain 3-folds and the ex-
istence of Chow–Künneth decomposition of certain 3- and 4-folds. Combined with results of
[22], we also check the validity of some of Murre’s conjectures in those cases. The most general
statement is the following.

Theorem 3.12. Let X be a smooth projective variety over a field k. Assume that there exist
a smooth projective variety Y whose motive is of abelian type, as well as a correspondence
Γ ∈ CHdimY (Y × X) such that the induced map (ΓΩ)∗ : CH0(YΩ) → CH0(XΩ) is surjective.
Then,

• if dimX ≤ 4, X has a Chow–Künneth decomposition which satisfies Murre’s conjecture (B);
• if dimX ≤ 4 and dimY ≤ 3, X satisfies Murre’s conjecture (D);
• if dimX ≤ 3, X is finite-dimensional;
• if dimX ≤ 3 and dimY ≤ 2, X satisfies Murre’s conjecture (C).

Proof. By Theorem 3.11, there is a decomposition h(X) = Q⊕R(1), where Q is isomorphic to
a direct summand of h(Y ) ⊕ h(Y )(dimX − dimY ) and where R(1) is isomorphic to a direct
summand of h(Z)(1) for some variety Z of dimension at most two. By assumption h(Y ) is of
abelian type, so that Q is also of abelian type and hence has a Chow–Künneth decomposition.
The motive R(1) has a Chow–Künneth decomposition which satisfies Murre’s conjectures (B)
and (D) by [20, Theorem 3.5]. HenceX has a Chow–Künneth decomposition. It only remains to
show that a motive P which is of abelian type and which is isomorphic to the direct summand
of the motive of a variety of dimension d, satisfies Murre’s conjecture (B) if d ≤ 4, satisfies
Murre’s conjecture (D) if d ≤ 3, and satisfies Murre’s conjecture (C) if d ≤ 2. This is contained,
respectively, in Theorem 4.5, Theorem 4.8 and Proposition 3.1 of [22]. �

Let X be a smooth projective variety over k. Assume that there exist smooth projective
varieties X0, . . . , XN−1, XN = X such that, for all n ≤ N , Xn and Xn−1 satisfy one of the
following properties.

(1) There is a dominant rational map ϕn : Xn−1 99K Xn;
(2) There is a dominant morphism ψn : Xn → Xn−1 whose generic fiber has trivial Chow

group of zero-cycles after base-change to a universal domain.

Proposition 3.13. Let X be as above. Then there is a correspondence Γ ∈ CHdimX(X0 ×X)
such that (ΓΩ)∗ : CH0((X0)Ω) → CH0(XΩ) is surjective.

Proof. Let Y and Z be two smooth projective varieties over k. On the one hand, a dominant
rational map ϕ : Y 99K Z induces a surjection ϕ∗ : CH0(Y ) → CH0(Z). On the other hand,
given a dominant morphism ψ : Z → Y as in (2) and given an ample class h ∈ CH1(Z),
there is a surjection hdimZ−dimY ◦ ψ∗ : CH0(Y ) → CH0(Z). Here hdimZ−dimY denotes the
(dimZ−dimY )-fold intersection with h; see [20, Theorem 1.3]. This proves the proposition. �

An immediate consequence of Theorem 3.12 and Proposition 3.13 is the following theorem.

Theorem 3.14. Let X be as above and assume X0 is a product of curves. Then,

• if dimX ≤ 4, X has a Chow–Künneth decomposition which satisfies Murre’s conjecture (B);
• if dimX ≤ 3, X is finite-dimensional and satisfies Murre’s conjecture (D). �

Example 3.15. Theorem 3.14 notably applies to any smooth projective variety over k which is
rationally dominated by a product of curves. Thus a 3-fold rationally dominated by a product
of curves is finite-dimensional and a 4-fold rationally dominated by a product of curves has a
Chow–Künneth decomposition.
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Example 3.16. Theorem 3.14 also applies to a smooth projective complex variety X whose
tangent bundle TX is nef, that is if the line-bundle OTX

(1) on P(TX) is nef. Indeed, a theorem
of Demailly–Peternell–Schneider [7] says that there is an étale cover X ′ → X of X such that
the Albanese morphism X ′ → AlbX′ is a smooth morphism, whose fibres are smooth Fano
varieties. Smooth Fano varieties are rationally connected and it follows that the generic fibre
of X ′ → AlbX′ is rationally connected and hence has trivial Chow group after base-change to
a universal domain. Note that the case of a 3-fold with a nef tangent bundle was taken care of,
by a different method relying on a stronger classification result due to Campana–Peternell, in
[11].

3.6. Application to smash-nilpotent 1-cycles. R. Sebastian [19] proved that every 1-
dimensional cycle on a product of curves which is numerically trivial is smash-nilpotent. The-
orem 3.11 makes it possible to extend Sebastian’s result.

Theorem 3.17. Let Ci be smooth projective curves and let f : h(
∏

i Ci) → M be a morphism
of effective motives over k. Assume that (fΩ)∗ : CH0(

∏
i Ci,Ω) → CH0(MΩ) is surjective. Then

smash-nilpotence equivalence agrees with numerical equivalence on 1-cycles on M .

Proof. By Theorem 3.11, there is a splitting M ∼= Q ⊕ R(1), where Q is a direct summand
of h(

∏
i Ci) and where R is effective. Therefore, CH1(M)num is spanned via the action of

correspondences by CH1(
∏

i Ci)num ⊕ CH0(R)num. Numerically trivial cycles in CH0(R) are
clearly smash-nilpotent and, by Sebastian’s theorem, numerically trivial cycles in CH1(

∏
i Ci)

are smash-nilpotent. The theorem is thus proved. �

3.7. A splitting result without finite-dimensionality. Let f : N →M be a morphism of
motives over k such that (fΩ)∗ : CHi(NΩ) → CHi(MΩ) is surjective for all i and assume that
N is finite-dimensional. An immediate corollary to Theorem 3.11 (or rather its proof) is that
f has a right-inverse. In this paragraph, we show that, in the situation above, the assumption
that N be finite-dimensional can be dropped.

Theorem 3.18. Let f : N →M be a morphism of motives over k such that (fΩ)∗ : CH∗(NΩ) →
CH∗(MΩ) is surjective. Then f has a right-inverse.

Proof. Up to replacing k with a field of definition of f which is finitely generated, we may
assume that Ω is a universal domain over k. Let’s write M = (X, p, n) and N = (Y, q,m).
Let Z be an irreducible variety over k and let’s define, as in [10, proof of Lemma 1], an action
f ⊗ Z : CH∗(Y × Z) → CH∗(X × Z) by (f ⊗ Z)α := (pX,Z)∗(p

∗
Y,Zα ·pY,X

f). Here, pX,Y , pY,Z
and pX,Z are the natural projections, and the product “·pY,X

” is Fulton’s refined intersection
[9, §8] with respect to the projection pY,X : Y ×X × Z → Y ×X. By [9, Corollary 8.1.2], it
can be checked that, when Z is smooth (projective), we have (f ⊗ Z)α = (f, idZ)∗α.

We are going to prove by induction on dimZ that f ⊗ Z : CH∗(Y × Z) → CH∗(X × Z) has
same image as p ⊗ Z : CH∗(X × Z) → CH∗(X × Z). Let K be the function field of Z over k.
We have a diagram with exact rows

⊕
CH∗(Y ×D)

⊕
f⊗D

��

// CH∗(Y × Z)

f⊗Z

��

// CH∗(YK)

f⊗K

��

// 0

⊕
CH∗(X ×D) // CH∗(X × Z) // CH∗(XK) // 0.

The direct sums are taken over all closed irreducible codimension-1 subschemes of Z and the left
horizontal arrows are induced by the natural inclusions. Moreover, the diagram is commutative.
The left-hand square is commutative by the projection formula [9, Proposition 8.1.1.(c)] and
the right-hand square is commutative by [9, Theorem 6.4] and by [9, Proposition 8.1.1.(d)]
which is valid for “regular imbedding” replaced by “l.c.i morphism” thanks to [9, Proposition
6.6.(c)]. By assumption and by Lemma 3.1, for all α ∈ CH∗(XK), there is a β ∈ CH∗(YK) such
that (p⊗K)α = (f ⊗K)β. By induction, there is also, for all irreducible divisors D in Z and
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all γ ∈ CH∗(X ×D), a cycle δ ∈ CH∗(Y ×D) such that (p⊗D)γ = (f ⊗D)δ. Therefore, by a
simple diagram-chase and by commutativity of the similar diagram involving

⊕
p ⊗D, p ⊗ Z

and p⊗K, we see that the middle vertical map has image coinciding with the image of p⊗ Z.
Thus, (f × idZ)∗ : CH∗(N ⊗ h(Z)) → CH∗(M ⊗ h(Z)) is surjective for all smooth projective

varieties Z over k. By Kimura [15, Lemma 6.8], it follows that f has a right-inverse. �

3.8. Homological motives and splittings. Theorem 3.18 can be thought of as an analogue
modulo rational equivalence of Theorem 3.22 below which is concerned with motives modulo
homological equivalence. The arguments used in this section go back to André [1] and improve
slightly on the results of Arapura [3]. The difference with [3] is that we are able to ignore the
middle cohomology of X; see Proposition 3.19.

Recall [16] that, in characteristic zero, for a smooth projective variety, the standard con-
jectures reduce to the Lefschetz standard conjecture. Given a smooth projective variety X of
dimension d over k, we write Hi(X) for the Betti cohomology of X with rational coefficients
and we write Hi(X) for H2d−i(X).

Proposition 3.19. Assume that char k = 0. Let X and Y be smooth projective varieties over
k such that there exists a morphism f :

⊕
m,n h(Y )⊗n(m) → h(X) that induces a surjection

on Hi(X) for all i > dimX. Assume that Y satisfies the standard conjectures. Then X also
satisfies the standard conjectures.

Proof. If Y satisfies the standard conjectures, then so do all of its powers. For varieties sat-
isfying the standard conjectures, the Lefschetz involution ∗L on cohomology is induced by a
correspondence; see [1] and [16]. Let’s fix a polarization on Y and let’s endow Y n with the prod-
uct polarization. Let fm,n be the restriction of f to h(Y )⊗n(m) and, for i > dimX, consider
the composite map

ϕm,n : Hi(X)
f∗

m,n

−→ Hi−2m(Y n)
L

−→ Hi−2m(Y n)
∗L−→ Hi−2m(Y n)

(fm,n)∗
−→ Hi(X).

Here the map L is the Lefschetz isomorphism with respect to the polarization on Y n. It is
induced by a correspondence by assumption. Since Hi−2m(Y n) is polarized with respect to the
bilinear form 〈L−1−, ∗L−〉, we obtain that ϕm,n has same image as (fm,n)∗. Thus, there exists
h : h(X)(−d) →

⊕
m,n h(Y )⊗n(m) such that f ◦ h induces a surjective map Hi(X) → Hi(X).

It is then classical to deduce, thanks to the theorem of Cayley–Hamilton, that the inverse to
the Lefschetz isomorphism Hi(X) → Hi(X) is induced by a correspondence. Thus, X satisfies
the Lefschetz standard conjecture and hence the standard conjectures. �

Remark 3.20. In some cases, Proposition 3.19 can be slightly improved. Indeed, if Y is a 3-fold,
although Y might not be known to satisfy the Lefschetz standard conjecture, it is known that
the Lefschetz involution ∗L on H3(Y ) is algebraic. It is thus possible to prove the following
statement. Let X be a smooth projective variety of dimension d defined over a subfield of C

and let i > d. Assume that Hi(X) = Ñ⌊i/2⌋−1Hi(X). Here Ñ denotes the niveau filtration
defined in [22]. In other words assume that

• if i is odd, then there exist a threefold Yi and a correspondence Γi ∈ CH(i+3)/2(Yi × X)
such that (Γi)∗ : H3(Yi) → Hi(X) is surjective, and

• if i is even, then there exist a surface Zi and a correspondence Γi ∈ CH(i+2)/2(Zi × X)
such that (Γi)∗ : H2(Zi) → Hi(X) is surjective.

Then the inverse to the Lefschetz isomorphism Ld−i : Hi(X) → Hi(X) is induced by an
algebraic correspondence. �

A combination of Proposition 3.5 and Proposition 3.19 gives a criterion on CH0(X) for a
complex fourfold X to satisfy the Lefschetz standard conjecture.

Proposition 3.21. Let X be a smooth projective variety of dimension d ≤ 4 over C. Assume
that there exist a smooth projective variety Y which satisfies Grothendieck’s Lefschetz standard
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conjecture, as well as a correspondence Γ ∈ CHdimY (Y ×X) such that Γ∗ : CH0(Y ) → CH0(X)
is surjective. Then X satisfies the Lefschetz standard conjecture.

Proof. By Lemma 3.2 and Proposition 3.5, we get that

∆X = Γ ◦ Γ1 + Γ2 ∈ CHd(X ×X),

for some correspondence Γ1 ∈ CHd(X × Y ) and some correspondence Γ2 ∈ CHd(X ×X) that

factors as Γ2 = α ◦ β for some smooth projective variety Z and for some β ∈ CHd(X × Z) and
some α ∈ CHd(Z ×X). By looking at the action of ∆X on Hi(X), we see that

Hi(X) = Γ∗
1H

i(Y ) + β∗Hi−2(Z).

This settles the proposition thanks to Proposition 3.19. �

Theorem 3.22. Assume that char k = 0. Let X and Y be smooth projective varieties over
k such that there exists a morphism f :

⊕
m,n h(Y )⊗n(m) → h(X) that induces a surjection

on Hi(X) for all i. Assume that Y satisfies the standard conjectures. Then f has a right-
inverse modulo homological equivalence. If, moreover, h(X) is finite-dimensional, then f has a
right-inverse.

Proof. By Proposition 3.19, X satisfies the standard conjectures. By André [1, §4], the full,
thick and rigid sub-category of homological motives spanned by the motives of X and Y is semi-
simple. Therefore, f has a right-inverse modulo homological equivalence. The last statement
follows from Lemma 3.6. �

Proof of Theorem 8. This is a direct consequence of Theorem 3.22 because a motive of abelian
type is a direct factor of the motive of a product of curves and because a product of curves
satisfies the standard conjectures. �
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