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Abstract. We consider the initial value problem for nonlinear Schodinger equations, 

{ iatu + ~a2u = F(u, au, u, au), 
u(O,:z:)=uo(:z:), :z:ElR, 

(t,:z:) E JR.+ X JR., 

where a = arD = a I ax and F : C4 --+ c is a polynomial having neither constant nor 
linear terms. Without a smallness condition on the data uo, it is shown that (t) has a 
unique local solution in time if uo is in H 3 •0 n H 2 •1 , where Hm,s = {! E S' : il!llm,s = 
11(1 + :z:2)f (1- .t..)T !liz< oo}, m, s E JR. 

(t) 

1. Introduction. We consider the initial value problem for nonlinear 
Schrodinger equations, 

{ iatu + ~a2u = F( u, au, u, au)' 
u(O, x) = uo(x), x E JR., 

( t, X) E JR.+ X JR., 
(1.1) 

where at= ajat, a= ax= ajax, u is a complex valued function of (t, x)E JR.+ X JR., 
u is a complex conjugate of u, and F denotes a complex valued polynomial defined 
on C4 such that 

F(z) = F(zl, Zz, Zg, Z4) = L aaz", 
d::o;lal::o;p 
aezt 

(1.2) 

where we have used the standard notation for multi-indices. We assume that there 
exists aa0 i= 0 for some ao E zt with lao! = d, since, as we see below, the lowest 
degree d of the polynomial F, rather than the highest degree p, determines the 
character of the problem. The main results in this paper are the following. For 
notation, see below. 
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Theorem 1.1. Let F be as in (1.2) with d 2: 3. Then for any u0 E H 3•0 
1 there exists 

a unique solution u(·) of (1.1) defined in the interval [0, TL T = T(lluolls,o) > 0 
with T(B) ---+ oo as()---+ 0, satisfying 

(1.3) 

Theorem 1.2. Let F be as in (1.2) with d = 2. Then for any u0 E H 3•0nH2•1 , there 
exists a unique solution u(·) of (1.1) defined in the interval [0, TL T = T(lluolls,o + 
lluollz,l) > 0 with T(B) ---+ oo as()---+ 0, satisfying 

(1.4) 

In problem (1.1) the difficulty arises from the fact that the nonlinearity ofF 
involves the first derivatives au and au, which could cause the so-called loss of 
derivatives so long as we make direct use of the standard methods, such as the 
energy estimates, the space-time estimates, and so on. One way to avoid this 
difficulty is to impose some conditions on the form of the nonlinearity in order that 
the worst derivatives should be dropped after integration by parts [4, 8, 9]. Another 
way is to restrict the class of the initial data, or equivalently, the function space 
where we solve the initial value problem. This approach turned out to be successful 
in the spaces of analytic functions [1, 2, 5], where the loss of derivatives is absorbed 
by analyticity. 

Recently, essential progress was made by Kenig, Ponce and Vega [7] by pushing 
forward the linear estimates associated with the Schrodinger group {exp(~t~)}~oo 
and by introducing suitable function spaces where these estimates act naturally. In 
[7] the following theorems were proved. 

Theorem 4.1 ([7]). Let F be as in (1.2) with d 2: 3. Then for any uo E H~•0 such 
that lluollz 0 is sufficiently small, there exists a unique solution u(·) of (1.1) defined 

2' 

in the interval [0, TL T = T(lluoll~,o) > 0 with T(B)---+ oo as()---+ 0, satisfying 

Theorem 4.2 ([7]). LetF be as in (1.2) withd = 2. Then for anyu0 E H 1l•0 nH3•1 

such that lluoll¥,o + lluolls,l is sufficiently small, there exists a unique solution u(·) 
of (1.1) defined in the interval [0, TL T = T(lluoll.!j-,o + lluolls,l) > 0 with T(e) ---+ oo 
as () ---+ 0, satisfying 

Although no further restriction on the nonlinearity is made in these theorems, 
a smallness condition on the initial data is assumed. In fact, in [7] the following 
natural question is given. 

For "large" data uo does (1.1) have a local solution? 
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In the present paper we have removed the smallness assumption and our results are 
positive answers to this question in the one dimensional case. 

Our strategy of attacking the loss of derivatives is based on some observation of 
the structure of nonlinearity. By differentiating the equation with respect to x a few 
times, we easily observe the formation of the worst terms in the nonlinearity, which 
are classified into two categories: The terms which are handled by integration by 
parts and the terms which are not. Our conclusion in this paper is summarized as 
follows. 

(1) The terms of second category can be absorbed by a gauge transformation. 
(2) After the gauge transformation and a few times of differentiation of the 

equation (twice would suffice), the original equation is always transformed 
into a new system of equations where the usual energy estimates provide a 
sufficient method in order that the system proves to be closed with respect 
to differentiation. 

As a result, we need no further restriction on the nonlinearity and on the data 
concerning the smallness and regularity conditions. A similar technique has been 
used on the derivative nonlinear Schrodinger equation [3, 5, 6], although no simple 
modification of the gauge transformation of [3, 5, 6] is fit for the general nonlinearity 
of the form (1.1). 

We note finally that our method depends heavily on the fact that the space 
dimension is equal to one and the equation is single, while the method in [7] is 
applicable to higher dimensional cases as well as to the system. 

We now give notation and function spaces. 

Notation and function spaces. For simplicity 

Oz/3zJ)z1F(z) = Fjkl, Oz3 0z~cF(z) = Fjk, Oz3 F(z) = Fj. 

We let 
LP = {f : f is measurable on JR, IIi liP < oo }, 

where 

and 
II ill== ess sup{lf(x)l : x E JR} if p = oo, 

and we let 

Hm,s = {f E S': llfllm,s = 11(1 + X 2)!(1- ~)T fll2 < oo}, m, s E R 

For any interval I of lR and a Banach space B with the norm II·IIB, we let C(I; B) 
(resp. Cw(I; B)) be the space of continuous (resp. weakly continuous) functions 
from I to B, and we let IJ'(I; B) be the space consisting of strongly measurable 
B valued functions u defined on I such that llu(·)IIB E LP(I). Different positive 
constants will be denoted by the same letter C. If necessary, by Cj(* · · · *) we 
denote constants depending on the quantities appearing in parentheses. 

2. Proof of the Theorems. Let 

G±(u) = exp (/_~ ±F2dy) = exp (/_x= ±(F2(u, 8u,u, 8u))(t,y)dy). 
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F2 is written as 

F2 = a1u + a2u+ agau + a4au + P(u, au, u, au), 

where P is a polynomial having neither constant nor linear terms and aj (j = 
1, 2, 3, 4) are COnstants for d = 2 and aj = 0 ford= 3. If au, au-+ 0 as X-+ -oo, 
then 

G±(u) =exp ([: ±(a1u+a2u+P)dy±a3u±a4u). 

We let u = u1, au= u2 and u3 = G_a2u. Then (1.1) is written as 

iatul + ~a2u1 = F(u1,u2,u1,u2)· 

Differentiating (2.1) with respect to x , we obtain 

(2.1) 

We again differentiate (2.2) with respect to x and then multiply the resulting equa
tion by G _ to obtain 

iatu3 + ~a2ug = i8t(G_a2u) + ~a2 (G_a2u) (2.3) 

= (iatG-)(a2u) + ~(a2G_)G+u3 + G_a(i8t + ~a2)u2 + aG_ · aau 

= -jx iatF2dy · Ug + I.a2G_ · G+u3 + G_(Fnu~ + 2F13Ju2J2 + F33u22) 
-= 2 

+ 2F12u2u3 + 2F23u2u3 + 2Fg4G_G+uzug + 2F14G_G+u2u3 + F22G+u~ 

+ 2F24G+JugJ2 +F44G_G+2ug 2 +F1u3 + FgG_G+u3 

+ F4Q_Q+fJU3 + F4G_aG+u3, 

where the terms of the right hand side of the last equality involving aug cancel. 
Indeed, the third term of the right hand side of the second equality of (2.3) involves 
the term 

Q_a(F2G+u3) = (aF2)u3 + (Fz)2ug + F2aug, 

while the fourth term is equal to 

-F2G_a3u = -F28ug- (F2)2ua 

and therefore the contribution of those two terms is equal to ( 8F2)u3 . The fact 
that au3 does not appear in (2.3) will enable us to derive a crucial energy estimate 
below, namely (2.14). 

A direct calculation shows 

i8tFz = F12i8tu + Fzzi8t8u + F23i8tu + F24i8tau (2.4) 

= F1z(-I.a2u +F) +Fz2(-I.a3u + 8F) + F23(I.82u- F)+ F24(I.83u- BF) 
2 2 2 2 
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1 1 -
= -2F12G+us + 2F2sG+us + F12F 

- F2sF + F22(F1u2 + Fsu2 + F2G+us + F4G+us) 
----- 1 -

- F24(F1u2 + Fsu2 + F2G+us + F4G+us)- 28(F22G+us- F24G+us) 

1 2 2 -
+ 2(F122G+u2us + F2zzG+us + F22sG+u2us- F124G+u2us 

- -2 2) - F2s4G+u2us - F244G+ us , 

8G_ = -F2G-, 

82G_ = -8F2 · Q_ + F:jG_ 

= -(F12u2 + F2su2 + FnG+us + F24G+us)G_ + F:jG_, 
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(2.5) 

(2.6) 

F4G_G+8Ug = (/_~ 8(F4G_G+)dy )8Us (2.7) 

= ( /_~ ((F~4u2 + Fs4U2 + F24usG+ + F44u3G+ + F4(F2- F2))G_G+)dy) 8Ug 

if F4G_Q+--+ 0 as x--+ -oo. We apply (2.4)-(2.7) to (2.3} to obtain, if F4Q_Q+--+ 
0 and F22G+u3- F24G+us --+ 0 as x--+ -oo, 

i8tUs + ~82us = P1(u1,u2,us) (2.8) 

+ ([~ ((F14U2 +Fs4U2 +F24usG+ +F44usG+ +F4(F2- F2))G_G+)dy )8Us, 

where 

{ jx ( 1 1 _ _ } 
P1(u1, u2, us)=- -2F12G+us + 2F2sG+us + F12F- F2sF)dy us 

-oo (2.8') 

- { j_~ F22(F1u2 + Fsu2 + F2G+us + F4G+us)dy }us 

+ { L: F24(F1u2 + Fsu2 + F2G+ua + F4G+u3 )dy }us 

{ l x 1 . 2 2 
- -oo 2(F122G+u2us + F222G+us + F22sG+u2us 

- -2 2 } 1 -
- F124G+u2us- F2s4u2us- F244G+ us )dy us+ 2(F22G+us- F24G+us)us 

1 - 2 
+ 2{-(F12U2 + F2su2 + F22G+us + F24G+us) + F2 }us 

+ Q_(Fuu~ + 2F1s[u2[2 + Fssu22) + 2F12u2us + 2F2su2us 
- - . 2 - 2 + 2Fs4G_G+u2us + 2F14G_G+u2us + F22G+us + 2F24G+[us[ 
-2 2 - -

+ 2F44Q_Q+ us + F1us + FsG_G+us- F4F2G-G+us. 
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Proof of Theorem 1.1: It is now clear that the usual energy method is applicable 
to the system of equations (2.1), (2.2) and (2.8). Therefore we study the system of 
equations (2.1), (2.2) and (2.8) in the function space 

XT = { u = (u1, U2, u3) : Uj E 0([0, T]; L 2) n L00 (0, T; H 1•0), j = 1, 2, 3, 

3 

IJJUJII~x = L sup JJuj(t)JJi,o < oo }· 
j=1 O~t~T 

We let V = (v1,v2,v3) in XT(R) = {U EXT : JJJUJJixx ::::; R} and consider the 
linearized equations of (2.1), (2.2) and (2.8), 

1 
i8tU1 + 282u1 = F(v1,v2,v1,vz), (2.9) 

i8tuz + ~82uz = F1 · vz + F3 · vz + F2 · G+v3 + F4 · G+v3, (2.10) 

i8tu3 + ~82u3 = P1(v1, vz, v3) (2.11) 

+ (/_~ ((F14V2 + F34V2 + F24v3G+ + F44v3G+ + F4(F2- F2))G_G+)dy )EfU3, 

with the initial data 

where we have used abbreviations such as 

F1 = (8111 F)(v1,v2,v1,v2) 

on the right hand sides of (2.10) and (2.11). By Sobolev's inequality, we see that 
JJuj(O)JI1,o, j = 1, 2, 3 being small is equivalent to JJuoJI3,o being small. We define 
the mapping ~ by 

U=~V, 

where U = (u1,u2,u3) is the solution of (2.9)-(2.11). We show that~ has a fixed 
point in XT(R). By the usual energy estimates and Sobolev's inequality we have 

(2.12) 

! (JJuz(t)JJ~ + Jl8u1(t)JJ~)t::::; 0 · (Rd+R2P-1)(1+exp(O · (Rd-1 +RP-1))), (2.13) 

and 

:/Jiu3(t)JJ~ + JJ8u3(t)JJ"~)t::::; 0 · (Rd + R3P-2)(1 + exp(O · (Rd-1 + RP-1))) 

+ 0. (Rd-1 + R2P-2 )(1 + exp(O · (Rd-1 + RP-1)))(Jiu3(t)JJ~ + Jl8u3(t)JJ~)"~. 
(2.14) 
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To be specific, we derive the energy inequalities (2.12), (2.13), and (2.14) as follows. 
To derive (2.12), we multiply (2.13) by (1- 82)u1, integrate over space, and take 
the imaginary part. The left hand side gives ,ft(llu1(t)ll~ + ll8u1(t)ll~) and the right 
hand side is 

Im(F, (1- 82)u1) = Im(F, u1) + Im(8F, &fi:i:) 

by integration by parts. This leads to (2.12). By an analogous calculation with 
(2.10), we end up on the corresponding right hand side with terms such as 

Im(8(FzG+vs), f:JUZ) = Im(8Fz · G+vs, f:JUZ) 

+Im((Fz)2 G+vs), f:JUZ) + Im((FzG+8vs, f:JUZ), 

where 8F2 · Vs and Fz8vs are polynomials with powers d to p, and (F2 ) 2v3 is a 
polynomial with powers 2d- 1 to 2p- 1. This leads to (2.13). To derive (2.14), 
we multiply (2.11) by (1- 82)us, integrate over space and take the imaginary part. 
On the right hand side, there is a term involving G± and the derivatives of F 
multiplied by 8U3 · 82u3 . Since 8u3 · 82u3 = ~8(8(u3 ) 2 ), we integrate by parts to 
obtain (2.14). We should emphasize here that if 8us had been present in (2.11) as 
well, no integration by parts would have been possible, and the estimate would not 
have gone through. From (2.12) and (2.13) it follows that 

sup llu1(t)lll,o + sup llu2(t)lll,o 
o:=;t:=;T o::;t:=;T 

2 (2.15) 
~ L lluj(O)II1,D + C · (Rd + RP)(1 + exp(C · (Rd-1 + RP-1)))T. 

j=1 

Integrating the differential inequality (2.14), we have 

where 

sup llus(t)lll,o ~ [llus(O)IIl,o + C1(R)T] exp(C2(R)T), (2.16) 
o:=;t:=;T 

C1(R) = C · (Rd + R3P-2)(1 + exp(C · (Rd-1 + RP-1))), 

Cz(R) = C · (Rd-1 + R2P-2 )(1 + exp(C. (Rd-1 + RP-1))). 

From (2.15) and (2.16), 

3 

IIIUIIIxT:::; [2::: lluj(O)IIl,o + C1(R)T] exp(Cz(R)T). (2.17) 
j=1 

We put U(1) = <I>V(1) and U(2) = <I>VC2), where V(1), V(2) E XT(R) and U(1), U(2) 
are the solutions of (2.9)-(2.11) with the same initial data. Then in the same way 
as in the proof of (2.17), 

(2.18) 

where 
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YT = { U = (u1,u2,u3): Uj E C([O,T];L2 ), j = 1,2, 3, 

3 

IIIUIII}x = L sup llui(t)ll~ < oo }· 
j=l o::;t::;T 

We note that the closed ball XT(R) is complete under the metric on YT. By (2.17) 
and (2.18) we see that the mapping <I> leaves XT(R) invariant and is a contraction 
in the metric on YT provided that T is chosen suitably according to the size of R 
and that R is chosen according to the size of lluoll3,0 . By the contraction mapping 
principle, we see that there exists a unique local solution U = (u1 , u2 , u 3 ) of (2.1), 
(2.2) and (2.3) defined in the interval (0, T], T = T(lluoll3,o) > 0 with T(B)--+ oo as 
e --t 0, satisfying 

(2.19) 

and 
F4G_G+--+ 0, F22G+u3- F24G+u3--+ 0 as x--+ -oo. 

By uniqueness of solutions we conclude that 

(2.20) 

and therefore the unique solution of (1.1) is given by u 
-F2G_fJ2u + G_83u, we have 

u1. Since 8u3 = 

Hence by Sobolev's inequality, 

(2.21) 

From (2.19)-(2.21) it follows that 

u E L00 (0,T;H3•0 ). 

This and the integral equation associated with (1.1) imply 

u E C([O,T];H2•0), 

which when combined with the boundedness of u with values in H 3•0 implies the 
weak continuity of u with values in H 3 •0 . This completes the proof of Theorem 1.1. 

Proof of Theorem 1.2: Multiplying both sides of (2.1), (2.2) and (2.8) by x, we 
have 

j = 1,2, 3, (2.22) 

where x(i8t + ~82)uj, j = 1, 2, 3, are understood to be the right hand sides of 
(2.1), (2.2), (2.8) multiplied by x, respectively. In the same way as in the proof of 
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Theorem 1.1, we consider the system of equations (2.1), (2.2), (2.8) and (2.22) in 
the function space 

XT = {U = (ul,uz,ua): ui E C([O,T];L2) nL=(o,T;H1•0 nH0•1), j = 1,2,3, 
3 

IIIUIIIxT = ~ sup (llui(t)lll,o + llui(t)llo,l) < oo }· 
i=l og:s;T 

If we take into account i: (F12G+ua- FzaG+ua)dy = i: (F1z82u- F23 82u)dy 

= F12U2 - FzaUz - j_xoo ( 8F12 · Uz - 8Fza · uz)dy 

in (2.8') and 

2 

IIG±IIoo ~ exp ( o{llulllo,l + ~(lluilll,O + lluill(o)} ), 
j=l 

we see that in the same manner to the proof of Theorem 1.1 there exists a unique 
local solution U = (u1, Uz, ua) of (2.1), (2.2), (2.8) and (2.22) defined in the interval 
[0, T], T = T(llualla,o + lluollz,l) > 0 with T(B)-+ oo as()-+ 0, satisfying 

ui E O([O,T];~) nL=(o,T;H1•0 nH0•1), j = 1,2,3, (2.23) 

and 
F4G_Q+-+ 0, FzzG+ua- Fz4G+ua-+ 0 as x-+ -oo. 

The rest of the proof of Theorem 2 proceeds in the same way as that of Theorem 
1.1, and so we omit it. This completes the proof of Theorem 1.2. 
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