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Abstract. Kernel smoothers belong to the most popular nonparametric functional esti-
mates used for describing data structure. They can be applied to the fix design regression
model as well as to the random design regression model. The main idea of this paper is to
present a construction of the optimum kernel and optimum boundary kernel by means of
the Gegenbauer and Legendre polynomials.
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1. Introduction

Kernel estimations, as part of nonparametric functional estimates, provide a simple

tool for finding a structure in data. Special types of polynomial functions, kernels,

are used for an estimation of the resultant regression function. The quality of the

estimate heavily depends on the kernel used, especially on its smoothness. We can

show that smoother kernels produce nice-looking curves.

The aim of this paper is to present the construction of minimum variance kernels

and smooth kernels by means of the Legendre and Gegenbauer polynomials. We deal

with the problem of finding smooth optimum kernels which minimize the leading

terms of the asymptotic mean square error which is a suitable measure of the kernel

quality. The optimum boundary kernels, which can be used for the construction of

estimates at the edge points, represent a special type of optimum kernels.

*This work is part of the research project “The Czech Economy in the Process of Inte-
gration and Globalization, and the Development of Agricultural Sector and the Sector
of Service under the New Conditions of the Integrated European Market”.
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In this paper we are going to treat the problem of finding kernels minimizing

the asymptotic mean square error which are called optimum kernels and optimum

boundary kernels. Derivation of the optimum kernels formula as well as the opti-

mum boundary kernels formula is presented in graphical and numerical form. Using

optimum kernels in the case of kernel estimate construction usually gives a better—

nice looking—estimate. It can be measured by the asymptotic mean square error.

Optimum boundary kernels can be used in the case of edge effects, i.e., when the

kernel estimate has big bias at the edge points. Using these kernels it is possible to

remove edge effects. The proof of an identity important for the formula derivation

is also presented. At the end some illustrating charts of the simulation function,

showing the effect of using the chosen minimum variance kernel, optimum kernel

and optimum boundary kernel, will be attached.

2. Basic terms and definitions

First, the definitions of a kernel and a smooth kernel are recalled. Denote by

Cµ[−1, 1] the set of µ times continuously differentiable real valued functions on

[−1, 1]. Let ν, k be nonnegative even integers, 0 6 ν 6 k,K ∈ Lip[−1, 1], support(K)

= [−1, 1] and let K satisfy the moment conditions

(i) K(−1) = K(1) = 0

(ii)

∫ 1

−1

xjK(x) dx =











0, 0 < j < k,

1, j = 0,

βk 6= 0, j = k.

Then the function K is called a kernel of order (ν, k) and we write K ∈ Mν,k. The

smoothness of the kernel function will be quantified as follows.

Let us denote for any integer µ > 1

Mµ
ν,k = {K : K ∈ Mν,k ∩ Cµ[−1, 1]; K(j)(−1) = K(j)(1) = 0, j = 0, . . . , µ − 1}.

Then the kernels are called smooth kernels and we write K ∈ Mµ
ν,k. (For details and

practical applications see [4], [15], [10].)

Let us denote

Cα
n (x) =

n
∑

r=0

cα
n,rx

r and Pk(x) =

k
∑

i=0

pk
i xi.

Recall that the Gegenbauer polynomials Cα
n (x), α > −1/2, n > 1 are orthogonal on

[−1, 1] with respect to the weight function w(x) = (1 − x2)α−1/2 and

∫ 1

−1

(1 − x2)α−1/2Cα
n (x)Cα

m(x) dx =







0, m 6= n,

π21−2αΓ(n + 2α)

n!(α + n)(Γ(α))2
, α 6= 0, n = m.
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The Gegenbauer polynomials satisfy the recurrent relations

Cα
n+1(x) =

2(α + n)

n + 1
xCα

n (x) −
2α + n − 1

n + 1
Cα

n−1(x), n > 1,

Cα
0 (x) ≡ 1, Cα

1 (x) = 2αx,

Cα
n (x) =

1

2(α + n)

( d

dx
Cα

n+1(x) −
d

dx
Cα

n−1(x)
)

, n > 1,

Cα
n (−x) = (−1)nCα

n (x), x ∈ [−1, 1],

Cα
n (1) = (−1)nCα

n (−1) =
Γ(n + 2α)

n!Γ(2α)
,

(1 − x2)C
3/2
k (x) =

(k + 1)(k + 2)

2k + 3
(Pk(x) − Pk+1(x)),

where Pk is the Legendre polynomial of order k [14].

Horová [5] showed that

νcα
k,ν = 2

k−1
∑

r=ν−1

(α + r)cα
k,ν−1,

where ν, k ∈ N and (ν + k) is even, 0 6 ν 6 k − 2.

3. Optimum kernel construction

The kernel choice has a strong impact on statistical properties of the corresponding

estimates, since it affects the leading terms of the average mean square error. This

error depends on kernels by means of certain functionals. Granovsky, Müller and

Pfeifer [3] wrote that under some regularity conditions (including the kth order

differentiability of the estimated curve for a given k > 0) and after inserting the

asymptotically optimal smoothing parameters, the asymptotically leading term of

the average mean square error (AMSE) in the nonparametric regression analysis is

proportional to the functional T (K)2/(2k+1), where

T (K) =

(
∫ 1

−1

K2(x) dx

)k−ν ∣

∣

∣

∣

∫ 1

−1

xkK(x) dx

∣

∣

∣

∣

2ν+1

.

By minimizing T (K), such a suitable form of the kernel can be found that the value

of AMSE used as an estimate quality measure will be as small as possible.

The solution of the variational problem

minimum CK =

∫ 1

−1

K2(x) dx, K ∈ Mν,k,

is called the minimum variance kernel (see [2], [6]).
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In order to minimize the functional T (K) on the set Mν,k it was proposed in [1]

to impose on K an additional side condition, called the minimality of sign changes

on the kernel function:

K ∈ Nk−2 = {f ∈ L2 : f has exactly k − 2 sign changes on R}.

Now, we shall study the kernels of order (ν, k) with the support [−1, 1] optimal in

the following sense (see [9]):

(i) K ∈ Nk−2,

(ii) T (K) =
(∫ 1

−1
K2(x) dx

)k−ν ∣

∣

∫ 1

−1
xkK(x) dx

∣

∣

2ν+1
= Ck−ν

K |βk|
2ν+1 is minimum.

The optimal polynomials K are of order k with real roots in [−1, 1], including −1

and 1. The explicit formulas are given in terms of the Legendre polynomials

K(x) =
(−1)νν!

2

k
∑

r=ν

(2r + 1)pr
νPr(x) + βk

(2k + 1)

2
pk

kPk(x), x ∈ [−1, 1],

where

βk =

∫ 1

−1

xkK(x) dx =
(−1)ν+1ν!

(2k + 1)pk
k

k
∑

r=ν

(2r + 1)pr
ν .

Horová [5] proved that

d

dx
K(x) = K̃(x), x ∈ (−1, 1),

where K̃ ∈ Mν+1,k+1 is the minimum variance kernel (0 6 ν 6 k − 2, (ν + k) even).

Theorem. The functional T (K) is invariant with respect to the transformation

Hδ : L2 → L2, Hδ : K(·) → (δν+1)−1K(·/δ), i.e. the relation T (K) = T (Kδ) holds.

P r o o f. We prove the following functional equality

T (K) =

((
∫ 1

−1

K2(x) dx

)k−ν∣

∣

∣

∣

∫ 1

−1

xkK(x) dx

∣

∣

∣

∣

2ν+1)2/(2k+1)

,

T (Kδ) =

((
∫ 1

−1

1

δ2(ν+1)
K2

(x

δ

)

dx

)k−ν ∣

∣

∣

∣

∫ 1

−1

xk 1

δν+1
K

(x

δ

)

dx

∣

∣

∣

∣

2ν+1)2/(2k+1)

.

In both terms of the functional T (Kδ), the same substitution u = x/δ, x = uδ,

dx = δdu is used. Then, for the first term we have

(
∫ 1

−1

1

δ2(ν+1)
K2

(x

δ

)

dx

)k−ν

=

(
∫ 1/δ

−1/δ

δ

δ2(ν+1)
K2(u) du

)k−ν

=
1

δ(2ν+1)(k−ν)

(
∫ 1/δ

−1/δ

K2(u) du

)k−ν
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and for the second
∣

∣

∣

∣

∫ 1

−1

xk 1

δν+1
K

(x

δ

)

dx

∣

∣

∣

∣

2ν+1

=

∣

∣

∣

∣

∫ 1/δ

−1/δ

δ(uδ)k

δν+1
K(u) du

∣

∣

∣

∣

2ν+1

= |δk−ν |2ν+1

∣

∣

∣

∣

∫ 1/δ

−1/δ

ukK(u) du

∣

∣

∣

∣

2ν+1

.

This yields

T (Kδ)

=

(

1

δ(2ν+1)(k−ν)

(
∫ 1/δ

−1/δ

K2(u) du

)k−ν

|δk−ν |2ν+1

∣

∣

∣

∣

∫ 1/δ

−1/δ

ukK(u) du

∣

∣

∣

∣

2ν+1)2/(2k+1)

=

(

|δ(k−ν)|2ν+1

δ(2ν+1)(k−ν)

(
∫ 1/δ

−1/δ

K2(u) du

)k−ν ∣

∣

∣

∣

∫ 1/δ

−1/δ

ukK(u) du

∣

∣

∣

∣

2ν+1)2/(2k+1)

=

((
∫ 1/δ

−1/δ

K2(u) du

)k−ν∣

∣

∣

∣

∫ 1/δ

−1/δ

ukK(u) du

∣

∣

∣

∣

2ν+1)2/(2k+1)

.

Thus, the equality T (K) = T (Kδ) holds. �

The following table provides optimum kernels for some k and for ν = 0, 1 (for

ν = 2 see [12]). Selected graphs are given in Figs. 1–4.

ν = 0

k Kopt

2 − 3
4 (x2 − 1)

4 15
32 (x2 − 1)(7x2 − 3)

6 − 105
256 (x2 − 1)(33x4 − 30x2 + 5)

8 315
4096 (x2 − 1)(715x6 − 1001x4 + 385x2 − 35)

10 − 3465
65536 (x2 − 1)(4199x8 − 7956x6 + 4914x4 − 1092x2 + 63)

ν = 1

k Kopt

3 15
4 x(x2 − 1)

5 − 105
32 x(x2 − 1)(9x2 − 5)

7 315
256x(x2 − 1)(143x4 − 154x2 + 35)

9 − 3465
4096x(x2 − 1)(1105x6 − 1755x4 + 819x2 − 105)

11 45045
65536x(x2 − 1)(260015x8 − 14212x6 + 10098x4 − 2772x2 + 231)
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Figure 1. Optimum kernel of order (0, 2).
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Figure 2. Optimum kernel of order (0, 4).
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Figure 3. Optimum kernel of order (1, 3).
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Figure 4. Optimum kernel of order (1, 5).

4. Optimum kernels with asymmetric support

The following result of Horová [7] gives the explicit form of the left optimum

boundary kernel:

Kopt,L(x) = (−1)νν!2ν+1
(

1 −
(2x − qi + 1

qi + 1

)2)

(1)

×

k−1
∑

r=ν

C
3/2
r

(

2x−qi+1
qi+1

)

ar(qi + 1)

( r
∑

j=ν

cr
j

(1 − qi)
j−ν

(1 + qi)j

(

j

ν

))

,

where

(2) ar =

∫ 1

−1

(1 − x2)(C3/2
r (x))2 dx

and c
3/2
r is the coefficient of the polynomial C

3/2
r (x) =

r
∑

j=0

cr
jx

r. Further, ri, i =

1, . . . , 1
2 (k − ν) is the nonnegative root of the polynomial dν/dxνC

3/2
k−1(x) and qi =

(1 − ri)/(1 + ri), i = 1, . . . , 1
2 (k − ν). These kernels are polynomials of degree k + 1.
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The left optimum boundary kernel Kopt,L satisfies Kopt,L ∈ Sν,k,L, where

Sν,k,L =







































K ∈ C1[−1, q], support(K) = [−1, q], 0 < q < 1,

K(−1) = K(q) = 0,

∫ q

−1

xjK(x) dx =











0 0 6 j < k, j 6= ν,

(−1)νν! j = ν,

βk j = k.

The right optimum boundary kernel can be constructed in the same way, but with

the support [−q, 1]. For the left optimum boundary kernel deviation see [14].

Let us have a look at some formulas and figures for the left optimum boundary

kernel Kopt,L:

Left optimum boundary kernel

Kopt,L ∈ S0,4,L, support(K) = [−1, 0.2679]

Kopt,L(x) = 58.3549x5 + 85.4375x4 − 0.0332x3 − 32.7080x2−2.9910x + 2.6291

Kopt,L ∈ S0,6,L, support(K) = [−1, 0.1303]

Kopt,L(x) = 104(0.3107x7 + 0.9405x6 + 1.0040x5 + 0.4011x4

+7.1680 · 10−17x3 − 0.0290x2 − 0.0016x + 0.0005)

Kopt,L ∈ S0,6,L, support(K) = [−1, 0.4075]

Kopt,L(x) = −177.4043x7 − 237.8810x6 + 131.8714x5 + 241.9009x4

−6.9026 · 10−15x3 − 54.7696x2 − 2.0280x + 3.1887

Kopt,L ∈ S0,8,L, support(K) = [−1, 0.0779]

Kopt,L(x) = 105(1.0074x9 + 4.2709x8 + 7.3114x7 + 6.3922x6 + 2.9240x5

+0.5931x4 − 6.5125 · 10−16x3 − 0.0140x2 − 0.0005x + 0.0001)

Kopt,L ∈ S0,8,L, support(K) = [−1, 0.2290]

Kopt,L(x) = 104(−1.1042x9 − 3.6208x8 − 4.0740x7 − 1.3609x6 + 0.5880x5

+0.4191x4 + 6.5070 · 10−16x3 − 0.0291x2 − 0.0008x + 0.0006)

Kopt,L ∈ S0,8,L, support(K) = [−1, 0.5019]

Kopt,L(x) = 103(0.5923x9 + 0.6862x8 − 0.9995x7 − 1.3576x6 + 0.2463x5

+0.5957x4 + 2.6257 · 10−16x3 − 0.0906x2 − 0.0017x + 0.0038)

Kopt,L ∈ S1,5,L, support(K) = [−1, 0.3139]

Kopt,L(x) = 103(−1.0375x6 − 1.6271x5 − 6.0590 · 10−16x4 + 0.7944x3

+0.1277x2 − 0.0824x− 0.0053)
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Figure 5. Kernel Kopt,L ∈ S0,4,L,
support(K) = [−1, 0.2679].
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Figure 6. Kernel Kopt,L ∈ S1,5,L,
support(K) = [−1, 0.320].
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Figure 7. Kernel Kopt,L ∈ S0,6,L,
support(K) = [−1, 0.1303].
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Figure 8. Kernel Kopt,L ∈ S0,6,L,
support(K) = [−1, 0.4075].
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Figure 9. Kernel Kopt,L ∈ S0,8,L,
support(K) = [−1, 0.0779].
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Figure 10. Kernel Kopt,L ∈ S0,8,L,
support(K) = [−1, 0.2300].

As an illustration, in Fig. 12 we can also see that formula (1) for the left optimum

boundary kernels (kernels with asymmetric support) is used for kernel construction

with symmetric support [−1, 1]. In this way, the optimum kernel of the corresponding

order is obtained. That is, the kernel Kopt,L ∈ S0,8,L, support(K) = [−1, 1], is the

kernel K ∈ M1
0,8 as well.
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Figure 11. Kernel Kopt,L ∈ S0,8,L,
support(K) = [−1, 0.500].
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Figure 12. Kernel Kopt,L ∈ S0,8,L,
support(K) = [−1, 1].

5. Application

The algorithm described in the preceding part was used for finding the optimum

kernel and the optimum boundary kernel for an estimate of the simulated function

f(x) = 12 − 18x · cos(7x − 5),

σ2 = 12. In this case a special type of estimate, the Gasser-Müller estimate, was cho-

sen for data structure estimation. Plug in method was used for optimum bandwidth

choice in all cases. For details of the construction of the Gasser-Müller estimate

see [11]. The edge effect was removed by using optimum boundary kernels, but other

possible techniques can also be used (reflection technique or cyclic model), see [8].

The first estimate of the function f(x) was obtained using the minimum variance

kernel

K(x) =
15

128
(15 − 70x2 + 64x4), K ∈ M0

0,6

with α = 0.05 and the bandwidth h = 0.17 (Fig. 13).

The second estimate of the function f(x) was obtained using the optimum variance

kernel

K(x) =
35

256
(15 − 105x2 + 189x4 − 99x6), K ∈ M1

0,6,

α = 0.05 and the bandwidth h = 0.25 (Fig. 14).

The last estimate of the function f(x) was made using the optimum variance

kernel K ∈ M1
0,6 and the optimum boundary kernels Kopt,L ∈ S0,6,L, Kopt,L ∈ S0,6,R

for removing edge effects, α = 0.05 and the bandwidth h = 0.25 (Fig. 15). The

corresponding formulas are written in the text above.

Numerical illustration of the effect of the kernel type choices used for the Gasser-

Müller estimate described above is presented in the following table. For comparison,
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Figure 13. An estimate of the function f(x) using the minimum variance kernel (the solid
line is the estimate, the dashed line is the function f(x)).
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Figure 14. An estimate of the function f(x) using the optimum kernel (the solid line is the
estimate, the dashed line is the function f(x)).
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Figure 15. An estimate of the function f(x) using the optimum kernel and the optimum
boundary kernels (the solid line is the estimate, the dashed line is the func-
tion f(x)).
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the values of the AMSE for some other possible kernels are also given. We can see

that the optimum kernel and optimum boundary kernels give in all cases the best

results for the chosen kernel type (Fig. 15).

K ∈ M0
0,6 K ∈ M1

0,6 K ∈ M1
0,6, Kopt,L ∈ S0,6,L, Kopt,L ∈ S0,6,R

AMSE 4.4937 4.0706 1.2549

K ∈ M0
0,8 K ∈ M1

0,8 K ∈ M1
0,8, Kopt,L ∈ S0,8,L, Kopt,L ∈ S0,8,R

AMSE 3.4021 2.8960 1.2296

K ∈ M0
0,10 K ∈ M1

0,10 K ∈ M1
0,10, Kopt,L ∈ S0,10,L, Kopt,L ∈ S0,10,R

AMSE 4.3519 4.1519 1.1480

K ∈ M0
0,12 K ∈ M1

0,12 K ∈ M1
0,12, Kopt,L ∈ S0,12,L, Kopt,L ∈ S0,12,R

AMSE 4.1884 4.0931 1.4162

For demonstration of the described technique on real data, June average temper-

atures measured in Prague during the period 1771–1890 were used (see [11]). Note

that the period from 1771 to 1890 was renormalized for calculation to the interval

x ∈ [0, 1] according to the assumption of the Gasser-Müller estimate construction.

At first, an estimate of the June average temperatures was obtained using optimum

variance kernel K ∈ M0
0,6 and the bandwidth h = 0.075 (Fig. 16). At second, an

optimum kernel K ∈ M1
0,6 (Fig. 17) and, for removing edge effects, optimum bound-

ary kernels Kopt,L ∈ S0,6,L, Kopt,R ∈ S0,6,R, α = 0.05 and the bandwidth h = 0.07

(Fig. 18) were used. The corresponding formulas are written in the text above. Value

of the bandwidth h was found using the cross-validation method (see [11]).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
8

10

12

14

16

18

20

22

24

Figure 16. An estimate of June average temperatures measured in Prague using minimum
variance kernel.
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Figure 17. An estimate of June average temperatures measured in Prague using optimum
variance kernel.
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Figure 18. An estimate of June average temperatures measured in Prague using optimum
kernel and optimum boundary kernels.

Figs. 16–18 illustrate the effect of different kernel types for the Gasser-Müller

estimate construction. Unfortunately, the evaluation of the real data set using AMSE

is not possible, as the formula for this type of error, namely

AMSE(m̂, h) =
1

n

n
∑

i=1

E(m̂(xi) − m(xi))
2,

contains an unknown function m. Even though the above results concerning AMSE

are only theoretical, they can be used to deduce the behaviour in the case of real

data at least qualitatively [13].

In the case of June average temperature estimates using the minimum variance and

optimum kernels, it is difficult to distinguish which estimate is better (the difference

between the resulting estimates is small, see Figs. 16 and 17). Both the estimates
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have boundary effects. Therefore, the application of optimum boundary kernels

should improve the results as Fig. 18 clearly demonstrates.
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