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1 Introduction
Investigation of the existence and uniqueness of fixed points of certain mappings in the
framework of metric spaces is one of the centers of interests in nonlinear functional anal-
ysis. The Banach contractionmapping principle [] is the limelight result in this direction:
A self mapping T on a complete metric space (X,d) has a unique fixed point if there exists
 ≤ k <  such that d(Tx,Ty) = kd(x, y) for all x, y ∈ X. Fixed point theory has a wide ap-
plication in almost all fields of quantitative sciences such as economics, biology, physics,
chemistry, computer science andmany branches of engineering. It is quite natural to con-
sider various generalizations of metric spaces in order to address the needs of these quan-
titative sciences. In this respect quasi-metric spaces, ultra-metric spaces, uniform spaces,
fuzzy metric spaces, partial metric spaces, cone metric spaces and b-metric spaces can be
listed as well-known examples (see e.g. [–]). Consequently, the concept of a G-metric
space was introduced by Mustafa and Sims [] in . The authors discussed the topo-
logical properties of this space and proved the analog of the Banach contraction mapping
principle in the context of G-metric spaces (see e.g. [–]).
On the other hand, Ran and Reuring [] proved the existence and uniqueness of a fixed

point of a contractionmapping in partially ordered completemetric spaces. Following this
initial work, a number of authors have investigated fixed points of various mappings and
their applications in the theory of differential equations (see, e.g., [–]). Afterwords,
Gnana-Bhaskar and Lakshmikantham [] proved the existence and uniqueness of a cou-
pled fixed point (defined by Guo and Laksmikantham []) in the context of partially or-
dered metric spaces by introducing the notion of mixed monotone property. In this re-
markable paper, Gnana-Bhaskar and Lakshmikantham [] also gave some applications
related to the existence and uniqueness of a solution of periodic boundary value prob-
lems. Following this trend, many authors have studied the (common) coupled fixed points
(see, e.g., [–, , –]).
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In this paper, we show that, unexpectedly, most of the coupled fixed point theorems
in the context of (ordered) G-metric spaces are in fact immediate consequences of well-
known fixed point theorems in the literature.

2 Preliminaries
We start with basic definitions and a detailed overview of the essential results developed in
the interesting worksmentioned above. Throughout this paper,N is the set of nonnegative
integers, and N

* is the set of positive integers.

Definition . (See []) Let X be a nonempty set and G : X × X ×X → R
+ be a function

satisfying the following properties:
(G) G(x, y, z) =  if x = y = z,
(G)  <G(x,x, y) for all x, y ∈ X with x �= y,
(G) G(x,x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y �= z,
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · (symmetry in all three variables),
(G) G(x, y, z) ≤ G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X (rectangle inequality).

Then the function G is called a generalized metric or, more specially, a G-metric on X,
and the pair (X,G) is called a G-metric space.

Every G-metric on X defines a metric dG on X by

dG(x, y) =G(x, y, y) +G(y,x,x), for all x, y ∈ X. ()

Example . Let (X,d) be a metric space. The functionG : X×X×X → [, +∞), defined
as

G(x, y, z) =max
{
d(x, y),d(y, z),d(z,x)

}
or

G(x, y, z) = d(x, y) + d(y, z) + d(z,x)

for all x, y, z ∈ X, is a G-metric on X.

Definition . (See []) Let (X,G) be a G-metric space, and let {xn} be a sequence of
points of X. We say that {xn} is G-convergent to x ∈ X if

lim
n,m→+∞G(x,xn,xm) = ,

that is, for any ε > , there exists N ∈ N such that G(x,xn,xm) < ε for all n,m ≥ N . We call
x the limit of the sequence and write xn → x or limn→+∞ xn = x.

Proposition . (See []) Let (X,G) be a G-metric space. The following are equivalent:
() {xn} is G-convergent to x,
() G(xn,xn,x) →  as n→ +∞,
() G(xn,x,x)→  as n→ +∞,
() G(xn,xm,x) →  as n,m → +∞.
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Definition . (See []) Let (X,G) be a G-metric space. A sequence {xn} is called a G-
Cauchy sequence if, for any ε > , there is N ∈N such that G(xn,xm,xl) < ε for allm,n, l ≥
N , that is, G(xn,xm,xl) →  as n,m, l → +∞.

Proposition . (See []) Let (X,G) be a G-metric space. Then the following are equiva-
lent:
() the sequence {xn} is G-Cauchy,
() for any ε > , there exists N ∈ N such that G(xn,xm,xm) < ε for allm,n≥ N .

Definition . (See []) A G-metric space (X,G) is called G-complete if every G-Cauchy
sequence is G-convergent in (X,G).

We will use the following result which can be easily derived from the definition of G-
metric space (see, e.g., []).

Lemma . Let (X,G) be a G-metric space. Then

G(x,x, y)≤ G(x, y, y) for all x, y ∈ X.

Definition . (See []) Let (X,G) be aG-metric space. AmappingT : X → X is said to be
G-continuous if {T(xn)} isG-convergent to T(x) where {xn} is anyG-convergent sequence
converging to x.

We characterize this definition for a mapping F : X×X → X. A mapping F : X×X → X
is said to be continuous if {F(xn, yn)} isG-convergent to F(x, y) where {xn} and {yn} are any
two G-convergent sequences converging to x and y, respectively.

Definition . Let (X,�) be a partially ordered set, (X,G) be a G-metric space and g :
X → X be a mapping. A partially ordered G-metric space, (X,G,�), is called g-ordered
complete if for each convergent sequence {xn}∞n= ⊂ X, the following conditions hold:

(OC) if {xn} is a nonincreasing sequence in X such that xn → x∗, then gx∗ � gxn ∀n ∈N,
(OC) if {yn} is a nondecreasing sequence in X such that yn → y∗, then gy∗ � gyn ∀n ∈ N.

In particular, a partially ordered G-metric space, (X,G,�), is called ordered complete
when g is equal to an identity mapping in (OC) and (OC).
In [], Mustafa characterized the well-known Banach contraction principle mapping

in the context of G-metric spaces in the following ways.

Theorem . (See []) Let (X,G) be a complete G-metric space and T : X → X be a
mapping satisfying the following condition for all x, y, z ∈ X:

G(Tx,Ty,Tz) ≤ kG(x, y, z), ()

where k ∈ [, ). Then T has a unique fixed point.
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Theorem . (See []) Let (X,G) be a complete G-metric space and T : X → X be a
mapping satisfying the following condition for all x, y ∈ X:

G(Tx,Ty,Ty) ≤ kG(x, y, y), ()

where k ∈ [, ). Then T has a unique fixed point.

Remark . The condition () implies the condition (). The converse is true only if k ∈
[,  ). For details, see [].

In , Guo and Lakshmikantham [] introduced the notion of coupled fixed point.
The concept of coupled fixed point was reconsidered byGnana-Bhaskar and Lakshmikan-
tham [] in . In this paper, they proved the existence and uniqueness of a coupled
fixed point of an operator F : X × X → X on a partially ordered metric space under a
condition called the mixed monotone property.

Definition. ([]) Let (X,�) be a partially ordered set and F : X×X → X. Themapping
F is said to have the mixed monotone property if F(x, y) is monotone nondecreasing in x
and monotone nonincreasing in y; that is, for any x, y ∈ X,

x,x ∈ X, x � x ⇒ F(x, y) � F(x, y)

and

y, y ∈ X, y � y ⇒ F(x, y) � F(x, y).

Definition . ([]) An element (x, y) ∈ X×X is called a coupled fixed point of themap-
ping F : X ×X → X if

x = F(x, y) and y = F(y,x).

The results in [] were extended by Ćirić and Lakshmikantham in [] by defining the
mixed g-monotone property.

Definition . Let (X,�) be a partially ordered set, F : X × X → X and g : X → X.
The function F is said to have the mixed g-monotone property if F(x, y) is monotone g-
nondecreasing in x and is monotone g-nonincreasing in y; that is, for any x, y ∈ X,

g(x) � g(x) ⇒ F(x, y) � F(x, y), for x,x ∈ X, ()

and

g(y) � g(y) ⇒ F(x, y) � F(x, y), for y, y ∈ X. ()

It is clear that Definition . reduces to Definition . when g is the identity.
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Definition . An element (x, y) ∈ X ×X is called a coupled coincidence point of map-
pings F : X ×X → X and g : X → X if

F(x, y) = g(x), F(y,x) = g(y),

and is called a coupled common fixed point of F and g if

F(x, y) = g(x) = x, F(y,x) = g(y) = y.

The mappings F and g are said to commute if

g
(
F(x, y)

)
= F

(
g(x), g(y)

)

for all x, y ∈ X.

3 Auxiliary results
We first state the following theorem about the existence and uniqueness of a common
fixed point which can be considered as a generalization of Theorem ..

Theorem . Let (X,G) be a G-metric space. Let T : X → X and g : X → X be two map-
pings such that

G(Tx,Ty,Tz) ≤ kG(gx, gy, gz) ()

for all x, y, z. Assume that T and g satisfy the following conditions:
(A) T(X)⊂ g(X),
(A) g(X) is G-complete,
(A) g is G-continuous and commutes with T .

If k ∈ [, ), then there is a unique x ∈ X such that gx = Tx = x.

Proof Let x ∈ X. By assumption (A), there exists x ∈ X such that Tx = gx. By the same
arguments, there exists x ∈ X such that Tx = gx. Inductively, we define a sequence {xn}
in the following way:

gxn+ = Txn, n ∈N. ()

Due to (), we have

G(gxn+, gxn+, gxn+) = G(Txn+,Txn+,Txn)

≤ kG(gxn+, gxn+, gxn)

by taking x = y = xn+ and z = xn. Thus, for each natural number n, we have

G(gxn+, gxn+, gxn+) ≤ kn+G(gx, gx, gx). ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/0
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We will show that {gxn} is a Cauchy sequence. By the rectangle inequality, we have for
m > n

G(gxm, gxm, gxn) ≤ G(gxn+, gxn+, gxn) +G(gxn+, gxn+, gxn+)

+ · · · +G(gxm–, gxm–, gxm–) +G(gxm, gxm, gxm–)

≤ knG(gx, gx, gx) + kn+G(gx, gx, gx)

+ · · · + km–G(gx, gx, gx) + km–G(gx, gx, gx)

≤
(m–∑

i=n

ki
)
G(gx, gx, gx). ()

Letting n,m → ∞ in (), we get that G(gxm, gxm, gxn)→ . Hence, {gxn} is a G-Cauchy se-
quence in g(X). Since (g(X),G) is G-complete, then there exists z ∈ X such that {gxn} → z.
Since g isG-continuous, we have {ggxn} isG-convergent to gz. On the other hand, we have
ggxn+ = gTxn = Tgxn since g and T commute. Thus,

G(gxn+,Tz,Tz) = G(Tgxn,Tz,Tz)

≤ kG(ggxn, gz, gz).

Letting n → ∞ and using the fact that the metric G is continuous, we get that

G(gz,Tz,Tz) ≤ kG(gz, gz, gz).

Hence gz = Tz. The sequence {gxn+} is G-convergent to z since {gxn+} is a subsequence
of {gxn}. So, we have

G(gxn+, gz, gz) = G(gxn+,Tz,Tz)

= G(Txn,Tz,Tz)

≤ kG(gxn, z, z).

Letting n → ∞ and using the fact that G is continuous, we obtain that

G(z, gz, gz) ≤ kG(z, z, z) = .

Hence we have z = gz = Tz. We will show that z is the unique common fixed point of T
and g . Suppose that, contrary to our claim, there exists another common fixed pointw ∈ X
with w �= z. From () we have

G(w,w, z) =G(Tw,Tw,Tz) ≤ kG(w,w, z),

which is a contradiction since k < .Hence, the commonfixed point ofT and g is unique.�

Theorem . Let (X,G) be a G-metric space. Let T : X → X and g : X → X be two map-
pings such that

G(Tx,Ty,Ty) ≤ kG(gx, gy, gy) ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/0
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for all x, y. Assume that T and g satisfy the following conditions:
(A) T(X)⊂ g(X),
(A) g(X) is G-complete,
(A) g is G-continuous and commutes with T .

If k ∈ [, ), then there is a unique x ∈ X such that gx = Tx = x.

Proof Following the lines of the proof of Theorem . by taking y = z, one can easily get
the result. �

In [], Ran and Reurings established the following fixed point theorem that extends the
Banach contraction principle to the setting of ordered metric spaces.

Theorem . (Ran and Reurings []) Let (X,�) be an ordered set endowed with a metric
d and T : X → X be a given mapping. Suppose that the following conditions hold:

(i) (X,d) is complete;
(ii) T is continuous and nondecreasing (with respect to �);
(iii) there exists x ∈ X such that x � Tx;
(iv) there exists a constant k ∈ (, ) such that for all x, y ∈ X with x � y,

d(Tx,Ty) ≤ kd(x, y).

Then T has a fixed point. Moreover, if for all (x, y) ∈ X × X there exists z ∈ X such that
x � z and y� z, we obtain uniqueness of the fixed point.

The result of Ran and Reurings [] can be also proved in the framework of a G-metric
space.

Theorem . Let (X,�) be an ordered set endowed with a G-metric and T : X → X be a
given mapping. Suppose that the following conditions hold:

(i) (X,G) is G-complete;
(ii) T is G-continuous and nondecreasing (with respect to �);
(iii) there exists x ∈ X such that x � Tx;
(iv) there exists a constant k ∈ (, ) such that for all x, y, z ∈ X with x� y � z,

G(Tx,Ty,Tz) ≤ kG(x, y, z). ()

Then T has a fixed point. Moreover, if for all (x, y) ∈ X × X there exists w ∈ X such that
x � w and y� w, we obtain uniqueness of the fixed point.

Proof Let x ∈ X be a point satisfying (iii), that is, x � Tx. We define a sequence {xn} in
X as follows:

xn = Txn– for n≥ . ()

Regarding that T is a nondecreasing mapping together with (), we have x � Tx = x
implies x = Tx � Tx = x. Inductively, we obtain

x � x � x � · · · � xn– � xn � xn+ � · · · . ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/0
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Assume that there exists n such that xn = xn+. Since xn = xn+ = Txn , then xn is the
fixed point of T , which completes the existence part of the proof. Suppose that xn �= xn+
for all n ∈N. Thus, by () we have

x ≺ x ≺ x ≺ · · · ≺ xn– ≺ xn ≺ xn+ ≺ · · · . ()

Put x = y = xn and z = xn– in (). Then

 ≤ G(Txn,Txn,Txn–) =G(xn+,xn+,xn) ≤ kG(xn,xn,xn–)

≤ kG(xn–,xn–,xn–)

· · ·
≤ knG(x,x,x). ()

Then we have

 ≤ G(xn+,xn+,xn) ≤ knG(x,x,x),

which, upon letting n → ∞, implies

lim
n→∞G(xn+,xn+,xn) = . ()

On the other hand, by Lemma . we have

G(y, y,x) ≤ G(y,x,x) +G(x, y,x) = G(y,x,x). ()

The inequality () with x = xn and y = xn– becomes

G(xn–,xn–,xn) =G(xn,xn–,xn–)≤ G(xn–,xn,xn). ()

Letting n → ∞ in (), we get

lim
n→∞G(xn,xn–,xn–) = . ()

We will show that the sequence {xn} is a Cauchy sequence in the metric space (X,dG)
where dG is given in (). For n≥ l we have

dG(xn,xl) ≤ dG(xn,xn–) + dG(xn–,xn–) + · · · + dG(xl+,xl)

= G(xn,xn–,xn–) +G(xn–,xn,xn)

+G(xn–,xn–,xn–) +G(xn–,xn–,xn–) + · · ·
+G(xl+,xl,xl) +G(xl,xl+,xl+)

=
n∑

i=l+

[
G(xi,xi–,xi–) +G(xi–,xi,xi)

]
, ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/0
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and making use of () and (), we obtain

 ≤ dG(xn,xl) ≤
n∑

i=l+

ki–G(x,x,x)

≤ G(x,x,x)

[ n∑
i=

ki– –
l∑

i=

ki–
]
. ()

Hence,

dG(xn,xl) →  as n, l → ∞, ()

that is, the sequence {xn} is Cauchy in (X,dG) and hence {xn} is G-Cauchy in (X,G) (see
Proposition  in []). Since the space (X,G) is G-complete, then (X,dG) is complete (see
Proposition  in []). Thus, {xn} is G-convergent to a number, say u ∈ X, that is,

lim
n→∞G(xn,xn,u) = lim

n→∞G(xn,u,u) = . ()

We show now that u ∈ X is a fixed point of T , that is, u = Tu. By the G-continuity of T ,
the sequence {Txn} = {xn+} converges to Tu, that is,

lim
n→∞G(Txn,Txn,Tu) = lim

n→∞G(Txn,Tu,Tu) = . ()

The rectangle inequality on the other hand gives

G(u,Tu,Tu) ≤ G(u,xn+,xn+) +G(xn+,Tu,Tu)

≤ G(u,xn+,xn+) +G(Txn,Tu,Tu). ()

Passing to limit as n→ ∞ in (), we conclude thatG(u,Tu,Tu) = . Hence, u = Tu, that
is, u ∈ is a fixed point of T .
To prove the uniqueness, we assume that v ∈ X is another fixed point of T such that

v �= u. We examine two cases. For the first case, assume that either v � u or u � v. Then we
substitute x = u and y = z = v in () which yields G(Tv,Tu,Tu) ≤ kG(u, v, v). This is true
only for k = , but k ∈ (, ) by definition. Thus, the fixed point of T is unique.
For the second case, we suppose that neither v � u nor u � v holds. Then by assump-

tion (iv), there exists w ∈ X such that u � w and v � w. Substituting x = y = w and z = u
in (), we get that G(Tw,Tw,Tu) = G(Tw,Tw,u) ≤ kG(w,w,u). Since T is nondecreas-
ing, Tu � Tw. Substitute now x = y = Tw and z = Tu, which implies G(Tw,Tw,Tu) ≤
kG(Tw,Tw,Tu) ≤ kG(w,w,u). Continuing in this way, we conclude G(Tnw,Tnw,u) ≤
knG(w,w,u). Passing to limit as n→ ∞, we get

lim
n→∞G

(
Tnw,Tnw,u

)
= . ()

Similarly, if we take x = y = w and z = v in (), then we obtain

lim
n→∞G

(
Tnw,Tnw, v

)
= . ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/0
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From () and (), we deduce {Tnw} → u and {Tnw} → v. The uniqueness of the limit
implies that u = v. Hence, the fixed point of T is unique. �

Corollary . Let (X,�) be an ordered set endowed with a G-metric and T : X → X be a
given mapping. Suppose that the following conditions hold:

(i) (X,G) is G-complete;
(ii) T is G-continuous and nondecreasing (with respect to �);
(iii) there exists x ∈ X such that x � Tx;
(iv) there exists a constant k ∈ (, ) such that for all x, y ∈ X with x � y,

G(Tx,Ty,Ty) ≤ kG(x, y, y). ()

Then T has a fixed point. Moreover, if for all (x, y) ∈ X × X there exists w ∈ X such that
x � w and y� w, we obtain uniqueness of the fixed point.

Proof It is sufficient to take z = y in the proof of Theorem .. �

Nieto and López [] extended the result of Ran and Reurings [] for a mapping T not
necessarily continuous by assuming an additional hypothesis on (X,�,d).

Theorem . (Nieto and López []) Let (X,�) be an ordered set endowed with a metric
d and T : X → X be a given mapping. Suppose that the following conditions hold:

(i) (X,d) is complete;
(ii) X is ordered complete;
(iii) T is nondecreasing;
(iv) there exists x ∈ X such that x � Tx;
(v) there exists a constant k ∈ (, ) such that for all x, y ∈ X with x � y,

d(Tx,Ty) ≤ kd(x, y).

Then T has a fixed point. Moreover, if for all (x, y) ∈ X × X there exists w ∈ X such that
x � w and y� w, we obtain uniqueness of the fixed point.

The result of Nieto and López [] can also be proved in the framework of G-metric
space.

Theorem . Let (X,�) be an ordered set endowed with a G-metric and T : X → X be a
given mapping. Suppose that the following conditions hold:

(i) (X,G) is G-complete;
(ii) X is ordered complete;
(iii) T is nondecreasing;
(iv) there exists x ∈ X such that x � Tx;
(v) there exists a constant k ∈ (, ) such that for all x, y, z ∈ X with x� y � z,

G(Tx,Ty,Tz) ≤ kG(x, y, z). ()

Then T has a fixed point. Moreover, if for all (x, y) ∈ X × X there exists w ∈ X such that
x � w and y� w, we obtain uniqueness of the fixed point.

http://www.fixedpointtheoryandapplications.com/content/2013/1/0
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Proof Following the lines in the proof of Theorem ., we have a sequence {xn} which is
G-convergent to u ∈ X. Due to (ii), we have xn � u for all n. We will show that u is a fixed
point of T . Suppose on the contrary that u �= Tu, that is, dG(u,Tu) > . Regarding () and
() with x = xn, y = z = Tu, we have

 ≤ dG(xn,Tu) =G(xn,Tu,Tu) +G(Tu,xn,xn)

= G(Txn–,Tu,Tu) +G(Tu,Txn–,Txn–)

≤ k
[
G(xn–,u,u) +G(u,xn–,xn–)

]
. ()

Passing to limit as n → ∞, we get dG(u,Tu) = , which is a contradiction. Hence, Tu = u.
Uniqueness of u can be observed as in the proof of Theorem .. �

Corollary . Let (X,�) be an ordered set endowed with a G-metric and T : X → X be a
given mapping. Suppose that the following conditions hold:

(i) (X,G) is G-complete;
(ii) X is ordered complete;
(iii) T is nondecreasing;
(iv) there exists x ∈ X such that x � Tx;
(v) there exists a constant k ∈ (, ) such that for all x, y ∈ X with x � y,

G(Tx,Ty,Ty) ≤ kG(x, y, y). ()

Then T has a fixed point. Moreover, if for all (x, y) ∈ X × X there exists w ∈ X such that
x � w and y� w, we obtain uniqueness of the fixed point.

Proof It is sufficient to take z = y in the proof of Theorem .. �

Denote by � the set of functions ψ : [,∞) → [,∞) satisfying the following condi-
tions:

(�) ψ–({}) = ,
(�) ψ(t) < t for all t > ;
(�) limr→t+ ψ(r) < t.

Following the work of Ćirić et al. [], we generalize the above-mentioned results by
means of introducing a function g . More specifically, we modify the definitions and theo-
rems according to the presence of the function g .

Definition . (See []) Let (X,�) be an ordered set and T : X → X and g : X → X be
given mappings. The mapping T is called g-nondecreasing if for every x, y ∈ X,

gx� gy implies Tx � Ty.

Theorem . Let (X,�) be an ordered set endowed with a G-metric and T : X → X and
g : X → X be given mappings. Suppose that the following conditions hold:

(i) (X,G) is G-complete;
(ii) T is G-continuous;
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(iii) T is g-nondecreasing;
(iv) there exists x ∈ X such that gx � Tx;
(v) T(X)⊂ g(X) and g is G-continuous and commutes with T ;
(vi) there exists a function ϕ ∈ � such that for all x, y, z ∈ X with gx� gy � gz,

G(Tx,Ty,Tz) ≤ ϕ
(
G(gx, gy, gz)

)
. ()

Then T and g have a coincidence point, that is, there exists w ∈ X such that gw = Tw.

Proof Let x ∈ X such that gx � Tx. Since T(X) ⊂ g(X), we can choose x such that
gx = Tx. Again, by T(X) ⊂ g(X), we can choose x such that gx = Tx. By repeating the
same argument, we construct the sequence {gxn} in the following way:

gxn+ = Txn, for all n = , , , . . . . ()

Regarding that T is a g-nondecreasing mapping together with (), we observe that

gx � Tx = gx implies gx = Tx � Tx = gx.

Inductively, we obtain

gx � gx � gx � · · · � gxn– � gxn � gxn+ � · · · . ()

If there exists n such that gxn = gxn+, then gxn = gxn+ = Txn , that is, T and g have a
coincidence point which completes the proof. Assume that gxn �= gxn+ for all n ∈N.
Regarding (), we set x = y = xn+ and z = xn in (). Then we get

G(Txn+,Txn+,Txn) ≤ ϕ
(
G(gxn+, gxn+, gxn)

)
,

which is equivalent to

G(gxn+, gxn+, gxn+) ≤ ϕ
(
G(gxn+, gxn+, gxn)

)
<G(gxn+, gxn+, gxn) ()

since ϕ(t) < t for all t > . Let tn =G(gxn+, gxn+, gxn). Then {tn} is a positive nonincreasing
sequence. Thus, there exists L ≥  such that

lim
n→∞ tn = L+. ()

We will show that L = . Suppose that contrary to our claim, L > . Letting n→ ∞ in (),
we get

L = lim
n→∞ tn+ ≤ lim

n→∞ϕ(tn) = lim
t→L+

ϕ(t) < L,

which is a contradiction. Hence, we have

lim
n→∞G(gxn+, gxn+, gxn) = lim

n→∞ tn = . ()
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We will show that {gxn} is a G-Cauchy sequence. Suppose on the contrary that the se-
quence {gxn} is not G-Cauchy. Then there exists ε >  and sequences of natural numbers
{m(k)}, {l(k)} such that for each natural number k,

m(k) > l(k)≥ k,

and we have

ck =G(gxm(k), gxm(k), gxl(k)) ≥ ε. ()

Corresponding to l(k), the number m(k) is chosen to be the smallest number for which
() holds. Hence, we have

G(gxm(k)–, gxm(k)–, gxl(k)) < ε. ()

By using (G), we obtain that

ε ≤ G(gxm(k), gxm(k), gxl(k))

≤ G(gxm(k), gxm(k), gxm(k)–) +G(gxm(k)–, gxm(k)–, gxl(k))

= tm(k)– +G(gxm(k)–, gxm(k)–, gxl(k))

< tm(k)– + ε.

Regarding () and letting n→ ∞ in the previous inequality, we deduce

lim
k→∞

ck = ε+. ()

Again by the rectangle inequality (G), together with (G) and Lemma ., we get that

ck = G(gxm(k), gxm(k), gxl(k))

≤ G(gxm(k), gxm(k), gxm(k)+) +G(gxm(k)+, gxm(k)+, gxl(k)+) +G(gxl(k)+, gxl(k)+, gxl(k))

= tl(k) +G(gxm(k), gxm(k), gxm(k)+) +G(gxm(k)+, gxm(k)+, gxl(k)+)

≤ tl(k) + G(gxm(k+), gxm(k)+, gxm(k)) +G(gxm(k)+, gxm(k)+, gxl(k)+)

≤ tl(k) + tm(k) +G(gxm(k)+, gxm(k)+, gxl(k)+). ()

Setting x = y = xm(k) and z = xl(k), the inequality () implies

G(gxm(k)+, gxm(k)+, gxl(k)+) = G(Txm(k),Txm(k),Txl(k))

≤ ϕ
(
G(gxm(k), gxm(k), gxl(k))

)
= ϕ(ck). ()

Combining the inequalities () and (), we find

ck ≤ tl(k) + tm(k) + ϕ(ck). ()
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Taking () and () into account and letting k → ∞ in (), we obtain that

ε ≤ lim
k→∞

ϕ(ck) = lim
t→ε+

ϕ(t) < ε,

which is a contradiction. Hence, {gxn} is a G-Cauchy sequence in the G-metric space
(X,G). Since (X,G) isG-complete, there existsw ∈ X such that {gxn} isG-convergent to w.
By Proposition ., we have

lim
n→∞G(gxn, gxn,w) = lim

n→∞G(gxn,w,w) = . ()

The G-continuity of g implies that the sequence {ggxn} is G-convergent to gw, that is,

lim
n→∞G(ggxn, ggxn, gw) = lim

n→∞G(ggxn, gw, gw) = . ()

On the other hand, due to the commutativity of T and g , we can write

ggxn+ = gTxn = Tgxn, ()

and the G-continuity of T implies that the sequence {Tgxn} = {ggxn+} G-converges to Tw
so that

lim
n→∞G(Tgxn,Tgxn,Tw) = lim

n→∞G(Tgxn,Tw,Tw) = . ()

By the uniqueness of the limit, the expressions () and () yield that gw = Tw. Indeed,
from the rectangle inequality, we get

G(gw,Tw,Tw) ≤ G(gz, ggxn+, ggxn+) +G(ggxn+,Tw,Tw)

≤ G(gw, ggxn+, ggxn+) +G(Tgxn,Tw,Tw), ()

which implies G(gw,Tw,Tw) =  upon letting n → ∞. Hence, gw = Tw. �

In the next theorem, G-continuity of T is no longer required. However, we require the
g-ordered completeness of X.

Theorem . Let (X,�) be an ordered set endowed with a G-metric and T : X → X and
g : X → X be given mappings. Suppose that the following conditions hold:

(i) (X,G) is G-complete;
(ii) X is g-ordered complete;
(iii) T is g-nondecreasing (with respect to �);
(iv) there exists x ∈ X such that gx � Tx;
(v) T(X)⊂ g(X) and g is G-continuous and commutes with T ;
(vi) there exists a function ϕ ∈ � such that for all x, y, z ∈ X with gx� gy � gz,

G(Tx,Ty,Tz) ≤ ϕ
(
G(gx, gy, gz)

)
. ()

Then T and g have a coincidence point, that is, there exists w ∈ X such that gw = Tw.
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Proof Following the lines of the proof of Theorem ., we define a sequence {gxn} and
conclude that it is a G-Cauchy sequence in the G-complete, G-metric space (X,G). Thus,
there exists w ∈ X such that gxn is G-convergent to gw. Since {gxn} is nondecreasing and
X is g-ordered complete, we have gxn � gw. If gw = gxn for some natural number n, then T
and g have a coincidence point. Indeed, gw = gxn � gxn+ = Txn � gw and hence gxn = Txn.
Suppose that gw �= gxn. By the rectangle inequality together with the inequality () and
the property (�), we have

G(Tw, gw, gw) ≤ G(Tw, gxn+, gxn+) +G(gxn+, gw, gw)

≤ G(Tw,Txn,Txn) +G(gxn+, gw, gw)

≤ ϕ
(
G(gw, gxn, gxn)

)
+G(gxn+, gw, gw)

< G(gw, gxn, gxn) +G(gxn+, gw, gw).

Letting n → ∞ in the inequality above, we get that G(Tw, gw, gw) = . Hence, Tw = gw. �

If we take ϕ(t) = kt, where k ∈ [, ) in Theorem . and Theorem ., we deduce the
following corollaries, respectively.

Corollary . Let (X,�) be an ordered set endowed with a G-metric and T : X → X and
g : X → X be given mappings. Suppose that the following conditions hold:

(i) (X,G) is G-complete;
(ii) T is G-continuous;
(iii) T is g-nondecreasing (with respect to �);
(iv) there exists x ∈ X such that gx � Tx;
(v) T(X)⊂ g(X) and g is G-continuous and commutes with T ;
(vi) there exists k ∈ [, ) such that for all x, y, z ∈ X with gx� gy� gz,

G(Tx,Ty,Tz) ≤ kG(gx, gy, gz). ()

Then T and g have a coincidence point, that is, there exists w ∈ X such that gw = Tw.

Corollary . Let (X,�) be an ordered set endowed with a G-metric and T : X → X and
g : X → X be given mappings. Suppose that the following conditions hold:

(i) (X,G) is G-complete;
(ii) X is g-ordered complete;
(iii) T is g-nondecreasing (with respect to �);
(iv) there exists x ∈ X such that gx � Tx;
(v) T(X)⊂ g(X) and g is G-continuous and commutes with T ;
(vi) there exists k ∈ [, ) such that for all x, y, z ∈ X with gx� gy� gz,

G(Tx,Ty,Tz) ≤ kG(gx, gy, gz). ()

Then T and g have a coincidence point, that is, there exists w ∈ X such that gw = Tw.

If we take z = y in Theorem . and Theorem ., we obtain the following particular
cases.
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Corollary . Let (X,�) be an ordered set endowed with a G-metric and T : X → X and
g : X → X be given mappings. Suppose that the following conditions hold:

(i) (X,G) is G-complete;
(ii) T is G-continuous;
(iii) T is g-nondecreasing;
(iv) there exists x ∈ X such that gx � Tx;
(v) T(X)⊂ g(X) and g is G-continuous and commutes with T ;
(vi) there exists a function ϕ ∈ � such that for all x, y ∈ X with gx� gy,

G(Tx,Ty,Ty) ≤ ϕ
(
G(gx, gy, gy)

)
. ()

Then T and g have a coincidence point, that is, there exists w ∈ X such that gw = Tw.

Corollary . Let (X,�) be an ordered set endowed with a G-metric and T : X → X and
g : X → X be given mappings. Suppose that the following conditions hold:

(i) (X,G) is G-complete;
(ii) X is g-ordered complete;
(iii) T is g-nondecreasing;
(iv) there exists x ∈ X such that gx � Tx;
(v) T(X)⊂ g(X) and g is G-continuous and commutes with T ;
(vi) there exists a function ϕ ∈ � such that for all x, y ∈ X with gx� gy,

G(Tx,Ty,Ty) ≤ ϕ
(
G(gx, gy, gy)

)
. ()

Then T and g have a coincidence point, that is, there exists w ∈ X such that gw = Tw.

Finally, we let g = idX in the Theorem . and Theorem . and conclude the following
theorems.

Theorem . Let (X,�) be an ordered set endowed with a G-metric and T : X → X be a
given mapping. Suppose that the following conditions hold:

(i) (X,G) is G-complete;
(ii) T is G-continuous;
(iii) T is nondecreasing (with respect to �);
(iv) there exists x ∈ X such that x � Tx;
(v) there exists a function ϕ ∈ � such that for all x, y, z ∈ X with x � y� z,

G(Tx,Ty,Tz) ≤ ϕ
(
G(x, y, z)

)
. ()

Then T has a fixed point.

Theorem . Let (X,�) be an ordered set endowed with a G-metric and T : X → X be a
given mapping. Suppose that the following conditions hold:

(i) (X,G) is G-complete;
(ii) X is ordered complete;
(iii) T is nondecreasing;
(iv) there exists x ∈ X such that x � Tx;
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(v) there exists a function ϕ ∈ � such that for all x, y, z ∈ X with x � y� z,

G(Tx,Ty,Tz) ≤ ϕ
(
G(x, y, z)

)
. ()

Then T has a fixed point.

We next consider some equivalence conditions and their implementation on G-metric
spaces. Let S denote the set of functions β : [,∞)→ [, ) satisfying the condition

β(tn) –→  implies tn –→ .

In , Jachymski and Jóźwik [] proved that the classes S and � are equivalent. Re-
garding this result, we state the following fixed point theorems on G-metric spaces.

Theorem . Let (X,�) be an ordered set endowed with a G-metric and T : X → X be a
given mapping. Suppose that the following conditions hold:

(i) (X,G) is G-complete;
(ii) T is G-continuous;
(iii) T is nondecreasing (with respect to �);
(iv) there exists x ∈ X such that x � Tx;
(v) there exists a function β ∈ S such that for all x, y, z ∈ X with x� y � z,

G(Tx,Ty,Tz) ≤ β
(
G(x, y, z)

)
G(x, y, z). ()

Then T has a fixed point.

Theorem . Let (X,�) be an ordered set endowed with a G-metric and T : X → X be a
given mapping. Suppose that the following conditions hold:

(i) (X,G) is G-complete;
(ii) X is ordered complete;
(iii) T is nondecreasing (with respect to �);
(iv) there exists x ∈ X such that x � Tx;
(v) there exists a function β ∈ S such that for all x, y, z ∈ X with x� y � z,

G(Tx,Ty,Tz) ≤ β
(
G(x, y, z)

)
G(x, y, z). ()

Then T has a fixed point.

The two corollaries below are immediate consequences of Theorem . and Theo-
rem ..

Corollary . Let (X,�) be an ordered set endowed with a G-metric and T : X → X be a
given mapping. Suppose that the following conditions hold:

(i) (X,G) is G-complete;
(ii) T is G-continuous;
(iii) T is nondecreasing (with respect to �);
(iv) there exists x ∈ X such that x � Tx;
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(v) there exists a function β ∈ S such that for all x, y ∈ X with x � y,

G(Tx,Ty,Ty) ≤ β
(
G(x, y, y)

)
G(x, y, y). ()

Then T has a fixed point.

Corollary . Let (X,�) be an ordered set endowed with a G-metric and T : X → X be a
given mapping. Suppose that the following conditions hold:

(i) (X,G) is G-complete;
(ii) X is ordered complete;
(iii) T is nondecreasing (with respect to �);
(iv) there exists x ∈ X such that x � Tx;
(v) there exists a function β ∈ S such that for all x, y ∈ X with x � y,

G(Tx,Ty,Ty) ≤ β
(
G(x, y, y)

)
G(x, y, y). ()

Then T has a fixed point.

Denote by � the set of functions ϕ : [,∞) → [,∞) satisfying the conditions (�)
and (�). Jachymski [] proved the equivalence of the so-called distance functions (see
Lemma  in []). Inspired by this result, we can state the following theorem.

Theorem . Let (X,�) be an ordered set endowed with a G-metric and T be a self-
map on a G-complete partially ordered G-metric space (X,G). The following statements
are equivalent:

(i) there exist functions ψ ,η ∈ � such that

ψ
(
G(Tx,Ty,Tz)

) ≤ ψ
(
G(x, y, z)

)
– η

(
G(x, y, z)

)
, ()

(ii) there exist α ∈ [, ) and a function ψ ∈ � such that

ψ
(
G(Tx,Ty,Tz)

) ≤ αψ
(
G(x, y, z)

)
, ()

(iii) there exists a continuous and nondecreasing function α : [,∞) → [,∞) such that
α(t) < t for all t >  such that

G(Tx,Ty,Tz) ≤ α
(
G(x, y, z)

)
, ()

(iv) there exist a function ψ ∈ � and a nondecreasing function η : [,∞)→ [,∞) with
η–() =  such that

ψ
(
G(Tx,Ty,Tz)

) ≤ ψ
(
G(x, y, z)

)
– η

(
G(x, y, z)

)
, ()

(iv) there exist a function ψ ∈ � and a lower semi-continuous function
η : [,∞)→ [,∞) with η–() =  and lim inft→∞ η(t) >  such that

ψ
(
G(Tx,Ty,Tz)

) ≤ ψ
(
G(x, y, z)

)
– η

(
G(x, y, z)

)
, ()

for any x, y, z ∈ X with x� y � z.
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As a consequence of Theorem ., we state the next corollary.

Corollary . Let (X,�) be an ordered set endowed with a G-metric and T be a self-map
on a G-complete partially ordered G-metric space (X,G). The following statements are
equivalent:

(i) there exist functions ψ ,η ∈ � such that

ψ
(
G(Tx,Ty,Ty)

) ≤ ψ
(
G(x, y, y)

)
– η

(
G(x, y, y)

)
, ()

(ii) there exist α ∈ [, ) and a function ψ ∈ � such that

ψ
(
G(Tx,Ty,Ty)

) ≤ αψ
(
G(x, y, y)

)
, ()

(iii) there exists a continuous and nondecreasing function α : [,∞) → [,∞) such that
α(t) < t for all t >  such that

G(Tx,Ty,Ty) ≤ α
(
G(x, y, y)

)
, ()

(iv) there exist a function ψ ∈ � and a nondecreasing function η : [,∞)→ [,∞) with
η–() =  such that

ψ
(
G(Tx,Ty,Ty)

) ≤ ψ
(
G(x, y, y)

)
– η

(
G(x, y, y)

)
, ()

(iv) there exist a function ψ ∈ � and a lower semi-continuous function
η : [,∞)→ [,∞) with η–() =  and lim inft→∞ η(t) >  such that

ψ
(
G(Tx,Ty,Ty)

) ≤ ψ
(
G(x, y, y)

)
– η

(
G(x, y, y)

)
, ()

for any x, y ∈ X with x � y.

4 Remarks on coupled fixed point theorems in G-metric spaces
In this section, we prove that most of the coupled fixed point theorems on a G-metric
space X can be derived from the well-known fixed point theorems on G-metric spaces in
the literature provided that (X,G) is a symmetric G-metric space. In the rest this paper,
we shall assume that (X,G) represents a symmetric G-metric space.
Let (X,�) be a partially ordered set endowed with a metric G and F : X × X → X and

g : X → X be given mappings. We define a partial order � on the product set X × X as
follows:

(x, y), (u, v) ∈ X ×X, (x, y) � (u, v) ⇐⇒ x � u, y� v.

Definition . F is said to have the mixed g-monotone property if F(x, y) is monotone
nondecreasing in x and is monotone nonincreasing in y; that is, for any x, y ∈ X,

x,x ∈ X, gx � gx =⇒ F(x, y) � F(x, y);

y, y ∈ X, gy � gy =⇒ F(x, y) � F(x, y).
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If g is an identity mapping, then F is said to have the mixed monotone property, that is,

x,x ∈ X, x � x =⇒ F(x, y) � F(x, y);

y, y ∈ X, y � y =⇒ F(x, y)� F(x, y).

Let Y = X ×X. It is easy to show that the mappings 
,� : Y × Y × Y → [,∞) defined
by



(
(x, y), (u, v), (z,w)

)
=G(x,u, z) +G(y, v,w), ()

�
(
(x, y), (u, v), (z,w)

)
=max

{
G(x,u, z),G(y, v,w)

}
()

for all (x, y), (u, v), (z,w) ∈ Y , are G-metrics on Y .
Now, define the mapping T : Y → Y by

T(x, y) =
(
F(x, y),F(y,x)

)
, for all (x, y) ∈ Y . ()

The following lemma is obvious.

Lemma . The following properties hold:
(a) If (X,G) is G-complete, then (Y ,
) and (Y ,�) are 
-complete and �-complete,

respectively;
(b) F has the mixed (g-mixed)monotone property if and only if T is monotone

nondecreasing (g-nondecreasing) with respect to �;
(c) (x, y) ∈ X ×X is a coupled fixed point of F if and only if (x, y) is a fixed point of T ;
(d) (x, y) ∈ X ×X is a coupled coincidence point of F and g if and only if (x, y) is a

coupled coincidence point of T and g .

4.1 Shatanawi’s coupled fixed point results in a G-metric space
In [], Shatanawi proved the following theorems.

Theorem . (cf. []) Let (X,G) be a G-complete G-metric space. Let F : X × X → X be
a mapping such that

G
(
F(x, y),F(u, v),F(w, z)

) ≤ k

(
G(x,u,w) +G(y, v, z)

)
()

for all x, y,u, v, z,w ∈ X. If k ∈ [, ), then there exists a unique x ∈ X such that F(x,x) = x.

In what follows, we prove the following theorem.

Theorem . Theorem . follows from Theorem ..

Proof From (), for all (x, y), (u, v), (z,w) ∈ Y with x� u � z and y � v� w, we have

G
(
F(x, y),F(u, v),F(z,w)

) ≤ k

[
G(x,u, z) +G(y, v,w)

]
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and

G
(
F(y,x),F(v,u),F(w, z)

) ≤ k

[
G(x,u, z) +G(y, v,w)

]
,

which implies that

G
(
F(x, y),F(u, v),F(z,w)

)
+G

(
F(y,x),F(v,u),F(w, z)

) ≤ k
[
G(x,u, z) +G(y, v,w)

]
,

that is,



(
T(x, y),T(u, v),T(z,w)

) ≤ k

(
(x, y), (u, v), (z,w)

)
for all (x, y), (u, v), (z,w) ∈ Y , where 
 is defined in (). From Lemma ., since (X,G) is
G-complete, (Y ,
) is 
-complete. In this case, regarding Theorem ., we conclude that
T has a fixed point, which due to Lemma . implies that F has a coupled fixed point.
Analogously, Theorem . is obtained from Theorem .. �

The following theorem can be derived easily from Theorem ..

Theorem. Let (X,G) be a G-complete G-metric space. Let F : X×X → X be amapping
such that

G
(
F(x, y),F(u, v),F(u, v)

) ≤ k

(
G(x,u,u) +G(y, v, v)

)
for all x, y,u, v ∈ X. ()

If k ∈ [, ), then there is a unique x ∈ X such that F(x,x) = x.

We note that Theorem . above is not stated in [].

Theorem . Theorem . follows from Theorem ..

Example . Let X =R. Define G : X ×X ×X → [, +∞) by

G(x, y, z) = |x – y| + |x – z| + |y – z|

for all x, y, z ∈ X. Then (X,G) is a G-metric space. Define a map F : X ×X → X by F(x, y) =

x –


y for all x, y ∈ X. Then, for all x, y,u, v,w, z ∈ X with y = v = z, we have

G
(
F(x, y),F(u, v),F(w, z)

)
= G

(


x –



y,


u –



v,


w –



z
)

=


[|x – u| + |x –w| + |u –w|]

and

G(x,u,w) +G(y, v, z) = |x – u| + |x –w| + |u –w|.

Then it is easy to see that there is no k ∈ [, ) such that

G
(
F(x, y),F(u, v),F(w, z)

) ≤ k

[
G(x,u,w) +G(y, v, z)

]
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for all x, y,u, v, z,w ∈ X. Indeed, the inequality above holds for k ≥ 
 . Thus, Theorem .

does not apply to this example. However, it is easy to see that  is the unique point such
that F(, ) = .
On the other hand, Theorem . yields the existence of the fixed point. Indeed,



(
T(x, y),T(u, v),T(w, z)

)
=G

(
F(x, y),F(u, v),F(w, z)

)
+G

(
F(y,x),F(v,u),F(z,w)

)
=G

(


x –



y,


u –



v,


w –



z
)
+G

(


y –



x,


v –



u,



z –



w

)

≤ 

[(|x – u| + |x –w| + |u –w|) + (|y – v| + |y – z| + |v – z|)]

=


[
G(x,u,w) +G(y, v, z)

]
≤ k


(
(x, y), (u, v), (w, z)

)
,

where k ∈ [  , ). Thus, all conditions of Theorem . are satisfied, which guarantees the
existence of the fixed point F(, ) = .

4.2 Choudhury andMaity’s coupled fixed point results in a G-metric space
Choudhury andMaity [] proved the following coupled fixed point theorems on ordered
G-metric spaces.

Theorem . Let (X,�) be a partially ordered set and G be a G-metric on X such that
(X,G) is a complete G-metric space. Let F : X×X → X be a G-continuous mapping having
the mixed monotone property on X. Suppose that there exists a k ∈ [, ) such that

G
(
F(x, y),F(u, v),F(w, z)

) ≤ k

[
G(x,u,w) +G(y, v, z)

]
()

for all x, y,u, v,w, z ∈ X with x � u � w and y � v � z, where either u �= w or v �= z. If there
exist x, y ∈ X such that x � F(x, y) and F(y,x)� y, then F has a coupled fixed point,
that is, there exists (x, y) ∈ X ×X such that x = F(x, y) and y = F(y,x).

Theorem . If in the above theorem, instead of G-continuity of F , we assume that X is
ordered complete, then F has a coupled fixed point.

We will prove the following result.

Theorem . Theorem . and Theorem . follow from Theorems . and ., respec-
tively.

Proof From (), for all (x, y), (u, v), (w, z) ∈ X ×X with x � u� w and y � v� z, we have

G
(
F(x, y),F(u, v),F(w, z)

) ≤ k

[
G(x,u,w) +G(y, v, z)

]
and

G
(
F(y,x),F(v,u),F(z,w)

) ≤ k

[
G(x,u,w) +G(y, v, z)

]
.
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This implies that for all (x, y), (u, v), (w, z) ∈ X ×X with x� u � w and y � v� z,

G
(
F(x, y),F(u, v),F(w, z)

)
+G

(
F(y,x),F(v,u),F(z,w)

) ≤ k
[
G(x,u,w) +G(y, v, z)

]
,

that is,



(
T(x, y),T(u, v),T(w, z)

) ≤ k

(
(x, y), (u, v), (w, z)

)

for all (x, y), (u, v), (w, z) ∈ Y with (x, y)� (u, v) � (w, z), where 
 is defined in ().
It follows from Lemma . that since (X,G) is G-complete, then (Y ,
) is 
-complete.

Since F has the mixed monotone property, T is a nondecreasing mapping with respect to
�. The assumption that there exist x, y ∈ X such that x � F(x, y) and F(y,x) � y
becomes (x, y) � T(x, y) in terms of the order �. Now, if F is G-continuous, then T
is
-continuous. In this case, applying Theorem ., we get that T has a fixed point, which
due to Lemma . implies that F has a coupled fixed point. If X is ordered complete, then
Y satisfies the following property: if a nondecreasing (with respect to �) sequence {un}
in Y converges to some point u ∈ Y , then un � u for all n. Applying Theorem ., we get
that T has a fixed point, that is, F has a coupled fixed point. �

Remark . (Uniqueness) If, in addition, we suppose that for all (x, y), (u, v) ∈ X×X, there
exists (z, z) ∈ X × X such that (x, y) � (z, z) and (u, v) � (z, z), from the last part of
Theorems . and ., we obtain the uniqueness of the fixed point of T , which implies the
uniqueness of the coupled fixed point of F . Now, let (x*, y*) ∈ X×X be the unique coupled
fixed point of F . Since (y*,x*) is also a coupled fixed point of F , we get x* = y*.

4.3 Coupled fixed point results of Aydi et al. in a G-metric space
We consider the following fixed point theorems established by Aydi et al. []. The fol-
lowing lemma is trivial.

Lemma . (See []) Let φ ∈ � . For all t > , we have limn→∞ φn(t) = .

Aydi et al. [] proved the following fixed point theorems.

Theorem . Let (X,�) be a partially ordered set and G be a G-metric on X such that
(X,G) is a G-complete G-metric space. Suppose that there exist φ ∈ � and F : X ×X → X
such that

G
(
F(x, y),F(u, v),F(w, z)

) ≤ φ

(
G(x,u,w) +G(y, v, z)



)
()

for all x, y,u, v,w, z ∈ X with x � u� w and y � v� z. Suppose also that F is G-continuous
and has the mixed monotone property. If there exist x, y ∈ X such that x � F(x, y) and
F(y,x) � y, then F has a coupled fixed point, that is, there exists (x, y) ∈ X ×X such that
x = F(x, y) and y = F(y,x).

Replacing the G-continuity of F by ordered completeness of X yields the next theorem.
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Theorem . Let (X,�) be a partially ordered set and G be a G-metric on X such that
(X,G,�) is G-complete. Suppose that there exist φ ∈ � and F : X ×X → X such that

G
(
F(x, y),F(u, v),F(w, z)

) ≤ φ

(
G(x,u,w) +G(y, v, z)



)
()

for all x, y,u, v,w, z ∈ X with x � u � w and y � v � z. Suppose also that F has the
mixed monotone property and X is ordered complete. If there exist x, y ∈ X such that
x � F(x, y) and F(y,x) � y, then F has a coupled fixed point, that is, there exists
(x, y) ∈ X ×X such that x = F(x, y) and y = F(y,x).

We will prove the following result.

Theorem . Theorem . and Theorem . follow from Theorems . and ., respec-
tively.

Proof From (), for all (x, y), (u, v), (w, z) ∈ X ×X with x� u � w and y � v � z, we have

G
(
F(x, y),F(u, v),F(w, z)

) ≤ φ

(
G(x,u,w) +G(y, v, z)



)

and

G
(
F(y,x),F(v,u),F(z,w)

) ≤ φ

(
G(x,u,w) +G(y,u, z)



)
.

This implies that for all (x, y), (u, v), (w, z) ∈ X ×X with x� u � w and y � v� z,

G(F(x, y),F(u, v),F(w, z)) +G(F(y,x),F(v,u),F(z,w))


≤ φ

(
G(x,u,w) +G(y, v, z)



)

holds. Rewrite the above inequality as


′(T(x, y),T(u, v),T(w, z)) ≤ ϕ
(

′((x, y), (u, v), (w, z)))

for all (x, y), (u, v), (w, z) ∈ Y with (x, y) � (u, v)� (w, z). Here, 
′ : Y ×Y ×Y → [,∞) is
the G-metric on Y defined by


′((x, y), (u, v), (w, z)) = 
((x, y), (u, v), (w, z))


, for all (x, y), (u, v), (w, z) ∈ Y ,

where 
 is given in (). Thus, the mapping T satisfies the conditions of Theorem .
(resp. Theorem .). Therefore, T has a fixed point, which implies that F has a coupled
fixed point. �

4.4 On coupled fixed point results of Abbas et al. in a G-metric space
Let  be the set of functions θ : [,∞)  → [, ) which satisfy the condition

θ (sn, tn) –→  implies tn, sn –→ .

The following theorems have been given by Abbas et al. [].
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Theorem . Let (X,�) be a partially ordered set and G be a G-metric on X. Assume
that there is an altering distance function θ ∈  and a map F : X ×X → X such that

G
(
F(x, y),F(u, v),F(w, z)

)
+G

(
F(y,x),F(v,u),F(z,w)

)
≤ θ

(
G(x,u,w),G(y, v, z)

)[
G(x,u,w) +G(y, v, z)

]
()

for all x, y,u, v,w, z ∈ X with x � u � w and y � v � z. Suppose that F is G-continuous
and has the mixed monotone property. If there exist x, y ∈ X such that x � F(x, y) and
F(y,x) � y, then F has a coupled fixed point, that is, there exists (x, y) ∈ X ×X such that
x = F(x, y) and y = F(y,x).

Theorem . Let (X,�) be a partially ordered set and G be a G-metric on X. Assume
that there is an altering distance function θ ∈  and a mapping F : X ×X → X such that

G
(
F(x, y),F(u, v),F(w, z)

)
+G

(
F(y,x),F(v,u),F(z,w)

)
≤ θ

(
G(x,u,w),G(y, v, z)

)[
G(x,u,w) +G(y, v, z)

]
()

for all x, y,u, v,w, z ∈ X with x� u � w and y� v � z. Suppose that F has the mixed mono-
tone property and X is ordered complete. If there exist x, y ∈ X such that x � F(x, y)
and F(y,x) � y, then F has a coupled fixed point, that is, there exists (x, y) ∈ X ×X such
that x = F(x, y) and y = F(y,x).

We will prove the following result.

Theorem . Theorem . and Theorem . follow from Theorem . and Theo-
rem ..

Proof From (), for all (x, y), (u, v), (w, z) ∈ X ×X with x� u � w and y� v � z, we have

G
(
F(x, y),F(u, v),F(w, z)

)
+G

(
F(y,x),F(v,u),F(z,w)

)
≤ θ

(
G(x,u,w),G(y, v, z)

)[
G(x,u,w) +G(y, v, z)

]
. ()

This is equivalent to



(
T(x, y),T(u, v),T(w, z)

) ≤ β
(



(
(x, y), (u, v), (w, z)

))



(
(x, y), (u, v), (w, z)

)
for all (x, y), (u, v), (z,w) ∈ Y with (x, y) � (u, v) � (w, z), where θ (t, s) = β(t + s), which
clearly implies that β ∈ S .
From Lemma ., since (X,G) is G-complete, (Y ,
) is 
-complete. Since F has the

mixedmonotone property,T is a nondecreasingmappingwith respect to�. According to
the assumption of Theorem ., we have (x, y)� T(x, y). Now, if F is G-continuous,
then T is 
-continuous. In this case, applying Theorem ., we get that T has a fixed
point, which implies from Lemma . that F has a coupled fixed point. If X is ordered
complete, then Y satisfies the following property: if a nondecreasing (with respect to �)
then the sequence {un} in Y converges to some point u ∈ Y , then un � u for all n. Ap-
plying Theorem ., we get that T has a fixed point, which implies that F has a coupled
fixed point. �
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5 Remarks on common coupled fixed point theorems in G-metric spaces
In this last section, we investigate the similarity between most of the common coupled
fixed point theorems and ordinary fixed point theorems in the context ofG-metric spaces
and we show that the former are immediate consequences of the latter.

5.1 Shatanawi’s common coupled fixed point results in a G-metric space
We start with two theorems by Shatanawi [].

Theorem . (cf. []) Let (X,G) be a G-metric space. Let F : X × X → X and g : X → X
be two mappings such that

G
(
F(x, y),F(u, v),F(w, z)

) ≤ k

(
G(gx, gu, gw) +G(gy, gv, gz)

)
()

for all x, y,u, v, z,w ∈ X. Assume that F and g satisfy the following conditions:
() F(X ×X) ⊂ g(X),
() g(X) is G-complete,
() g is G-continuous and commutes with F .

If k ∈ [, ), then there is a unique x ∈ X such that gx = F(x,x) = x.

Theorem . (cf. []) Let (X,G) be a G-metric space. Let F : X × X → X and g : X → X
be two mappings such that

G
(
F(x, y),F(u, v),F(u, v)

) ≤ k

(
G(gx, gu, gu) +G(gy, gv, gv)

)
()

for all x, y,u, v ∈ X. Assume that F and g satisfy the following conditions:
() F(X ×X) ⊂ g(X),
() g(X) is G-complete,
() g is G-continuous and commutes with F .

If k ∈ [, ), then there is a unique x ∈ X such that gx = F(x,x) = x.

Theorem . Theorem . and Theorem . follow from Theorem . and Theorem .,
respectively.

Proof From (), for all (x, y), (u, v), (w, z) ∈ X ×X, we have

G
(
F(x, y),F(u, v),F(w, z)

) ≤ k

[
G(gx, gu, gw) +G(gy, gv, gz)

]
,

and

G
(
F(y,x),F(v,u),F(z,w)

) ≤ k

[
G(gx, gu, gw) +G(gy, gv, gz)

]
.

Therefore, for all (x, y), (u, v), (w, z) ∈ X ×X, we obtain

G
(
F(x, y),F(u, v),F(w, z)

)
+G

(
F(y,x),F(v,u),F(z,w)

)
≤ k

[
G(gx, gu, gw) +G(gy, gv, gz)

]
,
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that is,



(
TF (x, y),TF (u, v),TF (w, z)

) ≤ k

(
Tg(x, y),Tg(u, v),Tg(w, z)

)

for all (x, y), (u, v), (w, z) ∈ Y , where TF ,Tg : X → X are mappings such that TF (a,b) =
(F(a,b),F(b,a)) and Tg(a,b) = (ga, gb) and 
 is defined in (). From Lemma ., since
(X,G) is G-complete, (Y ,
) is 
-complete. In this case, applying Theorem ., we get
that TF and Tg have a common fixed point, which implies from Lemma . that F and g
have a common coupled fixed point.
Analogously, Theorem . is obtained from Theorem .. �

Example . Let X =R. Define G : X ×X ×X → [, +∞) by

G(x, y, z) = |x – y| + |x – z| + |y – z|

for all x, y, z ∈ X. Then (X,G) is a G-metric space. Define a map F : X ×X → X by F(x, y) =

x –


y and g : X → X by g(x) = x

 for all x, y ∈ X. Then, for all x, y,u, v, z,w ∈ X with
y = v = z, we have

G
(
F(x, y),F(u, v),F(w, z)

)
= G

(


x –



y,


u –



v,


w –



z
)

=


[|x – u| + |x –w| + |u –w|]

and

G(gx, gu, gz) +G(gy, gv, gw) = G
(
x

,
u

,
w


)
+G

(
y

,
v

,
z


)

=


[|x – u| + |x –w| + |u –w|].

Then it is easy to see that there is no k ∈ [, ) such that

G
(
F(x, y),F(u, v),F(w, z)

) ≤ k

[
G(gx, gu, gw) +G(gy, gv, gz)

]

for all x, y,u, v, z,w ∈ X. Thus, Theorem . does not provide the existence of the common
fixed point for the maps on this example. However, it is easy to see that  is the unique
point x ∈ X such that x = gx = F(x,x).
On the other hand, notice that Theorem . yields the fixed point. Indeed,



(
TF (x, y),TF (u, v),TF (w, z)

)
=G

(
F(x, y),F(u, v),F(w, z)

)
+G

(
F(y,x),F(v,u),F(z,w)

)
=G

(


x –



y,


u –



v,


w –



z
)
+G

(


y –



x,


v –



u,



z –



w

)

≤ 

[(|x – u| + |x – z| + |u – z|) + (|y – v| + |y –w| + |v –w|)],

http://www.fixedpointtheoryandapplications.com/content/2013/1/0


Agarwal and Karapınar Fixed Point Theory and Applications 2013, 2013:0 Page 28 of 33
http://www.fixedpointtheoryandapplications.com/content/2013/1/0

and also

G(gx, gu, gw) +G(gy, gv, gz) = G
(
x

,
u

,
w


)
+G

(
y

,
v

,
z


)

=


[|x – u| + |x –w| + |u –w|].

Then the condition () of Theorem . holds for k ∈ [  , ). Thus, all conditions of Theo-
rem . are satisfied, which provides the common coupled fixed point of F and g .

5.2 Nashine’s common coupled fixed point results in a G-metric space
Nashine [] studied common coupled fixed points on ordered G-metric spaces and
proved the following theorems.

Theorem . Let (X,G,�) be a partially ordered G-metric space. Let F : X ×X → X and
g : X → X bemappings such that F has the mixed g-monotone property. Suppose that there
exist x, y ∈ X such that gx � F(x, y) and F(y,x) � gy. Suppose also that there exists
k ∈ [,  ) such that

G
(
F(x, y),F(u, v),F(w, z)

) ≤ k
[
G(gx, gu, gw) +G(gy, gv, gz)

]
()

holds for all x, y,u, v,w, z ∈ X satisfying gx� gu � gw and gy� gv� gz,where either gu �= gz
or gv �= gw.We assume the following hypotheses:

(i) F(X ×X) ⊆ g(X),
(ii) F is G-continuous,
(iii) g(X) is G-complete,
(iv) g is G-continuous and commutes with F .

Then F and g have a coupled coincidence point, that is, there exists (x, y) ∈ X × X such
that gx = F(x, y) and gy = F(y,x). If gu = gz and gv = gw, then F and g have a common fixed
point, that is, there exists x ∈ X such that gx = F(x,x) = x.

Theorem . If in the above theorem we replace the G-continuity of F by the assumption
that X is g-ordered complete, then F and g have a coupled coincidence point.

Theorem . Theorem . and Theorem . follow from Corollary . and Corollary .,
respectively.

Proof From (), for all (x, y), (u, v), (w, z) ∈ X ×X with gx � gu� gw and gy� gv� gz, we
have

G
(
F(x, y),F(u, v),F(w, z)

) ≤ k

[
G(gx, gu, gw) +G(gy, gv, gz)

]
and

G
(
F(y,x),F(v,u),F(z,w)

) ≤ k

[
G(gx, gu, gw) +G(gy, gv, gz)

]
.

This implies that for all (x, y), (u, v), (z,w) ∈ X ×X with gx� gu � gw and gy � gv� gz,

G
(
F(x, y),F(u, v),F(w, z)

)
+G

(
F(y,x),F(v,u),F(z,w)

) ≤ k
[
G(gx, gu, gw) +G(gy, gv, gz)

]
,

http://www.fixedpointtheoryandapplications.com/content/2013/1/0


Agarwal and Karapınar Fixed Point Theory and Applications 2013, 2013:0 Page 29 of 33
http://www.fixedpointtheoryandapplications.com/content/2013/1/0

that is,



(
T(x, y),T(u, v),T(w, z)

) ≤ k

(
(gx, gy), (gu, gv), (gz, gw)

)

for all (x, y), (u, v), (z,w) ∈ Y with (gx, gy)� (gu, gv) � (gw, gz).
From Lemma ., since (X,G) isG-complete, (Y ,
) is
-complete. Also, since F has the

mixed g-monotone property, T is a g-nondecreasing mapping with respect to �. From
the assumption of Theorem ., we have (gx, gy) � T(x, y). Now, if F isG-continuous,
then T is 
-continuous. In this case, due to Corollary ., we deduce that T and g have
a coincidence point, which from Lemma . implies that F and g have a coupled coinci-
dence point. If, on the other hand, X is g-ordered complete, then Y satisfies the following
property: if a nondecreasing (with respect to �) sequence {un} in Y converges to a point
u ∈ Y , then un � u for all n. According to Corollary ., T and g have a coincidence point,
which from Lemma . implies that F and g have a coupled coincidence point. �

5.3 Common coupled fixed point results of Aydi et al. in a G-metric space
Recently, Aydi et al. [] proved the following theorems on G-metric spaces.

Theorem . Let (X,�) be a partially ordered set and G be a G-metric on X such that
(X,G) is a G-complete G-metric space. Suppose that there exist maps φ ∈ � and F : X ×
X → X and g : X → X such that

G
(
F(x, y),F(u, v),F(w, z)

) ≤ φ

(
G(gx, gu, gw) +G(gy, gv, gz)



)
()

for all x, y,u, v,w, z ∈ X with gx � gu � gw and gy � gv � gz. Suppose also that F is
G-continuous and has the mixed g-monotone property, F(X × X) ⊂ g(X), and g is G-
continuous and commutes with F . If there exist x, y ∈ X such that gx � F(x, y) and
F(y,x) � gy, then F and g have a coupled coincidence point, that is, there exists (x, y) ∈
X ×X such that gx = F(x, y) and gy = F(y,x).

Theorem . Let (X,�) be a partially ordered set and G be a G-metric on X such that
(X,G,�) is G-complete. Suppose that there exist φ ∈ � and F : X ×X → X and g : X → X
such that

G
(
F(x, y),F(u, v),F(w, z)

) ≤ φ

(
G(gx, gu, gw) +G(gy, gv, gz)



)
()

for all x, y,u, v,w, z ∈ X with gx � gu � gw and gy � gv � gz. Suppose also that X is g-
ordered complete and F has the mixed g-monotone property, F(X × X) ⊂ g(X), and g is
G-continuous and commutes with F . If there exist x, y ∈ X such that gx � F(x, y) and
F(y,x) � gy, then F and g have a coupled coincidence point, that is, there exists (x, y) ∈
X ×X such that gx = F(x, y) and gy = F(y,x).

The following result can be also proved easily.

Theorem . Theorem . and Theorem . follow from Theorems . and ..
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Proof We observe from () that for all (x, y), (u, v), (w, z) ∈ X × X with gx � gu � gw and
gy� gv � gz, we have

G
(
F(x, y),F(u, v),F(w, z)

) ≤ φ

(
G(gx, gu, gw) +G(gy, gv, gz)



)
,

and also

G
(
F(y,x),F(v,u),F(z,w)

) ≤ φ

(
G(gx, gu, gw) +G(gy, gv, gz)



)
.

Therefore, for all (x, y), (u, v), (w, z) ∈ X × X with gx � gu � gw and gy � gv � gz, the fol-
lowing inequality holds:

G(F(x, y),F(u, v),F(w, z)) +G(F(y,x),F(v,u),F(z,w))


≤ φ

(
G(gx, gu, gw) +G(gy, gv, gz)



)
,

that is,


′(TF (x, y),TF (u, v),TF (w, z)
) ≤ ϕ

(

′(Tg(x, y),Tg(u, v),Tg(w, z)

))
for all (x, y), (u, v), (w, z) ∈ Y with (x, y) � (u, v) � (w, z), where TF ,Tg : X → X are
mappings such that TF (a,b) = (F(a,b),F(b,a)) and Tg(a,b) = (ga, gb). Note that here,

′ : Y × Y × Y → [,∞) is a G-metric on Y defined by


′((x, y), (u, v), (w, z)) = 
((x, y), (u, v), (w, z))


for all (x, y), (u, v), (w, z) ∈ Y .

Thus, we proved that the mappings TF and Tg satisfy the conditions of Theorem . (resp.
Theorem .). Hence, TF and Tg have a coincidence point, which implies that F and g have
a coupled coincidence point. �

5.4 Common coupled fixed point results of Cho et al. in a G-metric space
Finally, we consider the results of Cho et al. [].We state their fixed point theorems below.

Theorem . Let (X,�) be a partially ordered set and G be a G-metric on X such that
(X,G) is a G-complete G-metric space. Let F : X ×X → X and g : X → X be G-continuous
mappings such that F has the mixed g-monotone property and g commutes with F .Assume
that there exist altering distance functions φ and ψ such that

ψ
(
G

(
F(x, y),F(u, v),F(w, z)

)) ≤ ψ
(
max

{
G(gx, gu, gw),G(gy, gv, gz)

})
– φ

(
max

{
G(gx, gu, gw),G(gy, gv, gz)

})
()

for all x, y,u, v,w, z ∈ X with gx � gu � gw and gy� gv � gz. Suppose also that F(X ×X) ⊆
g(X). If there exist x, y ∈ X such that gx � F(x, y) and F(y,x) � gy, then F and g
have a coupled coincidence point, that is, there exists (x, y) ∈ X × X such that gx = F(x, y)
and gy = F(y,x).
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Theorem . Let (X,�) be a partially ordered set and G be a G-metric on X and let
F : X × X → X and g : X → X be mappings. Assume that there exist altering distance
functions φ and ψ such that

ψ
(
G

(
F(x, y),F(u, v),F(w, z)

)) ≤ ψ
(
max

{
G(gx, gu, gw),G(gy, gv, gz)

})
– φ

(
max

{
G(gx, gu, gw),G(gy, gv, gz)

})
()

for all x, y,u, v,w, z ∈ X with gx � gu � gw and gy � gv � gz. Suppose that g(X) is G-
complete, the mapping F has the mixed g-monotone property and F(X×X) ⊆ g(X). If there
exist x, y ∈ X such that gx � F(x, y) and F(y,x) � gy, then F and g have a coupled
coincidence point, that is, there exists (x, y) ∈ X ×X such that gx = F(x, y) and gy = F(y,x).

Theorem . Theorem . and Theorem . follow from Theorems . and ..

Proof From the assumption, for all (x, y), (u, v), (z,w) ∈ X ×X with gx� gu� gw and gy �
gv � gz, we have

ψ
(
G

(
F(x, y),F(u, v),F(w, z)

)) ≤ ψ
(
max

{
G(gx, gu, gw),G(gy, gv, gz)

})
– φ

(
max

{
G(gx, gu, gw),G(gy, gv, gz)

})
()

and

ψ
(
G

(
F(y,x),F(v,u),F(z,w)

)) ≤ ψ
(
max

{
G(gx, gu, gw),G(gy, gv, gz)

})
– φ

(
max

{
G(gx, gu, gw),G(gy, gv, gz)

})
. ()

This implies (since ψ is nondecreasing) that for all (x, y), (u, v), (z,w) ∈ X × X with gx �
gu � gw and gy� gv � gw, we have

ψ
(
max

{
G

(
F(x, y),F(u, v),F(w, z)

)
,G

(
F(y,x),F(v,u),F(z,w)

)})
≤ ψ

(
max

{
G(gx, gu, gw),G(gy, gv, gz)

})
– ϕ

(
max

{
G(gx, gu, gw),G(gy, gv, gz)

})
,

that is,

ψ
(
�

(
TF (x, y),TF (u, v),TF (z,w)

)) ≤ ψ
(
�

(
Tg(x, y),Tg(u, v),Tg(z,w)

))
– ϕ

(
�

(
Tg(x, y),Tg(u, v),Tg(z,w)

))
()

for all (x, y), (u, v), (z,w) ∈ Y with (gx, gy) � (gu, gv) � (gz, gw), where TF ,Tg : X → X

such that TF (a,b) = (F(a,b),F(b,a)) and Tg(a,b) = (ga, gb) and � is a G-metric defined
in (). Regarding Theorem ., the conditions () and () of Theorem . are equiv-
alent. Therefore, the mappings TF and Tg satisfy the conditions of Theorem . (resp.
Theorem .) and have a coincidence point. Hence, the maps F and g have a coupled co-
incidence point. �
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