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Abstract

This note contains a short survey on some recent work on symplectic con-
nections: properties and models for symplectic connections whose curvature is
determined by the Ricci tensor, and a procedure to build examples of Ricci-flat
connections. For a more extensive survey, see [5]. This note also includes a
moment map for the action of the group of symplectomorphisms on the space
of symplectic connections, an algebraic construction of a large class of Ricci
flat symmetric symplectic spaces, and an example of global reduction in a non
symmetric case.
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Introduction

In view of Darboux’s theorem, symplectic geometry is by essence global. Consid-
ering symplectic connections (which, on a given symplectic manifdldw) form
an infinite dimensional affine space) is nevertheless justified by their importance in
deformation quantization and by deep links between conditions on a symplectic con-
nection (curvature conditions for example) and the geometry of the manifold.

The paper is organized as follows. In section 1, | define a symplectic structure on
the space of symplectic connections and a moment map for the action of the group
of symplectomorphisms on this space. Section 2 is devoted to an algebraic study
of the symplectic curvature tensor and to the definition of two types of symplectic
connections: Ricci-type and Ricci-flat. In section 3, | recall how all local models
of Ricci-type connections can be built by a Marsden-Weinstein reduction procedure



of a constraint surface given by a quadratic equation in a standard symplectic vector
space. This reduction procedure is global for a class of quadratic polynomials, giv-
ing rise to all Ricci-type symmetric symplectic spaces. | give an example of global
reduction giving a non symmetric connection. An induction procedure (which is a
sort of inverse of the reduction procedure above), described in section 4, gives exam-
ples of Ricci-flat connections. | also give a purely algebraic construction of Ricci flat
symmetric symplectic spaces.

| thank all my co-authors of [5] with whom | had many illuminating discussions.
| also thank the organisers of the meeting, and in particular Sylvie Paycha.

1 The space of symplectic connections

A symplectic connection[15, 17] on a symplectic manifolM, ) is a torsion free
linear connectiorm] on M for which the symplectic 2—formo is parallel.

To see the existence of such a connection, ta%éo be any torsion free linear
connection (for instance, the Levi Civita connection associated to a ngetridVl).
Consider the tensdt onM defined by o(Y,Z) =: @(N(X,Y),Z) whereX,Y, Z are

vector fields orM (i.e. € x(M)). Sincew is closed, one hagp o(N(X,Y),Z) =0,
XYZ
where & denotes the sum over the cyclic permutations of the listed set of elements.

Define

1 1
OxY := 0%Y + NXY) + ZN(Y, X).

Then[ is a symplectic connection giM, o).

To see how (non)-unique is a symplectic connection, fakgmplectic; then any
other linear connection read Y := OxY +A(X)Y whereA s a 1-form with values
in the endomorphisms of the tangent bundle. The connectids torsion free iff
AX)Y = A(Y)X and is symplectic if furthermore Oy o (Y, Z) = —o(AX)Y,Z) —
o(Y,A(X)Z) hence iff

A= w(AX)Y,Z)

is totally symmetric.

This says thathe space&’ (M, w) of symplectic connectionson (M, ) is an
affine space modelled on the space of symmetric covariant 3—tensorfieMstoe
choice of a particular symplectic connectiohi.e. a base point i#’(M, ®), allows
us the identification:

EM,0) =0+T*(ST*M).

The space of symplectic connections has thus a structure of lineeihéirspace.



1.1 Moment map on the space of symplectic connections

There is a natural symplectic structure on the spé@d, ) of symplectic connec-
tions onM. The tangent space (M, w) at a “point” [ is identified with the space
*(S*T*M) of smooth symmetric covariant 3—tensorfieldshdn

AX.Y,2) =3 (Y, 2).
dt|,
If M is compact, we may define at each pdihbf £(M, w) an alternate 2-forn@
on the tangent spad& (S°T*M) by
wn

a8 = [ (AB)% )

M n!

where(-,-) denotes the pairing of symmetric covariant 3—tensorfields inducea by
thus, in a chart(A, B) (x) = (& )"V (@ 1212 (@ ) 32 i1, (X)By, 1, (X).

If M is not compact, we can still give a meaning to the above expressionl Let
be a smooth almost complex structure dncompatible withe (i.e. @(IX,JY) =
o(X,Y) andw(X,JX) > 0 if X # 0); this always exists. Lej be the corresponding
Riemannian structure (i.g(X,Y) = o(X,JY)). Then, ifA is the 3-form:

A (X.Y,Z) = A(JX,JY,JZ), @3

the pairing is given by
(AB)=A"B ©)

where- indicates the scalar product of 3-covariant tensors inducegl tiyA andB
are smooth tensor fields which dré(in the sense thafA||> = f,,A- A2 < ), then
formula (1) has a meaning using Cauchy-Schwarz and the fact|#14t = ||A||2.
Thus the expression makes sense provided one restricts to elefiarniss (M, )
which decrease “sufficiently fast atonM”.

In any case the 2—for defines asymplectic structure on the spacef’(M, )
in the following sense: i2;(A,B) = 0B thenA = 0; andQ(; is a constant 2—form,
hence closed.

The group? of symplectic diffeomorphisms ¢M, @) acts naturally o#' (M, @):

(9 OxY() =0, (Og1x02Y) (4)

It clearly preserves the symplectic 2-fofn

We want to study when the action &f on &(M, ®) posseses a moment map. Let
us recall what a moment map is in the finite dimensional context. @ bt a fi-

nite dimensional Lie group acting by symplectomorphisms on a finite dimensional
symplectic manifold M’, @’). For anyX € g, we denote by<*™' the corresponding
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fundamental vector field okl’, i.e. X;™ = & exp—tX - x,. The action has a moment
map if there exists a map froM’ in the dual of the Lie algebra @3,

J:M —g" suchthat <J(X),X>=2Ax(X) VXeg (5)
wherely is a smooth function oM’ so that
dAx = i(X*) o’ and  {Ax,Av} = Axy (6)
where{-,-} denotes the Poisson bracket@f(M’) induced byw’, i.e.
{f.0} = o' (Xs, %)

whereX; is the Hamiltonian vector field correspondingfta.e. such that(X;) o' =
df.

In our situation the Lie algebra & consists of smooth symplectic vector fields
onM; if X is such a vector field4 o =0 < di(X)w = 0. The corresponding vector
field X** on &(M, o) is such that

X (Y,Z,U)(x) = ax((ZO)yZ,U), 7)

where(%0)yZ = [X,0vZ] — O v;Z — Oy[X,Z] and one checks easily that/ is
indeed a completely symmetric covariant 3—tensor.

We look for a moment map, at least in a formal sense, for the symplectic action
of ¥ on&(M, o).

Assume first thaM is simply connected and compactXfis a symplectic vector
field onM, then there exists a functioix on M so that

i(X)o = dfy.

The functionfy is defined up to an additive constant and one can choose the constant

so that N
0]

fx— =0.
/M *nl

Thus there is a linear isomorphism between the space of symplectic vector fields and
the spac%fg)(M) of smooth functions oM having 0 mean.
Now, if X,Y are symplectic vector fields:

i((X,Y])o = [i(X), &o = —KiX)o=—Rdi = —d.K fx = d{fx, fv}

and clearly . ]
0 (0]
/M{fx,fy}ﬁ_/M,Zx(fyﬁ)_O

so the linear isomorphism is a Lie algebra isomorphism.
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If M is simply connected and non compact, let us consider the ¢#pob sym-
plectic diffeomorphisms ofM, @) which are the identity outside a compact set. The
algebra of this group is the space of compactly supported symplectic vector fields on
M. If X is such a field

i(X)o =dfx

where the functiorfy is defined up to an additive constant; there exists a compact set
K such thatd fx = 0 onM \ K. Assume thaM is “simple ate”; by this we mean that

M satisfies the following topological condition: for any compactisetthere exists

a compact se such that

(HHKDOK’ (i) M\ K is connected

With this assumption, we can choose the constant in such a wajxtiatompactly
supported.
Hence we have a linear isomorphism between the space of compactly supported sym-
plectic vector fields oiM, ) and the spac;’ (M) of compactly supported smooth
functions onM.

We consider both cases! compact and simply connected or, respnon com-
pact, simply connected, “simple &t. If X is a symplectic vector field oM (resp. a
compactly supported symplectic vector field Miy:
wn
n

(ioch0s) @ = [ (087 ®)

and the integral makes sense.

A moment map should be a mag from the space&’(M, ) of symplectic con-
nections, with values in the dual of the algelﬁg)(M) (resp. ¢5°(M)). To avoid
difficulties, we shall look for a moment map with values in a subspace of the dual.
The spaceg™” (M) can be identified with a subspace of the duaf@)(M) (resp.

%5 (M)). Thus we are looking for a map

J 1 EM,0) — €*(M) 9)

so that, for any symplectic vector fieki(resp. any compactly supported vector field
X) onM, the smooth function# () on M satisfies

wn
< SO f>= [ 7O = () (10
wheregy is a real function o’ (M, @) such that
d & o"
SO (O+tA), = Qn(X ,@:/M(.,zﬂxm,g)ﬁ. (12)



Observe that

(ZDO)yz = [X,OyZ] - OxyZ—-0y[X,Z]
= OxOvZ—OnyzX - OxyjZ — OyOxZ+ Oy 02X
= RYX,Y)Z+ (0% 2X),

with R” the curvature tensor dfl (i.e. R¥(X,Y)Z = (OxOy — OvOx — Oxy)) 2).
We want to solve the relation
wn

(i/M/(D—i-tA) fXCI(,])!n|O = /M (D%XD”A\)(:‘])!n:_/,\./l(w_l)uv((gxm)%au)tp\(}tn!
= _/M( _l)uv(Xquu"‘( ))qﬂ

n!
with Uy, fx = arj X" and with sumation over repeated indices.

Proposition 1.1 (see also [13]) LetM, o) be a simply connected compact symplec-
tic manifold (resp. a simply connected symplectic manifold “simpte”at

Consider the spac&’ (M, ®) of smooth symplectic connections (M, ®) (resp.
choose a symplectic connectidhon (M, w) and look at the space of connections
of the formJ + A where A is smooth and ir?). This space admits a natural sym-
plectic structure.

Consider the grouy of symplectic diffeomorphisms @¥1, ®) (resp. the group of
symplectic diffeomorphisms reducing to the identity outside a compact set).

Then the action o# on &(M, o) is symplectic and admits a moment map, with
values in the space of smooth functions on M, given by formula

1 1
S (0) = =5 Tpg P+ 3 RpgreR 7P — (T )P (12)
where one sums over repeated indices, where indices are lifted via the components
of the inverse matrix of the one given by the componends @fhere ¥ is the Ricci
tensor ofCJ (i.e. r*(X,Y) =Tr(Z— R”(X,Z)Y)) and, where, for any tensor A, the
second covariant derivative is defined I6§,A = Dfap oA and

O v)A = Ox(OyA) — O,y A

Indeed one checks that

gRD“A(X,Y)Z\O = Ox(A(YY)Z)+A(X)OyZ

dt
—Ov(AX)Z) — AY)OxZ — A([X,Y])Z
(OxA)(Y)Z = (OvA)(X)Z;

C?trDHA(X’Y)O = Tr(Z+— (OxA)(2)Y — (OzA)(X)Y)
= —Tr(Z~ (OzA)(X)Y).
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We also have:

d
a(Dﬁqu“A) PUlo = (OgA)tpr P + Ay (Ogr )P — (DA P
so that
d Opg S 1 Opars
af(m+tA)|O =T (DsA)pq+§R (OpA)grs — (BaA) prs)

~((OgA)r P+ Ay (Car )P — (DA PY).

Remark 1.2 This moment map is formal and has up to now no geometrical interpre-
tation.

1.2 Symplectic connections and Deformation Quantization

Symplectic connections are closely related to natural formal deformation quantiza-
tions at order 2. Flato, Lichnerowicz and Sternheimer introduced deformation quan-
tization in [11] (see also [2]); quantization of a classical system is a way to pass
from classical to quantum results and they “suggest that quantization be understood
as a deformation of the structure of the algebra of classical observables rather than
a radical change in the nature of the observables.” In that respect, they introduce a
star product which is a formal deformation of the algebraic structure of the space of
smooth functions on a symplectic (or more generally a Poisson) manifold; the asso-
ciative structure given by the usual product of functions and the Lie structure given
by the Poisson bracket are simultaneously deformed.

Definition 1.3 A star product on a symplectic manifoldM, o) is a bilinear map

C*(M) xC*(M) — C*(M)[[V]] (u,v)+— ux,Vv:= %vrcr(u,v) (13)

such that

(uxV) W= ux (vxw) (when extende®[[v]] linearly);

Co(u,v)=uv  G(u,v) —Ci(v,u) = {u,v};

lxu=uxl=u.

If all the C;’s are bidifferential operators, one speaks dfifferential star product ;
if, furthermore, eaclt; is of order<r in each argument, one speaks afiatural
star product.

The link between symplectic connections and star products already appears in the
seminal paper [2] where the authors observe that if there is a flat symplectic connec-
tion 0 on (M, w), one can generalise the classical formula for Moyal star product



xm defined oriR?" with a constant symplectic 2-form. A construction of a star prod-
uct on a symplectic manifold associated to any symplectic connection was given by
Fedosov:

Theorem 1.4 [10] Given a symplectic connectidn and a sequenc@ = ¥, VKo
of closed2-forms on a symplectic manifo(t1, @), one can build a star produet;
on it.

This is obtained by identifying the spa€& (M)][[v]] of formal series in a parameter
v of smoonth functions on the manifold, with a subalgebra of the algebra of sections
of a bundle in associative algebra called the Weyl bundi®lorThe subalgebra is
that of flat sections of the Weyl bundle, when this is endowed with a flat connection
whose construction is related to the choices made of the connectigham of the
sequence of closed 2-forms th

Reciprocally a natural star product determines a symplectic connection. This was
first observed by Lichnerowicz [16] for a restricted class of star products.

Theorem 1.5 [12] A natural star product at order 2 determines a unique symplectic
connection.

2 Choice of particular symplectic connections

There are examples of symplectic manifolds where there is a natural choice of a
unigue symplectic connection, preserving some extra data on the manifold.

Pseudo Kahler manifolds

Given a symplectic manifoldM, @), one can choose an almost complex compatible
structured i.e. as before) : TM — TM is a bundle endomorphism so th#t =
—ld oJX,JY)=w(X,Y)ando(X,IX) > 0if X #0.

Lemma 2.1 A symplectic connectidd preserves J (in the sense thal = Q) iffitis
the Levi Civita connection associated to the pseudo Riemannian metric g defined by
9(X,Y) = w(X,JY); so itis unique and it only exits in a (pseud@)iler situation.

Symmetric symplectic space

A symmetric symplectic space is a symplectic manifold with symmetries attached to
each of its points. Precisely:



Definition 2.2 A symmetric symplectic spacés a triple(M, o, S) where(M, o) is a
symplectic manifold and whei®is a smooth maf: M x M — M such that, defining
for any pointx € M the map (called the symmetry gt

S:=9X%-):M—=M, (14)

eachs, squares to the identitg] = Id] and is a symplectomorphism (¥, ) [S:@ =
o], xis an isolated fixed point o, ands,s;s, = Sgy for anyx,y € M.

Lemma 2.3 On a symmetric symplectic space, there exists a unique symplectic con-
nection for which each symmetryis an affinity. It is given by

1

On a symmetric symplectic space, the deformation quantisation constructed via Fe-
dosov using this unique connection has the symmetries acting as automorphisms.

A natural way to select a subclass of symplectic connections on any symplectic
manifold is to impose further conditions on its curvature.

2.1 Curvature tensor for a symplectic connection

Thecurvature tensor R” of a symplectic connectiofl can be viewed as a 2-form on
M with values in the endomorphisms of the tangent bundleRyiiX, Y) has values in
the symplectic Lie algebrap(TxM, ax) = {A € End TxM) | ax(Au,V) + wx(u,Av) =
0Vu,ve TuM}.
The Ricci tensor r” is the 2-tensor”(X,Y) = Tr(Z — R”(X,Z)Y). The first
Bianchi identity (@ R”(X,Y)Z = 0) implies that the Ricci tensaf’ is symmetric.
XY,z

The second possible trace of the curvature terigd,Y) := 5; o(R{(&,€)X,Y),
where theg constitute a basis diM and thed constitute the dual basis &M de-
fined byw(g,el) = Bij, is proportional to the Ricci tensor. Indeed, the first Bianchi
identity implies that’ = —2r". Since the Ricci tensor is symmetric and one only
has a skewsymmetric contravariant 2-tensoib(the Poisson tensor related to the
symplectic form) there iso “scalar curvature” .

Thesymplectic curvature tensoris defined as

RY(X,Y,Z,T) = o(R(X,Y)Z,T); (16)

it satisfies @ R/(X,Y,Z,T) =0, it is skewsymmetric in its first two arguments and
X.Y.Z

symmetric in its last two. We denote ¥, the space of 4-tensors dpM satisfying

those algebraic identities. The gro8mTM, wx) = { A€ EndV) | ax(Au,Av) =

ox(u,v) Yu,v eV } acts onTxM, and thus oiZ,. Under this action the spacg, in
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dimension 2 > 4, decomposes into two irreducible subspaces #Z8F &, ® # ..
The coresponding decomposition of the curvature tensor reads

RS =EJ+W, (17)

where

EY(X,Y)Z = Zniz<2w(X,Y)pDZ+a)(X,Z)pDY—w(Y,Z)pDX (18)

+o(X,p 2)Y — a)(Y,pDZ)X)

with r™ converted into an endomorphise(X, p"Y) = r7(X,Y).

Definition 2.4 A symplectic connectiofl on (M, o) will be said to beof Ricci-type
if W& = 0; it will be said to beRicci-flat if EFY = 0 (hence iffr™ = 0).

A twistorial interpretation of the Ricci-type condition:

LetJ(M) — M be the bundle of compatible positive almost complex structures on the
tangent bundle; a symplectic connectionMrdefines an almost complex structure
onJ(M); itis integrable iff the connection is of Ricci-type. [19]

2.2 Variational principle to select some symplectic connections

If one tries to select symplectic connections through a variational principle [6], one
way is to build a Lagrangiah(R"), which is a polynomial in the curvature of the
connection, invariant under the action of the symplectic group, and consider the func-

tional
/ LR oM.
M

There is no invariant polynomial of degree 1 in the curvature, so the easiest choice is
a polynomial of degree 2 iR”. The space of degree 2 polynomials in the curvature
which are invariant under the action of the symplectic group is 2-dimensional and
spanned byE", EY) and(W",W") (or, equivalently byR”,R”) and(r",r")) where

(+,-) denotes, as before, the (symmetric) function-valued product of (even) tensors
induced byw.

Precisely, ifSandT are even tensors-fields & of the same typg[S T) is given in

local coordinates as

R IR i jgm oo 0L
(ST) = (0 ) (0 ) Peayj; - 05, S, 5 T %
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One oberves that a combinaison of the corresponding Lagrangian multiplied by the
volume form @") gives

1
P () A" %= —[(r",r") - (R, RY)|0"
1( ) 167'[2[( ) ) 2( ) )]
whereP; is the first Pontryagin class of the manifditl Hence, all non trivial Euler
equations related to a variational principle built from a second order invariant poly-
nomial in the curvature are the same:

@ (Oxr)(Y,2) =0. (19)
X\Y,Z

Definition 2.5 A symplectic connectiofl is said to bepreferred if it is a solution
of the equation 19.

The space of preferred connections on a 2-dimensional symplectic manifold has been
studied in [6]. In higher dimension, only partial results are known.

3 Reduction and Ricci-type connections

3.1 A construction by reduction

Let (M =R?>"2 Q') be the standard symplectic vector space.Ake a nonzero ele-
ment in the symplectic Lie algebsm(R?"2,Q’). Let Za be the closed hypersurface
>a C R2"2 defined by

Sa={xeR*?2|Q'(x,Ax) = 1}. (20)

(In order forza to be non empty we replace, if necessanby —A.)

The 1-parameter subgroup exXpof the symplectic group acts dR?"*2, pre-
serving Q' and Za; the corresponding fundamental vector figdt on R2"2 (de-
fined by A := %exp—tmqo = —Ax) is Hamiltonian; indeed(A*)Q" = dHa, with
Ha(x) = %Q’(x, AX). The hypersurfacga is a level set of this Hamiltonian.

We shall consider theeduced space!\/lrecj := 2/ expta With the canonical projection
miIp— M,

Since the vector fieldhx is nowhere 0 orX, this can always be locally defined.
Indeed, for any, € Za, one can find local coordinatds?, ...,y*"*2} in which the
vector fieldAx = aiyl so there exists a neighborhodgd, (C 2a), a ballD"d ¢ R?" of
radiusro, centered at the origin, a real intervak (—¢, ) and a diffeomorphism

% : D4 | — Uy, (21)

such thaty (0,0) = xo andy (y,t) = exp—tA(x(y,0)).
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ThenUy, / (expta  tel} ~ D'®d, and one defines : Uy, — D" by 7 = py @ xy 1.
The spacé™d is a local version of the Marsden-Weinstein reductiorzgfaround
the pointxg.

If x € 2, the tangent space is given Byza = { X € R?"2|Q'(X,Ax) = 0}; one
defines#(C TxZa) = { X € R?™2|Q/(X,AX) = 0, Q'(X,X) = 0}; thenr,, defines
an isomorphism betweeft; and the tangent spad'gaDred fory = m(x).

A reduced symplectic formon D4, @™d, is defined by

DT ) (X,Y) 1= (X, V) (22)
whereZ denotes the horizontal lift & € Tnyed; i.e.Z € s andm., (X) = X.

Let 0 be the standard flat symplectic affine connectiorRsfi2. Thereduced

symplectic connectiond®® on D" is defined by

(O%9Y)y = ., (OgY — Q' (AX,Y)x+ Q' (X,Y)AX). (23)
Proposition 3.1 [1] The manifold(D"Y, »™Y) is a symplectic manifold and™ is
a symplectic connection of Ricci-type on this manifold.
3.2 Local models for Ricci type connections

Let (M,®) be a smooth symplectic manifold of dinnZn > 2) endowed with a
smooth Ricci-type symplectic connectian Then the curvature endomorphism reads

RYX,Y) = — [—20(X,Y)p" —p"Y@X+p"X®Y - X®p"Y +Y®p"X]

(24)
whereX denotes the 1-form(X)w (forX a vector field orM) and where, as before,
p" is the endomorphism associated to the Ricci tensdt{,V) = o(U,p"V) ].
Bianchi's second identity (33 (OxR™)(Y,Z) = 0) shows that there exists a vector

X.Y.Z

2(n+1)

field U™ such that

1
Oxp” = ———[XeoU"+U" e X|; 2
XP 2n+1[®Q,+U @ X]; (25)

thus any Ricci-type connection is preferred in the sense of equation (19); further
derivation proves the existence of a functibhsuch that

B 2n+1

OxUY =
X 2(n+1)

(p™)?X + £7X; (26)

and there exists a real numb€¥ such that

4(n+1)]cD

tr(”D)2+2n+1

=K". (27)
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The second covariant derivativé?R" is determined byJU" hence byp" and
fo (26). Sincef" satisfies equation 27, all succesive covariant derivative of the
curvature tensor are determinedy, U™ andK".

Hence, given a poinpg in a smooth symplectic manifolM, ) of dimension
2n (n > 2) endowed with a smooth Ricci-type connectidnthe curvatureRE0 and
its covariant derivative$C*R") , (for all K) are determined byp., U, K"). This
implies:

Corollary 3.2 Let (M, ®,0) (resp. (M, @’,0)) be two real analytic symplectic
manifolds of the same dimensian (n > 2) each of them endowed with a symplectic
connection of Ricci-type.

Assume that there exists a linear mapTp,M — T,. M’ such that (i) bw)’% = wy,
(ii) bug = uE,; (i) boplobt= p)%'. Assume further that K= K"".

Then the manifolds are locally affinely symplectically isomorphic, i. e. there
exists a normal neighborhood of &esp. %) Uy, (resp. %) and a symplectic affine
diffeomorphismp : (Uy,, 0,0) — (U)Q(,), o’,[0') such thatp(xg) = X5 and @,x, = b.

A direct computation shows that in the reduction procedure described above, the
Ricci type symplectic connectidi®® on (D', @™®d) has corresponding™*, U™
and {2 given by:

PUX(X) = —2(n+1)AX (28)
U7 (x) = —2(n+1)(2n+1)A2x (29)
(Tt = 2(n+1)(2n+1)Q' (A%, AX) (30)

where@ is the map induced bg* with values in;:
AL(X) = AKX 4+ Q' (AKX, X)Ax— Q' (AKX, AX)X.
Combining this with corollary 3.2 we get:

Theorem 3.3 [8] Any real analytic symplectic manifold with a Ricci-type connection
is locally symplectically affinely isomorphic to the symplectic manifold with a Ricci-
type connection obtained by a local reduction procedure aroung €1,0,...,0)
from a constraint surfacea defined by a second order polynomiah Hor A €
sp(R?2 Q') in the standard symplectic manifold®2"2,Q") endowed with the
standard flat connection.

Indeed ifp € M and if€ is a symplectic frame & (i.e. & : (R2",Q@V) — (Ty, wp)
is a symplectic isomorphism of vector spaces), one defines

G&)= (&)U P, A=) p(P)E (31)
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and

0 f(p) —Ge©)
2(n+1)(2n+1) 2(n+1)(2n+1)
Ag)=| 1 0 0 (32)
—0(S) —h(5)
2(n+1)(2n+1) 2(n+1)

with u:= Q'(u,-) and one looks at the reduction for ttis= A(&).

3.3 Global models for Ricci type connections

Theorem 3.4 [8] If (M, w,0) is of Ricci type with M simply connected there exists
(P, ") symplectic of dimensia&higher with a flat connectiofil” so that(M, », 0)
is obtained fromP, w”, OP) by reduction.

The manifoldP is obtained as the produBt= N x R of a contact manifoldN
and the real liné&k. The manifoldN is the holonomy bundle ovéM corresponding to
a connection defined on tigR?"2, Q')- principal bundle

B'(M) = B(M) xgypan ) SHR*2, Q)
with projectionz’ : B(M)’ — M, whereB(M) = M is theSgR?", Q) principal bundle

of symplectic frames ovevl and where we inject the symplectic gro8p(R?",Q)
into SPR22 Q') as the set of matrices

™ - |2 O 2n
J(A)_< 0 A> Ac SpR Q).
The connection form a’ onB'(M) is characterised by the fact that

<h <h
o 1y (X", 0]) = o (X"™).

where —
— (U, X) —p(X)(§)
2(n+1)(2n+1) 2(n+1)
(X)) =| 0 0 —X(&) (33)
. —p(X)(£)
X(&) 2(n+1) 0

whereX € TM with x = 7(&) andX"™ is the horizontal it ofX in T:B(M).

The equations on a Ricci-type connection imply that the curvatufer2n of the
connection -form o' is equal to—2A'7"* o with A’ the SHR?"2, Q') —equivariant
extension ofA to B'(M); and this curvature-2form is invariant by parallel transport
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(d*curv(ef’) = 0).
Thus the holonomy algebra of is of dimension 1. Assumi is simply connected.
The holonomy bundle af’ is a circle or a line bundle ovév, N = M. This bundle
has a natural contact structweiven by the restriction tdl  B(M)’ of the 1—form
—%a’ (viewed as real valued since it is valued in-adimensional algebra). One has
dv =1"w.
The symplectic manifold with connectidi®, ®”, OF) is then obtained by an in-
duction procedure that appears in a more general setting and will be defined in section
4.1.

3.4 Global reduction and symmetric spaces

The reduction construction described in section 3.1 yields a locally symmetric sym-
plectic space (i.e. such that the curvature tensor is parallel) if and only if the element
0+#Ac sp(R?2 Q') satisfiesA? = A1 for a constani € R. The study of symmetric
symplectic spaces was initiated in [4] and [3]. A case by case analysis shows that:

Proposition 3.5 [8] If 0#£ A€ spR?"?, Q') satisfies A= A1 for a constanti € R,

the quotient ofZa by the action oexptA is a manifold Me and the natural projec-

tion map=a — M"Y is a submersion. The manifold™ is a symmetric symplectic
space, and the connection obtained by reduction (which is of Ricci type) is the canon-
ical symmetric connection.

One can show that any simply connected symmetric symplectic gphae, S)
whose canonical symmetric connection is of Ricci type [7] can be obtained by such
a reduction procedure.

Proposition 3.6 There are examples which are not symmetric (i 2isAot a multi-
ple of the identity) and where the quotients{l:= Za/expta is globally defined .

For example consider dR® the symplectic 2-forn)’ and the elemenA in the
symplectic Lie algebra defined in terms of blocs of 2 by 2 matrices as:

0O 0 I 0O DO
o= 0o b o A=| 0 0 I (34)
-1 0 0 0 0O
wherel is the 2 by 2 identity matrix anB = ( _Ol (l) ) We denote byx,y,z) an
element inR® with x,y andzin R2. The hypersurfacga is given by
Sa={(xY,2) eR®|y!Z —y?7 = %}:{(x,y,z) cR8|z#£0,y= HSHZerlzwithl cR}.

(35)
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It is globally diffeomorphic taR> x (R?\ {0}) We chooséx, A = ﬁ, z) for coordi-
nates orxa. An element of the groug = {exptA} is given by
2
| tb YD
I tl
0 |

exptA=1] 0
0
Its action onza C R® is given by(X,y,Z) := exptA- (x,y,2) = (X +tDy+ %Dz,er
tz,z). Remark that the scalar productxofindz is modified byx - Z = x-z— %t.One

can choose on any orbit of the group the unique piry, Z) wherex:Z= 0. This
shows that the reduced space

o s ~2s1 L .o
M™% = Za/ exprajtery = { (%.9,2) € R®| 2 — 7 = > andX-Z=0}  (36)

is globally diffeomorphic tdR? x (R2\ {0}). We choosdi = ilzﬁgule,i = 522
as coordinates ok

The projectionr : 5 — M9 maps the point of coordinatés, A,2) to the point
of coordinates(fi = Xlzignézzl F2(X- DA +2(x- 22 =A+2(x-2),Z=2). Itis a
submersion.

3.5 Special connections

The striking rigidity results on Ricci-type connections turn out to be a special case
of a much more general phenomenon. As we saw, a connection of Ricci-type can
be obtained by a symplectic reduction of a symplectic vector space with a flat sym-
plectic connection. This implies, for example, that the local moduli space of such
connections is finite dimensional.

Another point of view of the above reduction is to consider in the symplectic Lie
algebreg = sp(R?"2, Q) the minimal nilpotent orbit in the adjoint representation on
g ~ SZ(R2n+2):

% = {| x#0,x € R¥™2} = (R"2\ {0})/Z,.

Itis an orbit, hence a symplectic manifold, and it is a cone. Projectivizing by positive
real numbers, one obtains the maniféfd= RP?"*! which has an invariant contact
structure. GiverA # 0 € spR?2, Q) one looks at the points in this projectivized
manifold for which the fundamental vector field associated to the actidrioposi-
tively transversal to the contact distrbution

én={[x] € € | Q(AxXx) > 0}

This is clearly in bijection withéa = {x € % | Q(Ax,x) = 1}.
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This was generalised by M. Cahen and L. Schwafkhin [9]; considerg a
complex simple Lie algebra (or a real simple Lie algebra which contains a long root
space), defin g = g* to be the orbit of a long root vector and its projectivisation
€ = IP;(%?) c § ¢ g which carries a contact distribution. Give# 0 € g one
looks atéa C € consisting of the points where the action fi&idon ¢ is positively
transversal to the contact distribution and one proceeds with standard reduction. The
reduced connection is obtained from a connection defined in terms of the Maurer
Cartan form ory.

Theorem 3.7 [9] In this way one obtains local models for all special connections of
the following type: Bochner-&hler connexions, Bochner Bi-Lagrangian connexions,
Ricci-type connexions and connexions with special holonomies.

4 Ricci-flat connections

4.1 A construction by induction

Definition 4.1 A contact quadruple (M,N, o, 7) is a 2n dimensional smooth man-
ifold M, a 2n+ 1 dimensional smooth manifold, a co-oriented contact structure
aonN (i.e. ais a 1-form onN such thata A (da)" is nowhere vanishing), and a
smooth submersionm : N — M with da = 7* @ wherew is a symplectic 2-form on
M.

Definition 4.2 Given a contact quadrup(®, N, o, ) theinduced symplectic man-
ifold is the 2+ 2 dimensional manifold

P:=NxR (37)
endowed with the (exact) symplectic structure
u=2e"dsA pia+e* dpia =d(e® pia) (38)
wheres denotes the variable alofyandp; : P — N the projection on the first factor.

Induction in the sense of building(@n+ 2)-dimensional symplectic manifold from
a symplectic manifold of dimensiom2s also considered by Kostant in [14].
Notations: Let p denote the projectiop= mwo p; : P— M. Let E be the vector field
on P such thadg(E) = 0 andps1.E = Z whereZ is the Reeb vector field oN (i.e.
the vector fieldZ on N such that(Z)da = 0 andi(Z)a = 1). If X is a vector field on
M, denote byX the vector field orP such that

(i) pX=X (i) (Ple)(X)=0 (i) ds(X) =0, (39)
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Proposition 4.3 Let (M, w) be the first term of a contact quadruglél, N, o, r) and
let (P, i) be the associated induced symplectic manifold. Then

(i) If Gis a connected Lie group acting in a strongly Hamiltonian way(bh o),
this action lifts to a strongly Hamiltonian action &f (= universal cover of G)
on (P,u); the lift X of a Hamiltonian vector field X oM, w) with i(X)w =
d fx is the vector field on P defined By= X — (piz*fx)-E.

(i) If C is a conformal vector field oM, w) (Lcw = ), it admits a conformal
-and a symplectic- lift tqP, 1) if the closed 1-formr*(i(X)w) — « is exact (
o —*i(C)w = db). The conformal lift i€ =C+ pibE. The symplectic lift
is C; = C+ pibE — 1/20s; it is Hamiltonian and &, = —p;jbe®.

(iii) The vector field E on P is Hamiltonian and the vector fi@lds conformal. If
(M, o) admits a transitive Hamiltonian actiofP, ) admits a transitive con-
formal action. (The Lie group G is said axt conformally if Vge G, g*ow =
c(g)w and there exists an elementds such that ¢g) # 1). If (M, ) admits
a transitive conformal-Hamiltonian action then so d@@su). (A conformal-

Hamiltonian action is a conformal action so that all fundamental vector fields

associated to elements in the Lie algelgiaof the subgroup &:= Kerc are
Hamiltonian.)

Any symplectic connectiofi] on (M, ) can be lifted to a symplectic connection
D:P on (P,") in the following way: the values at any point Bfof the vector fields
X,E, sz_as span the tangent spaceRat that point and we hav&,ds] =0 [E,X]=
0 [05X]=0 [X,Y]=[X,Y]—p*o(X,Y)E. We defined” by the formulas:

ORY = OxY — 3p" (@(X,Y))E — p*(§(X.Y))ds B
OEX = O%E = 20X+ p'(@(X,u))ds ~ OFE=p*fos—20
20 =05X ==X Ofds=05E=E  050s=0 (40)

wheref is a function orM, U is a vector field oM, Sis a symmetric 2-tensor du,
ando is the endomorphism af M associated ts, hences(X,Y) = o(X, oY).

Theorem 4.4 [5] With the formulas above,l” is a symplectic connection di, 1)
for any choice of§U and f. The vector field E on P is affine £LP = 0) and
symplectic ( ku = 0); the vector fields on P is affine and conformal glu = 2u).
Furthermore, choosing
A -1 4

>~ 2+

U: = (!)(U,')

= TrlY ]
i1 rlY — Oyo]
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_ 1 0y2 }
= g TR0 X = OxU) (41)

we have:
e the connectio]” on (P, u) is Ricci-flat;

e if the symplectic connectidd on (M, o) is of Ricci-type, then the connection
0P on (P, u) is flat.

e if the connectioril” is locally symmetric, the connectidn is of Ricci-type,
henceP is flat.

4.2 A construction of Ricci flat symmetric symplectic spaces
Algebraic desciption of simply-connected symmetric symplectic space (see [3, 4])

Definition 4.5 A symmetric symplectic tripleis a triple(g, 0,Q) whereg is a finite
dimensional real Lie algebra; is an involutive automorphism af such that if we
write g = ¢ p with o = Id & — Id,, then[p,p] = £ and the action of onp is faithful,

and whereQ is a non degenerate skewsymmetric 2-formpoimvariant by¢ under
the adjoint action.

To any connected symmetric symplectic manifdtl o, S) one associates a sym-
metric symplectic tripld g, o, Q) in the following way:

m g is the Lie algebra of its transvection group (i.e. the group generated by the
composition of an even humber of symmetries);

= o is the differential at the identity of the conjugation by the symmelyy
wherepy is a point chosen on the manifold;

= Q = wp, with the identification betweel,,M andp induced by the projection
n:G—M:g— 7(g) =9" Po.

Denoting byX* the vector field orM which is the image under, of the right invari-
ant vector field or, the canonical symmetric connection has the form

(Ox=Y*)g-po = ([Y,Adg(Adg™X)p]) 5o (42)

whereZ, denotes the component fnof Z € g relatively to the decompositiog =
p @t and wherd , | is the bracket iry.
The curvature tensor is given by

Roo (Xpgs Ypo ) Zpo = — (11X, Y], Z]) - (43)

o’ " Po
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The value afpg of the symplectic curvature of a symmetric connection is thus given
by the symplectic curvatur§ of the corresponding symmetric symplectic triple,
whereSis defined as the map

Sipxpxpxp—R X)Y,ZT—SX,)Y,ZT):=-Q([[X,Y],Z],T).

Similarly, the Ricci tensos: p x p — R of a symmetric symplectic triple is defined
by s(A,B) := Tr[C — S(A,C)BJ with S(A,B,C,D) =: o(S(A,B)C,D).

Reciprocally, given a symmetric symplectic triglg o,Q), one builds a simply-
connected symmetric symplectic spadé, m,s) with M = G/K whereG is the
simply-connected Lie group with Lie algebgandK is its connected subgroup with
Lie algebrat, with @ the G-invariant 2-form onM whose value a¢K is given byQ
(identifying TekM andp via the differential of the canonical projectian G — G/K)
and with symmetries defined Isy ) 7(g') = 7(g6 (g 'g’)) whereg is the automor-
phism of G whose differential atis o.

Construction of Ricci-flat symmetric symplectic triples
Let (V,Q’) be a symplectic vector space andiRebe an “algebraic curvature tensor”
on this space, i.eRc A2V*@ SV* and @& R(X,Y,Z,T)=0.

X.Y.Z
Define on the vector space

g1=VaAV eV (44)
the structure of Lie algebra defined, for AlY,Z e V, o, B € V* by:

X,Y]=XAY, [X,a]=0, [XAY,Z]=R(X.Y,Z,)eV"
XAY,ZAT]=0, [XAY,a]=0, [a,B]=0. (45)

Let o be the involutive automorphism of the Lie algelgradefined by:

O'| (46)

\V = — Id‘V G‘/\ZV = Id‘/\ZV O"V>k = — Id‘V* .
Let w be the non degenerate skewsymmetric 2-fornpos V & V* defined by:
o(X,Y)=0, o(a,p)=0,  o(aX)=aX). (47)

Sincew([XAY,Z],T)=R(X,Y,Z,T) =R(X,Y,T,Z) = —o(Z,[XAY,T]) the 2-form
o is invariant undek := A?V.

Thus(g1, o, ) is a symmetric symplectic triple if and only if the map A%V —
ZVNV*) XAY — [Z— R(X,Y,Z,-)] is injective. If the mapg is not injective,
its kernel is an ideal ofj;. Consider the Lie algebrg:= gi/ker¢. Let G be the
involutive automorphism of induced byc (6(A+Ker¢) := o(A) +Ker¢). The
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decomposition ofy into eigenspaces fos readsg = ¢ +p’ wheret' = ¢/ker¢ =
/\2V/Ker¢ andp’ ~ p =V ®V*. Let ® be the non degenerate skewsymmetric 2-form
onyp’, induced byw onp. Then(g := g1/kerg, 5, ®) is a Symmetric symplectic triple.
The symplectic curvature of this triple A ,B,C,D) = —o([[A,B],C],D) for
elementsA,B,C,D € p =V & V¥, it vanishes as soon as one of the arguments is in
V* and
SX,Y,Z,T)=-R(X,Y,Z,T) (48)

for X,Y,Z, T € V. ThusS(A,B)C vanishes as soon as one of the arguments\&‘in
andS(X,Y)Z € V* for X,Y,Z € V. The Ricci tensos(A,B) := Tr[C — S(A,C)B| of
the symmetric triple is thus identically zero. Hence:

Proposition 4.6 Let (V,Q) be a symplectic vector space of dimensfm Given

any element R A?V* @ SV* so that @ R(X,Y,Z,T) =0, one can construct 4n-
XY,z
dimensional symmetric symplectic space whose canonical symmetric connection is

Ricci-flat.
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