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Abstract

This note contains a short survey on some recent work on symplectic con-
nections: properties and models for symplectic connections whose curvature is
determined by the Ricci tensor, and a procedure to build examples of Ricci-flat
connections. For a more extensive survey, see [5]. This note also includes a
moment map for the action of the group of symplectomorphisms on the space
of symplectic connections, an algebraic construction of a large class of Ricci
flat symmetric symplectic spaces, and an example of global reduction in a non
symmetric case.
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Introduction

In view of Darboux’s theorem, symplectic geometry is by essence global. Consid-
ering symplectic connections (which, on a given symplectic manifold(M,ω) form
an infinite dimensional affine space) is nevertheless justified by their importance in
deformation quantization and by deep links between conditions on a symplectic con-
nection (curvature conditions for example) and the geometry of the manifold.

The paper is organized as follows. In section 1, I define a symplectic structure on
the space of symplectic connections and a moment map for the action of the group
of symplectomorphisms on this space. Section 2 is devoted to an algebraic study
of the symplectic curvature tensor and to the definition of two types of symplectic
connections: Ricci-type and Ricci-flat. In section 3, I recall how all local models
of Ricci-type connections can be built by a Marsden-Weinstein reduction procedure
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of a constraint surface given by a quadratic equation in a standard symplectic vector
space. This reduction procedure is global for a class of quadratic polynomials, giv-
ing rise to all Ricci-type symmetric symplectic spaces. I give an example of global
reduction giving a non symmetric connection. An induction procedure (which is a
sort of inverse of the reduction procedure above), described in section 4, gives exam-
ples of Ricci-flat connections. I also give a purely algebraic construction of Ricci flat
symmetric symplectic spaces.

I thank all my co-authors of [5] with whom I had many illuminating discussions.
I also thank the organisers of the meeting, and in particular Sylvie Paycha.

1 The space of symplectic connections

A symplectic connection[15, 17] on a symplectic manifold(M,ω) is a torsion free
linear connection∇ onM for which the symplectic 2–formω is parallel.

To see the existence of such a connection, take∇0 to be any torsion free linear
connection (for instance, the Levi Civita connection associated to a metricg on M).
Consider the tensorN onM defined by∇0

Xω(Y,Z) =: ω(N(X,Y),Z) whereX,Y,Z are
vector fields onM (i.e. ∈ χ(M)). Sinceω is closed, one has+�

XYZ
ω(N(X,Y),Z) = 0,

where +� denotes the sum over the cyclic permutations of the listed set of elements.
Define

∇XY := ∇0
XY +

1
3

N(X,Y)+
1
3

N(Y,X).

Then∇ is a symplectic connection on(M,ω).
To see how (non)-unique is a symplectic connection, take∇ symplectic; then any

other linear connection reads∇′
XY := ∇XY+A(X)Y whereA is a 1–form with values

in the endomorphisms of the tangent bundle. The connection∇′ is torsion free iff
A(X)Y = A(Y)X and is symplectic if furthermore 0= ∇′

Xω(Y,Z) =−ω(A(X)Y,Z)−
ω(Y,A(X)Z) hence iff

A := ω(A(X)Y,Z)

is totally symmetric.
This says thatthe spaceE (M,ω) of symplectic connectionson (M,ω) is an

affine space modelled on the space of symmetric covariant 3–tensorfields onM; the
choice of a particular symplectic connection∇̃, i.e. a base point inE (M,ω), allows
us the identification:

E (M,ω) = ∇̃+Γ∞(S3T∗M).

The space of symplectic connections has thus a structure of linear Fréchet space.
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1.1 Moment map on the space of symplectic connections

There is a natural symplectic structure on the spaceE (M,ω) of symplectic connec-
tions onM. The tangent space toE (M,ω) at a “point” ∇ is identified with the space
Γ∞(S3T∗M) of smooth symmetric covariant 3–tensorfields onM:

A(X,Y,Z) =
d
dt |0

ω(∇t
XY,Z).

If M is compact, we may define at each point∇ of E (M,ω) an alternate 2-formΩ∇
on the tangent spaceΓ∞(S3T∗M) by

Ω∇(A,B) :=
∫

M
(A,B)

ωn

n!
(1)

where(·, ·) denotes the pairing of symmetric covariant 3–tensorfields induced byω;
thus, in a chart,(A,B)(x) = (ω−1

x )i1 j1(ω−1
x )i2 j2(ω−1

x )i3 j3Ai1i2i3(x)B j1 j2 j3(x).
If M is not compact, we can still give a meaning to the above expression. LetJ

be a smooth almost complex structure onM compatible withω (i.e. ω(JX,JY) =
ω(X,Y) andω(X,JX) > 0 if X 6= 0); this always exists. Letg be the corresponding
Riemannian structure (i.e.g(X,Y) = ω(X,JY)). Then, ifAJ is the 3-form:

AJ(X,Y,Z) = A(JX,JY,JZ), (2)

the pairing is given by
(A,B) = AJ ·B (3)

where· indicates the scalar product of 3-covariant tensors induced byg. If A andB
are smooth tensor fields which areL2 (in the sense that‖A‖2 =

∫
M A·Aωn

n! < ∞), then
formula (1) has a meaning using Cauchy-Schwarz and the fact that‖AJ‖2 = ‖A‖2.
Thus the expression makes sense provided one restricts to elementsA in T∇E (M,ω)
which decrease “sufficiently fast at∞ onM”.

In any case the 2–formΩ defines asymplectic structure on the spaceE (M,ω)
in the following sense: ifΩ∇(A,B) = 0 ∀B thenA = 0; andΩ∇ is a constant 2–form,
hence closed.

The groupG of symplectic diffeomorphisms of(M,ω) acts naturally onE (M,ω):

(g·∇)XY(x) := g∗g−1x

(
∇g−1

∗ Xg−1
∗ Y

)
. (4)

It clearly preserves the symplectic 2-formΩ.
We want to study when the action ofG on E (M,ω) posseses a moment map. Let
us recall what a moment map is in the finite dimensional context. LetG be a fi-
nite dimensional Lie group acting by symplectomorphisms on a finite dimensional
symplectic manifold(M′,ω ′). For anyX ∈ g, we denote byX∗M′

the corresponding
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fundamental vector field onM′, i.e. X∗M′
x = d

dt exp−tX ·x|0. The action has a moment
map if there exists a map fromM′ in the dual of the Lie algebra ofG,

J : M′→ g∗, such that < J(x),X >= λX(x) ∀X ∈ g (5)

whereλX is a smooth function onM′ so that

dλX = i(X∗M)ω ′ and {λX ,λY}= λ[X,Y] (6)

where{·, ·} denotes the Poisson bracket onC∞(M′) induced byω ′, i.e.

{ f ,g} := ω
′(Xf ,Xg)

whereXf is the Hamiltonian vector field corresponding tof , i.e. such thati(Xf )ω ′ =
d f .

In our situation the Lie algebra ofG consists of smooth symplectic vector fields
onM; if X is such a vector fieldLXω = 0 ⇔ di(X)ω = 0. The corresponding vector
field X∗E onE (M,ω) is such that

X∗E
∇ (Y,Z,U)(x) = ωx((LX∇)YZ,U), (7)

where(LX∇)YZ = [X,∇YZ]−∇[X,Y]Z−∇Y[X,Z] and one checks easily thatX∗E
∇ is

indeed a completely symmetric covariant 3–tensor.
We look for a moment map, at least in a formal sense, for the symplectic action

of G onE (M,ω).
Assume first thatM is simply connected and compact; ifX is a symplectic vector

field onM, then there exists a functionfX onM so that

i(X)ω = d fX.

The functionfX is defined up to an additive constant and one can choose the constant
so that ∫

M
fX

ωn

n!
= 0.

Thus there is a linear isomorphism between the space of symplectic vector fields and
the spaceC ∞

(0)(M) of smooth functions onM having 0 mean.
Now, if X,Y are symplectic vector fields:

i([X,Y])ω = [i(X),LY]ω =−LYi(X)ω =−LYd fX =−dLY fX = d{ fX, fY}

and clearly ∫
M
{ fX, fY}

ωn

n!
=

∫
M

LX( fY
ωn

n!
) = 0

so the linear isomorphism is a Lie algebra isomorphism.
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If M is simply connected and non compact, let us consider the groupG1 of sym-
plectic diffeomorphisms of(M,ω) which are the identity outside a compact set. The
algebra of this group is the space of compactly supported symplectic vector fields on
M. If X is such a field

i(X)ω = d fX

where the functionfX is defined up to an additive constant; there exists a compact set
K such thatd fX = 0 onM \K. Assume thatM is “simple at∞”; by this we mean that
M satisfies the following topological condition: for any compact setK′, there exists
a compact set̃K such that

(i) K̃ ⊃ K′ (ii) M \ K̃ is connected.

With this assumption, we can choose the constant in such a way thatfX is compactly
supported.
Hence we have a linear isomorphism between the space of compactly supported sym-
plectic vector fields on(M,ω) and the spaceC ∞

0 (M) of compactly supported smooth
functions onM.

We consider both cases:M compact and simply connected or, resp.M non com-
pact, simply connected, “simple at∞”. If X is a symplectic vector field onM (resp. a
compactly supported symplectic vector field onM):(

i(X∗E
∇ )Ω∇

)
(A) =

∫
M

(
LX∇,A

) ωn

n!
(8)

and the integral makes sense.
A moment map should be a mapJ from the spaceE (M,ω) of symplectic con-

nections, with values in the dual of the algebraC ∞
(0)(M) (resp. C ∞

0 (M)). To avoid
difficulties, we shall look for a moment map with values in a subspace of the dual.
The spaceC ∞(M) can be identified with a subspace of the dual ofC ∞

(0)(M) (resp.
C ∞

0 (M)). Thus we are looking for a map

J : E (M,ω)→ C ∞(M) (9)

so that, for any symplectic vector fieldX (resp. any compactly supported vector field
X) onM, the smooth functionJ (∇) onM satisfies

< J (∇), fX >:=
∫

M
J (∇) fX

ωn

n!
= φX(∇) (10)

whereφX is a real function onE (M,ω) such that

d
dt

φX(∇+ tA)|0 = Ω∇(X∗E ,A) =
∫

M

(
LX∇,A

) ωn

n!
. (11)
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Observe that

(LX∇)YZ = [X,∇YZ]−∇[X,Y]Z−∇Y[X,Z]
= ∇X∇YZ−∇∇YZX−∇[X,Y]Z−∇Y∇XZ+∇Y∇ZX

= R∇(X,Y)Z+(∇2
(Y,Z)X),

with R∇ the curvature tensor of∇ (i.e. R∇(X,Y)Z =
(
∇X∇Y−∇Y∇X −∇[X,Y]

)
Z).

We want to solve the relation

d
dt

∫
M

J (∇+ tA) fX
ωn

n!
|0 =

∫
M

(
LX∇,A

) ωn

n!
=−

∫
M

(ω−1)uv((LX∇)∂q
∂u)tAq

vt
ωn

n!

= −
∫

M
(ω−1)uv(XsR∇ t

squ+(∇2
quX)t)Aq

vt
ωn

n!

with ∇∂ j
fX = ωr j Xr and with sumation over repeated indices.

Proposition 1.1 (see also [13]) Let(M,ω) be a simply connected compact symplec-
tic manifold (resp. a simply connected symplectic manifold “simple at∞”).
Consider the spaceE (M,ω) of smooth symplectic connections on(M,ω) (resp.
choose a symplectic connection∇̃ on (M,ω) and look at the space of connections
of the form∇̃ + A where A is smooth and in L2). This space admits a natural sym-
plectic structure.
Consider the groupG of symplectic diffeomorphisms of(M,ω) (resp. the group of
symplectic diffeomorphisms reducing to the identity outside a compact set).
Then the action ofG on E (M,ω) is symplectic and admits a moment mapJ , with
values in the space of smooth functions on M, given by formula

J (∇) =−1
2

r∇
pqr

∇pq+
1
4

R∇
pqrsR

∇pqrs− (∇2
pqr

∇)pq. (12)

where one sums over repeated indices, where indices are lifted via the components
of the inverse matrix of the one given by the components ofω, where r∇ is the Ricci
tensor of∇ (i.e. r∇(X,Y) = Tr

(
Z 7→ R∇(X,Z)Y

)
) and, where, for any tensor A, the

second covariant derivative is defined by∇2
pqA = ∇2

(∂p,∂q)
A and

∇2
(X,Y)A = ∇X(∇YA)−∇∇XYA.

Indeed one checks that

d
dt

R∇+tA(X,Y)Z|0 = ∇X(A(Y)Z)+A(X)∇YZ

−∇Y(A(X)Z)−A(Y)∇XZ−A([X,Y])Z
= (∇XA)(Y)Z− (∇YA)(X)Z;

d
dt

r∇+tA(X,Y)|0 = Tr(Z 7→ (∇XA)(Z)Y− (∇ZA)(X)Y)

= −Tr(Z 7→ (∇ZA)(X)Y) .
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We also have:

d
dt

(∇2
pqr

∇+tA)pq|0 = (∇qA)q
t pr∇t p +Aq

t p(∇qr∇)t p− (∇3
pqrA)pqr

so that

d
dt

J (∇+ tA)|0 = r∇pq(∇sA)s
pq+

1
2

R∇pqrs((∇pA)qrs− (∇qA)prs)

−((∇qA)q
t pr∇t p +Aq

t p(∇qr∇)t p− (∇3
pqrA)pqr).

Remark 1.2 This moment map is formal and has up to now no geometrical interpre-
tation.

1.2 Symplectic connections and Deformation Quantization

Symplectic connections are closely related to natural formal deformation quantiza-
tions at order 2. Flato, Lichnerowicz and Sternheimer introduced deformation quan-
tization in [11] (see also [2]); quantization of a classical system is a way to pass
from classical to quantum results and they “suggest that quantization be understood
as a deformation of the structure of the algebra of classical observables rather than
a radical change in the nature of the observables.” In that respect, they introduce a
star product which is a formal deformation of the algebraic structure of the space of
smooth functions on a symplectic (or more generally a Poisson) manifold; the asso-
ciative structure given by the usual product of functions and the Lie structure given
by the Poisson bracket are simultaneously deformed.

Definition 1.3 A star product on a symplectic manifold(M,ω) is a bilinear map

C∞(M)×C∞(M)→C∞(M)[[ν ]] (u,v) 7→ u∗ν v := ∑
r≥0

ν
rCr(u,v) (13)

such that
(u∗v)∗w = u∗ (v∗w) (when extendedR[[ν ]] linearly);
C0(u,v) = uv C1(u,v)−C1(v,u) = {u,v};
1∗u = u∗1 = u.
If all the Cr ’s are bidifferential operators, one speaks of adifferential star product ;
if, furthermore, eachCr is of order≤ r in each argument, one speaks of anatural
star product.

The link between symplectic connections and star products already appears in the
seminal paper [2] where the authors observe that if there is a flat symplectic connec-
tion ∇ on (M,ω), one can generalise the classical formula for Moyal star product
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∗M defined onR2n with a constant symplectic 2-form. A construction of a star prod-
uct on a symplectic manifold associated to any symplectic connection was given by
Fedosov:

Theorem 1.4 [10] Given a symplectic connection∇ and a sequenceΩ = ∑∞
k=1 νkωk

of closed2-forms on a symplectic manifold(M,ω), one can build a star product∗∇,Ω
on it.

This is obtained by identifying the spaceC∞(M)[[ν ]] of formal series in a parameter
ν of smoonth functions on the manifold, with a subalgebra of the algebra of sections
of a bundle in associative algebra called the Weyl bundle onM. The subalgebra is
that of flat sections of the Weyl bundle, when this is endowed with a flat connection
whose construction is related to the choices made of the connection onM and of the
sequence of closed 2-forms onM.

Reciprocally a natural star product determines a symplectic connection. This was
first observed by Lichnerowicz [16] for a restricted class of star products.

Theorem 1.5 [12] A natural star product at order 2 determines a unique symplectic
connection.

2 Choice of particular symplectic connections

There are examples of symplectic manifolds where there is a natural choice of a
unique symplectic connection, preserving some extra data on the manifold.

Pseudo K̈ahler manifolds

Given a symplectic manifold(M,ω), one can choose an almost complex compatible
structureJ i.e. as beforeJ : TM → TM is a bundle endomorphism so thatJ2 =
− Id ω(JX,JY) = ω(X,Y) andω(X,JX) > 0 if X 6= 0.

Lemma 2.1 A symplectic connection∇ preserves J (in the sense that∇J = 0) iff it is
the Levi Civita connection associated to the pseudo Riemannian metric g defined by
g(X,Y) = ω(X,JY); so it is unique and it only exits in a (pseudo)Kähler situation.

Symmetric symplectic space

A symmetric symplectic space is a symplectic manifold with symmetries attached to
each of its points. Precisely:
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Definition 2.2 A symmetric symplectic spaceis a triple(M,ω,S) where(M,ω) is a
symplectic manifold and whereSis a smooth mapS: M×M →M such that, defining
for any pointx∈M the map (called the symmetry atx):

sx := S(x, ·) : M →M, (14)

eachsx squares to the identity [s2
x = Id] and is a symplectomorphism of(M,ω) [s∗xω =

ω], x is an isolated fixed point ofsx, andsxsysx = ssxy for anyx,y∈M.

Lemma 2.3 On a symmetric symplectic space, there exists a unique symplectic con-
nection for which each symmetry sx is an affinity. It is given by

ωx(∇XY,Z) =
1
2

Xxω(Y +sx?Y,Z). (15)

On a symmetric symplectic space, the deformation quantisation constructed via Fe-
dosov using this unique connection has the symmetries acting as automorphisms.

A natural way to select a subclass of symplectic connections on any symplectic
manifold is to impose further conditions on its curvature.

2.1 Curvature tensor for a symplectic connection

Thecurvature tensor R∇ of a symplectic connection∇ can be viewed as a 2-form on
M with values in the endomorphisms of the tangent bundle andR∇

x (X,Y) has values in
the symplectic Lie algebrasp(TxM,ωx) = {A∈ End(TxM) | ωx(Au,v)+ωx(u,Av) =
0 ∀u,v∈ TxM}.

The Ricci tensor r∇ is the 2-tensorr∇(X,Y) = Tr
(
Z 7→ R∇(X,Z)Y

)
. The first

Bianchi identity ( +�
X,Y,Z

R∇(X,Y)Z = 0) implies that the Ricci tensorr∇ is symmetric.

The second possible trace of the curvature tensorr ′x(X,Y) := ∑i ω(R∇
x (ei ,ei)X,Y),

where theei constitute a basis ofTxM and theei constitute the dual basis ofTxM de-
fined byω(ei ,ej) = δ

j
i , is proportional to the Ricci tensor. Indeed, the first Bianchi

identity implies thatr ′ = −2r∇. Since the Ricci tensor is symmetric and one only
has a skewsymmetric contravariant 2-tensor onM (the Poisson tensor related to the
symplectic form) there isno “scalar curvature” .

Thesymplectic curvature tensoris defined as

R∇(X,Y,Z,T) := ω(R∇(X,Y)Z,T); (16)

it satisfies +�
X,Y,Z

R∇
x (X,Y,Z,T) = 0, it is skewsymmetric in its first two arguments and

symmetric in its last two. We denote byRx the space of 4-tensors onTxM satisfying
those algebraic identities. The groupSp(TxM,ωx) = { A ∈ End(V) | ωx(Au,Av) =
ωx(u,v) ∀u,v∈V } acts onTxM, and thus onRx. Under this action the spaceRx in
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dimension 2n≥ 4, decomposes into two irreducible subspaces [18]Rx = E x⊕W x.
The coresponding decomposition of the curvature tensor reads

R∇
x = E∇

x +W∇
x , (17)

where

E∇(X,Y)Z = 1
2n+2

(
2ω(X,Y)ρ∇Z+ω(X,Z)ρ∇Y−ω(Y,Z)ρ∇X (18)

+ω(X,ρ∇Z)Y−ω(Y,ρ∇Z)X
)

with r∇ converted into an endomorphismω(X,ρ∇Y) = r∇(X,Y).

Definition 2.4 A symplectic connection∇ on(M,ω) will be said to beof Ricci-type
if W∇ = 0; it will be said to beRicci-flat if E∇ = 0 (hence iffr∇ = 0).

A twistorial interpretation of the Ricci-type condition:

Let J(M)→M be the bundle of compatible positive almost complex structures on the
tangent bundle; a symplectic connection onM defines an almost complex structure
onJ(M); it is integrable iff the connection is of Ricci-type. [19]

2.2 Variational principle to select some symplectic connections

If one tries to select symplectic connections through a variational principle [6], one
way is to build a LagrangianL(R∇), which is a polynomial in the curvature of the
connection, invariant under the action of the symplectic group, and consider the func-
tional ∫

M
L(R∇)ωn.

There is no invariant polynomial of degree 1 in the curvature, so the easiest choice is
a polynomial of degree 2 inR∇. The space of degree 2 polynomials in the curvature
which are invariant under the action of the symplectic group is 2-dimensional and
spanned by(E∇,E∇) and(W∇,W∇) (or, equivalently by(R∇,R∇) and(r∇, r∇)) where
(·, ·) denotes, as before, the (symmetric) function-valued product of (even) tensors
induced byω.
Precisely, ifSandT are even tensors-fields onM of the same type,(S,T) is given in
local coordinates as

(S,T) = (ω−1)i1i′1 · · ·(ω−1)ipi′pω j1 j ′1
· · ·ω jq j ′qS

j1... jq
i1...ip

T
j ′1... j

′
q

i′1...i
′
p

.
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One oberves that a combinaison of the corresponding Lagrangian multiplied by the
volume form (ωn) gives

P1(∇)∧ω
n−2 =

1
16π2 [(r∇, r∇)− 1

2(R∇,R∇)]ωn

whereP1 is the first Pontryagin class of the manifoldM. Hence, all non trivial Euler
equations related to a variational principle built from a second order invariant poly-
nomial in the curvature are the same:

+�
X,Y,Z

(∇Xr∇)(Y,Z) = 0. (19)

Definition 2.5 A symplectic connection∇ is said to bepreferred if it is a solution
of the equation 19.

The space of preferred connections on a 2-dimensional symplectic manifold has been
studied in [6]. In higher dimension, only partial results are known.

3 Reduction and Ricci-type connections

3.1 A construction by reduction

Let (M = R2n+2,Ω′) be the standard symplectic vector space. LetA be a nonzero ele-
ment in the symplectic Lie algebrasp(R2n+2,Ω′). Let ΣA be the closed hypersurface
ΣA ⊂ R2n+2 defined by

ΣA = {x∈ R2n+2 |Ω′(x,Ax) = 1}. (20)

(In order forΣA to be non empty we replace, if necessary,A, by−A.)
The 1-parameter subgroup exptA of the symplectic group acts onR2n+2, pre-

servingΩ′ and ΣA; the corresponding fundamental vector fieldA∗ on R2n+2 (de-
fined byA∗x := d

dt exp−tAx|0 = −Ax) is Hamiltonian; indeedi(A∗)Ω′ = dHA, with
HA(x) = 1

2Ω′(x,Ax). The hypersurfaceΣA is a level set of this Hamiltonian.
We shall consider thereduced spaceMred := ΣA/exptA with the canonical projection
π : ΣA →Mred.
Since the vector fieldAx is nowhere 0 onΣA, this can always be locally defined.
Indeed, for anyx0 ∈ ΣA, one can find local coordinates{y1, . . . ,y2n+2} in which the
vector fieldAx= ∂

∂y1 so there exists a neighborhoodUx0(⊂ ΣA), a ballDred ⊂ R2n of
radiusr0, centered at the origin, a real intervalI = (−ε,ε) and a diffeomorphism

χ : Dred× I →Ux0 (21)

such thatχ(0,0) = x0 andχ(y, t) = exp−tA(χ(y,0)).
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ThenUx0/{exptA t∈I} ∼ Dred, and one definesπ : Ux0 → Dred by π = p1⊗ χ−1.

The spaceDred is a local version of the Marsden-Weinstein reduction ofΣA around
the pointx0.

If x∈ ΣA, the tangent space is given byTxΣA = {X ∈R2n+2 |Ω′(X,Ax) = 0}; one
definesHx(⊂ TxΣA) = {X ∈ R2n+2 |Ω′(X,Ax) = 0, Ω′(X,x) = 0}; thenπ∗x defines
an isomorphism betweenHx and the tangent spaceTyDred for y = π(x).

A reduced symplectic formonDred, ω red, is defined by

ω
red
y=π(x)(X,Y) := Ω′

x(Xx,Yx) (22)

whereZ denotes the horizontal lift ofZ ∈ TyDred; i.e. Z ∈Hx andπ∗x(X) = X.
Let ∇ be the standard flat symplectic affine connection onR2n+2. The reduced

symplectic connection∇red onDred is defined by

(∇red
X Y)y := π∗x(∇XY−Ω′(AX,Y)x+Ω′(X,Y)Ax). (23)

Proposition 3.1 [1] The manifold(Dred,ω red) is a symplectic manifold and∇red is
a symplectic connection of Ricci-type on this manifold.

3.2 Local models for Ricci type connections

Let (M,ω) be a smooth symplectic manifold of dim 2n (n ≥ 2) endowed with a
smooth Ricci-type symplectic connection∇. Then the curvature endomorphism reads

R∇(X,Y) =− 1
2(n+1)

[−2ω(X,Y)ρ∇−ρ
∇Y⊗X +ρ

∇X⊗Y−X⊗ρ
∇Y+Y⊗ρ

∇X]

(24)
whereX denotes the 1-formi(X)ω ( f orX a vector field onM) and where, as before,
ρ∇ is the endomorphism associated to the Ricci tensor [r∇(U,V) = ω(U,ρ∇V) ].
Bianchi’s second identity (+�

X,Y,Z
(∇XR∇)(Y,Z) = 0) shows that there exists a vector

field U∇ such that

∇Xρ
∇ =− 1

2n+1
[X⊗U∇ +U∇⊗X]; (25)

thus any Ricci-type connection is preferred in the sense of equation (19); further
derivation proves the existence of a functionf ∇ such that

∇XU∇ =− 2n+1
2(n+1)

(ρ∇)2X + f ∇X; (26)

and there exists a real numberK∇ such that

tr(ρ∇)2 +
4(n+1)
2n+1

f ∇ = K∇. (27)
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The second covariant derivative∇2R∇ is determined by∇U∇ hence byρ∇ and
f ∇ (26). Since f ∇ satisfies equation 27, all succesive covariant derivative of the
curvature tensor are determined byρ∇, U∇ andK∇.

Hence, given a pointp0 in a smooth symplectic manifold(M,ω) of dimension
2n (n≥ 2) endowed with a smooth Ricci-type connection∇, the curvatureR∇

p0
and

its covariant derivatives(∇kR∇)p0 (for all k) are determined by(ρ∇
x0

,U∇
x0

,K∇). This
implies:

Corollary 3.2 Let (M,ω,∇) (resp. (M′,ω ′,∇′)) be two real analytic symplectic
manifolds of the same dimension2n (n≥ 2) each of them endowed with a symplectic
connection of Ricci-type.

Assume that there exists a linear map b: Tx0M → Tx′0
M′ such that (i) b∗ω ′

x′0
= ωx0

(ii) bu∇
x0

= u∇′

x′0
(iii) b ◦ρ∇

x0
◦b−1 = ρ∇′

x′0
. Assume further that K∇ = K∇′

.

Then the manifolds are locally affinely symplectically isomorphic, i. e. there
exists a normal neighborhood of x0 (resp. x′0) Ux0 (resp. U′x′0

) and a symplectic affine

diffeomorphismϕ : (Ux0,ω,∇)→ (U ′
x′0

,ω ′,∇′) such thatϕ(x0) = x′0 andϕ∗x0 = b.

A direct computation shows that in the reduction procedure described above, the
Ricci type symplectic connection∇red on (Dred,ω red) has correspondingρ∇red

,U∇red

and f ∇red
given by:

ρ∇redX(x) = −2(n+1)AxX̄ (28)

Ū∇red
(x) = −2(n+1)(2n+1)A2

xx (29)

(π∗ f ∇red
)(x) = 2(n+1)(2n+1)Ω′(A2x,Ax) (30)

whereAk
x is the map induced byAk with values inHx:

Ak
x(X) = AkX +Ω′(AkX,x)Ax−Ω′(AkX,Ax)x.

Combining this with corollary 3.2 we get:

Theorem 3.3 [8] Any real analytic symplectic manifold with a Ricci-type connection
is locally symplectically affinely isomorphic to the symplectic manifold with a Ricci-
type connection obtained by a local reduction procedure around e0 = (1,0, . . . ,0)
from a constraint surfaceΣA defined by a second order polynomial HA for A ∈
sp(R2n+2,Ω′) in the standard symplectic manifold(R2n+2,Ω′) endowed with the
standard flat connection.

Indeed ifp∈ M and if ξ is a symplectic frame atp (i.e. ξ : (R2n,Ω(2n))→ (Tp,ωp)
is a symplectic isomorphism of vector spaces), one defines

ũ(ξ ) = (ξ )−1 U∇(p), ρ̃(ξ ) = (ξ )−1
ρ

∇(p) ξ (31)
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and

Ã(ξ ) =


0

f (p)
2(n+1)(2n+1)

−ũ(ξ )

2(n+1)(2n+1)
1 0 0

0
−ũ(ξ )

2(n+1)(2n+1)
−ρ̃(ξ )
2(n+1)

 (32)

with u := Ω′(u, ·) and one looks at the reduction for thisA = Ã(ξ ).

3.3 Global models for Ricci type connections

Theorem 3.4 [8] If (M,ω,∇) is of Ricci type with M simply connected there exists
(P,ωP) symplectic of dimension2 higher with a flat connection∇P so that(M,ω,∇)
is obtained from(P,ωP,∇P) by reduction.

The manifoldP is obtained as the productP = N×R of a contact manifoldN
and the real lineR. The manifoldN is the holonomy bundle overM corresponding to
a connection defined on theSp(R2n+2,Ω′)- principal bundle

B′(M) = B(M)×Sp(R2n,Ω) Sp(R2n+2,Ω′)

with projectionπ ′ : B(M)′→M, whereB(M) π→M is theSp(R2n,Ω) principal bundle
of symplectic frames overM and where we inject the symplectic groupSp(R2n,Ω)
into Sp(R2n+2,Ω′) as the set of matrices

j̃(A) =
(

I2 0
0 A

)
A∈ Sp(R2n,Ω).

The connection 1−form α ′ onB′(M) is characterised by the fact that

α
′
[ξ ,1]([X

hor
,0]) = αξ (Xhor).

where

αξ (Xhor) =


0

−ωx(u,X)
2(n+1)(2n+1)

−ρ̃(X)(ξ )

2(n+1)
0 0 −X̃(ξ )

X̃(ξ )
−ρ̃(X)(ξ )
2(n+1)

0

 (33)

whereX ∈ TxM with x = π(ξ ) andX
hor

is the horizontal lift ofX in Tξ B(M).
The equations on a Ricci-type connection imply that the curvature 2−form of the

connection 1−form α ′ is equal to−2Ã′π ′∗ω with Ã′ theSp(R2n+2,Ω′)−equivariant
extension ofÃ to B′(M); and this curvature 2−form is invariant by parallel transport
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(dα ′
curv(α ′) = 0).

Thus the holonomy algebra ofα ′ is of dimension 1. AssumeM is simply connected.

The holonomy bundle ofα ′ is a circle or a line bundle overM, N
π ′→M. This bundle

has a natural contact structureν given by the restriction toN⊂ B(M)′ of the 1−form
−1

2α ′ (viewed as real valued since it is valued in a 1−dimensional algebra). One has
dν = π ′∗ω.

The symplectic manifold with connection(P,ωP,∇P) is then obtained by an in-
duction procedure that appears in a more general setting and will be defined in section
4.1.

3.4 Global reduction and symmetric spaces

The reduction construction described in section 3.1 yields a locally symmetric sym-
plectic space (i.e. such that the curvature tensor is parallel) if and only if the element
0 6= A∈ sp(R2n+2,Ω′) satisfiesA2 = λ I for a constantλ ∈R. The study of symmetric
symplectic spaces was initiated in [4] and [3]. A case by case analysis shows that:

Proposition 3.5 [8] If 0 6= A∈ sp(R2n+2,Ω′) satisfies A2 = λ I for a constantλ ∈R,
the quotient ofΣA by the action ofexptA is a manifold Mred and the natural projec-
tion mapΣA → Mred is a submersion. The manifold Mred is a symmetric symplectic
space, and the connection obtained by reduction (which is of Ricci type) is the canon-
ical symmetric connection.

One can show that any simply connected symmetric symplectic space(M,ω,S)
whose canonical symmetric connection is of Ricci type [7] can be obtained by such
a reduction procedure.

Proposition 3.6 There are examples which are not symmetric (i.e. A2 is not a multi-
ple of the identity) and where the quotient Mred := ΣA/exptA is globally defined .

For example consider onR6 the symplectic 2-formΩ′ and the elementA in the
symplectic Lie algebra defined in terms of blocs of 2 by 2 matrices as:

Ω′ =


0 0 I

0 D 0

−I 0 0

 A =


0 D 0

0 0 I

0 0 0

 (34)

whereI is the 2 by 2 identity matrix andD =
(

0 1
−1 0

)
. We denote by(x,y,z) an

element inR6 with x,y andz in R2. The hypersurfaceΣA is given by

ΣA = {(x,y,z)∈R6 |y1z2−y2z1 =
1
2
}= {(x,y,z)∈R6 |z 6= 0,y=

Dz
‖z‖2 +λzwithλ ∈R}.

(35)
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It is globally diffeomorphic toR3× (R2\{0}) We choose(x,λ = y·z
‖z‖2 ,z) for coordi-

nates onΣA. An element of the groupg = {exptA} is given by

exptA =


I tD t2

2 D

0 I tI

0 0 I

 .

Its action onΣA ⊂ R6 is given by(x′,y′,z′) := exptA · (x,y,z) = (x+ tDy+ t2

2 Dz,y+
tz,z). Remark that the scalar product ofx andz is modified byx′ ·z′ = x ·z− 1

2t.One
can choose on any orbit of the group the unique point(x̃, ỹ, z̃) wherex̃ · z̃= 0. This
shows that the reduced space

Mred := ΣA/{exptA| t∈R} = {(x̃, ỹ, z̃) ∈ R6 | ỹ1z̃2− ỹ2z̃1 =
1
2

andx̃ · z̃= 0} (36)

is globally diffeomorphic toR2× (R2 \{0}). We choose(µ̃ = x̃1z̃2−x̃2z̃1

‖z̃‖2 , λ̃ = ỹ·z̃
‖z̃‖2 , z̃)

as coordinates onMred.
The projectionπ : ΣA →Mred maps the point of coordinates(x,λ ,z) to the point

of coordinates(µ̃ = x1z2−x2z1

‖z‖2 + 2(x · z)λ + 2(x · z)2, λ̃ = λ + 2(x · z), z̃ = z). It is a
submersion.

3.5 Special connections

The striking rigidity results on Ricci-type connections turn out to be a special case
of a much more general phenomenon. As we saw, a connection of Ricci-type can
be obtained by a symplectic reduction of a symplectic vector space with a flat sym-
plectic connection. This implies, for example, that the local moduli space of such
connections is finite dimensional.

Another point of view of the above reduction is to consider in the symplectic Lie
algebreg = sp(R2n+2,Ω) the minimal nilpotent orbit in the adjoint representation on
g∼= S2(R2n+2):

Ĉ := {x2 | x 6= 0,x∈ R2n+2}= (R2n+2\{0})/Z2.

It is an orbit, hence a symplectic manifold, and it is a cone. Projectivizing by positive
real numbers, one obtains the manifoldC = RP2n+1 which has an invariant contact
structure. GivenA 6= 0 ∈ sp(R2n+2,Ω) one looks at the points in this projectivized
manifold for which the fundamental vector field associated to the action ofA is posi-
tively transversal to the contact distrbution

CA = {[x] ∈ C | Ω(Ax,x) > 0}

This is clearly in bijection withĈA = {x∈ Ĉ | Ω(Ax,x) = 1}.
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This was generalised by M. Cahen and L. Schwachhöfer in [9]; considerg a
complex simple Lie algebra (or a real simple Lie algebra which contains a long root
space), defineĈ ⊂ g∼= g∗ to be the orbit of a long root vector and its projectivisation
C = P+(Ĉ ) ⊂ Sd ⊂ g which carries a contact distribution. GivenA 6= 0 ∈ g one
looks atCA ⊂ C consisting of the points where the action fieldA∗ onC is positively
transversal to the contact distribution and one proceeds with standard reduction. The
reduced connection is obtained from a connection defined in terms of the Maurer
Cartan form ong.

Theorem 3.7 [9] In this way one obtains local models for all special connections of
the following type: Bochner-K̈ahler connexions, Bochner Bi-Lagrangian connexions,
Ricci-type connexions and connexions with special holonomies.

4 Ricci-flat connections

4.1 A construction by induction

Definition 4.1 A contact quadruple (M,N,α,π) is a 2n dimensional smooth man-
ifold M, a 2n+ 1 dimensional smooth manifoldN, a co-oriented contact structure
α on N (i.e. α is a 1-form onN such thatα ∧ (dα)n is nowhere vanishing), and a
smooth submersionπ : N → M with dα = π∗ω whereω is a symplectic 2-form on
M.

Definition 4.2 Given a contact quadruple(M,N,α,π) theinduced symplectic man-
ifold is the 2n+2 dimensional manifold

P := N×R (37)

endowed with the (exact) symplectic structure

µ := 2e2s ds∧ p∗1α +e2s dp∗1α = d(e2s p∗1α) (38)

wheresdenotes the variable alongR andp1 : P→N the projection on the first factor.

Induction in the sense of building a(2n+2)-dimensional symplectic manifold from
a symplectic manifold of dimension 2n is also considered by Kostant in [14].
Notations: Let p denote the projectionp = π ◦ p1 : P→M. Let E be the vector field
on P such thatds(E) = 0 andp1∗E = Z whereZ is the Reeb vector field onN (i.e.
the vector fieldZ onN such thati(Z)dα = 0 andi(Z)α = 1). If X is a vector field on
M, denote by¯̄X the vector field onP such that

(i) p∗ ¯̄X = X (ii) (p∗1α)( ¯̄X) = 0 (iii ) ds( ¯̄X) = 0. (39)
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Proposition 4.3 Let(M,ω) be the first term of a contact quadruple(M,N,α,π) and
let (P,µ) be the associated induced symplectic manifold. Then

(i) If G is a connected Lie group acting in a strongly Hamiltonian way on(M,ω),
this action lifts to a strongly Hamiltonian action of̃G (= universal cover of G)
on (P,µ); the lift X̃ of a Hamiltonian vector field X on(M,ω) with i(X)ω =
d fX is the vector field on P defined bỹX = ¯̄X− (p∗1π∗ fX) ·E.

(ii) If C is a conformal vector field on(M,ω) (LCω = ω), it admits a conformal
-and a symplectic- lift to(P,µ) if the closed 1-formπ∗(i(X)ω)−α is exact (
α −π∗i(C)ω = db). The conformal lift isC̃1 = ¯̄C+ p∗1bE. The symplectic lift
is C̃2 = ¯̄C+ p∗1bE−1/2∂s; it is Hamiltonian and f̃C2

=−p∗1be2s.

(iii) The vector field E on P is Hamiltonian and the vector field∂s is conformal. If
(M,ω) admits a transitive Hamiltonian action(P,µ) admits a transitive con-
formal action. (The Lie group G is said toact conformally if ∀g∈ G, g∗ω =
c(g)ω and there exists an element g∈G such that c(g) 6= 1). If (M,ω) admits
a transitive conformal-Hamiltonian action then so does(P,µ). (A conformal-
Hamiltonian action is a conformal action so that all fundamental vector fields
associated to elements in the Lie algebrag1 of the subgroup G1 := Ker c are
Hamiltonian.)

Any symplectic connection∇ on (M,ω) can be lifted to a symplectic connection
∇P on (P,ωP) in the following way: the values at any point ofP of the vector fields
¯̄X,E,S= ∂s span the tangent space toPat that point and we have[E,∂s] = 0 [E, ¯̄X] =
0 [∂s, ¯̄X] = 0 [ ¯̄X, ¯̄Y] = [X,Y]− p∗ω(X,Y)E. We define∇P by the formulas:

∇P
¯̄X
¯̄Y = ∇XY− 1

2 p∗(ω(X,Y))E− p∗(ŝ(X,Y))∂s

∇P
E

¯̄X = ∇P
¯̄X
E = 2σX + p∗(ω(X,u))∂s ∇P

EE = p∗ f ∂s−2U

∇P
¯̄X
∂s = ∇P

∂s
¯̄X == X ∇P

E∂s = ∇P
∂s

E = E ∇P
∂s

∂s = ∂s (40)

where f is a function onM, U is a vector field onM, ŝ is a symmetric 2-tensor onM,
andσ is the endomorphism ofTM associated tos, hence ˆs(X,Y) = ω(X,σY).

Theorem 4.4 [5] With the formulas above,∇P is a symplectic connection on(P,µ)
for any choice ofŝ,U and f . The vector field E on P is affine ( LẼ∇P = 0) and
symplectic ( L̃Eµ = 0); the vector field∂s on P is affine and conformal (L∂s

µ = 2µ).
Furthermore, choosing

ŝ =
−1

2(n+1)
r∇

U : = ω(U, ·) =
2

2n+1
Tr[Y → ∇Yσ ]
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f =
1

2n(n+1)2 Tr(ρ∇)2 +
1
n

Tr[X → ∇XU ]. (41)

we have:

• the connection∇P on (P,µ) is Ricci-flat;

• if the symplectic connection∇ on (M,ω) is of Ricci-type, then the connection
∇P on (P,µ) is flat.

• if the connection∇P is locally symmetric, the connection∇ is of Ricci-type,
hence∇P is flat.

4.2 A construction of Ricci flat symmetric symplectic spaces

Algebraic desciption of simply-connected symmetric symplectic space (see [3, 4])

Definition 4.5 A symmetric symplectic triple is a triple(g,σ ,Ω) whereg is a finite
dimensional real Lie algebra,σ is an involutive automorphism ofg such that if we
write g = k⊕p with σ = Idk⊕− Idp, then[p,p] = k and the action ofk onp is faithful,
and whereΩ is a non degenerate skewsymmetric 2-form onp, invariant byk under
the adjoint action.

To any connected symmetric symplectic manifold(M,ω,S) one associates a sym-
metric symplectic triple(g,σ ,Ω) in the following way:

� g is the Lie algebra of its transvection group (i.e. the group generated by the
composition of an even number of symmetries);

� σ is the differential at the identity of the conjugation by the symmetrysp0

wherep0 is a point chosen on the manifold;

� Ω = ωp0 with the identification betweenTp0M andp induced by the projection
π : G→M : g 7→ π(g) = g· p0.

Denoting byX∗ the vector field onM which is the image underπ∗ of the right invari-
ant vector field onG, the canonical symmetric connection has the form

(∇X∗Y∗)g·p0 = ([Y,Adg(Adg−1X)p])∗g·p0
(42)

whereZp denotes the component inp of Z ∈ g relatively to the decompositiong =
p⊕ k and where[ , ] is the bracket ing.
The curvature tensor is given by

Rp0(X
∗
p0

,Y∗
p0

)Z∗p0
=−([ [X,Y],Z])∗p0

. (43)
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The value atp0 of the symplectic curvature of a symmetric connection is thus given
by the symplectic curvatureS of the corresponding symmetric symplectic triple,
whereS is defined as the map

S: p×p×p×p→ R X,Y,Z,T 7→ S(X,Y,Z,T) :=−Ω([ [X,Y],Z],T).

Similarly, the Ricci tensors : p×p→ R of a symmetric symplectic triple is defined
by s(A,B) := Tr[C→ S(A,C)B] with S(A,B,C,D) =: ω(S(A,B)C,D).

Reciprocally, given a symmetric symplectic triple(g,σ ,Ω), one builds a simply-
connected symmetric symplectic space(M,ω,s) with M = G/K where G is the
simply-connected Lie group with Lie algebrag andK is its connected subgroup with
Lie algebrak, with ω theG-invariant 2-form onM whose value ateK is given byΩ
(identifyingTeKM andp via the differential of the canonical projectionπ : G→G/K)
and with symmetries defined bysπ(g)π(g′) = π(gσ̃(g−1g′)) whereσ̃ is the automor-
phism ofG whose differential ate is σ .

Construction of Ricci-flat symmetric symplectic triples

Let (V,Ω′) be a symplectic vector space and letR be an “algebraic curvature tensor”
on this space, i.e.R∈ Λ2V∗⊗S2V∗ and +�

X,Y,Z
R(X,Y,Z,T) = 0.

Define on the vector space

g1 = V⊕Λ2V⊕V∗ (44)

the structure of Lie algebra defined, for allX,Y,Z ∈V,α,β ∈V∗ by:

[X,Y] = X∧Y, [X,α] = 0, [X∧Y,Z] = R(X,Y,Z, ·) ∈V∗,
[X∧Y,Z∧T] = 0, [X∧Y,α] = 0, [α,β ] = 0. (45)

Let σ be the involutive automorphism of the Lie algebrag1 defined by:

σ|V
=− Id|V

σ|Λ2V
= Id|Λ2V

σ|V∗ =− Id|V∗ . (46)

Let ω be the non degenerate skewsymmetric 2-form onp := V⊕V∗ defined by:

ω(X,Y) = 0, ω(α,β ) = 0, ω(α,X) = α(X). (47)

Sinceω([X∧Y,Z],T) = R(X,Y,Z,T) = R(X,Y,T,Z) =−ω(Z, [X∧Y,T]) the 2-form
ω is invariant underk := Λ2V.

Thus(g1,σ ,ω) is a symmetric symplectic triple if and only if the mapφ : Λ2V →
L (V,V∗) X ∧Y → [Z 7→ R(X,Y,Z, ·)] is injective. If the mapφ is not injective,
its kernel is an ideal ofg1. Consider the Lie algebrag := g1/Ker φ . Let σ̃ be the
involutive automorphism ofg induced byσ (σ̃(A+ Ker φ) := σ(A)+ Ker φ ). The
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decomposition ofg into eigenspaces for̃σ readsg = k′ + p′ wherek′ = k/Ker φ =
Λ2V/Ker φ andp′ ' p = V⊕V∗. Let ω̃ be the non degenerate skewsymmetric 2-form
onp′, induced byω onp. Then(g := g1/Ker φ , σ̃ , ω̃) is a symmetric symplectic triple.

The symplectic curvature of this triple isS(A,B,C,D) = −ω([ [A,B],C],D) for
elementsA,B,C,D ∈ p = V ⊕V∗; it vanishes as soon as one of the arguments is in
V∗ and

S(X,Y,Z,T) =−R(X,Y,Z,T) (48)

for X,Y,Z,T ∈V. ThusS(A,B)C vanishes as soon as one of the arguments is inV∗

andS(X,Y)Z ∈V∗ for X,Y,Z ∈V. The Ricci tensors(A,B) := Tr[C→ S(A,C)B] of
the symmetric triple is thus identically zero. Hence:

Proposition 4.6 Let (V,Ω) be a symplectic vector space of dimension2n. Given
any element R∈ Λ2V∗⊗S2V∗ so that +�

X,Y,Z
R(X,Y,Z,T) = 0, one can construct a4n-

dimensional symmetric symplectic space whose canonical symmetric connection is
Ricci-flat.
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