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Abstract: We prove the abundance theorem for log canonical n-folds such that the

boundary divisor is big assuming the abundance conjecture for log canonical ðn� 1Þ-folds. We

also discuss the log minimal model program for log canonical 4-folds.
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1. Introduction. One of the most impor-

tant open problems in the minimal model theory for
higher-dimensional algebraic varieties is the abun-

dance conjecture. The three-dimensional case of the

conjecture was completely solved (cf. [18] for log
canonical threefolds and [7] for semi log canonical

threefolds). However it is still open in dimension

� 4. In this paper, we deal with the conjecture in
relative setting.

Conjecture 1.1 (Relative abundance). Let
� : X ! U be a projective morphism of varieties

and ðX;�Þ be a (semi) log canonical pair. IfKX þ�

is �-nef, then it is �-semi-ample.
Hacon and Xu [14] proved that Conjecture 1.1

for log canonical pairs and Conjecture 1.1 for semi

log canonical pairs are equivalent (see also [12]).
In [1] Ambro studied the base point free theorem for

quasi-log varieties, and as a consequence of the base

point free theorem for log canonical pairs, which is a
special case of his result, Conjecture 1.1 follows for

any log canonical pair ðX;� ¼ �0 þ AÞ where �0 �

0 and A � 0 is ample (see, for example, [9]). If
ðX;�Þ is Kawamata log terminal and � is big, then

Conjecture 1.1 follows from the usual Kawamata–

Shokurov base point free theorem in any dimension.
This special case of Conjecture 1.1 plays a crucial

role in [5]. In this way, it is natural to consider

Conjecture 1.1 for log canonical pairs ðX;�Þ under
the assumption that � is big.

In this paper, we prove the following theorem.

Theorem 1.2 (Main theorem). Assume Con-
jecture 1.1 for log canonical ðn� 1Þ-folds. Then

Conjecture 1.1 holds for any projective morphism

� : X ! U and any log canonical n-fold ðX;�Þ such
that � is a �-big R-divisor.

We prove it by using the log minimal model

program (log MMP, for short) with scaling. A key
gradient is termination of the log minimal model

program with scaling for Kawamata log terminal
pairs such that the boundary divisor is big (cf. [5]).

A similar technique in the proof of Theorem 1.2 was

also used in [16]. For details, see Section 3.
By Theorem 1.2, we obtain the following

results in the minimal model theory for 4-folds.

Theorem 1.3 (Relative abundance theorem).
Let � : X ! U be a projective morphism from a

normal variety to a variety, where the dimension of

X is four. Let ðX;�Þ be a log canonical pair such
that � is a �-big R-divisor. If KX þ� is �-nef, then

it is �-semi-ample.

Corollary 1.4 (Log minimal model program).
Let � : X ! U be a projective morphism of normal

quasi-projective varieties, where the dimension of X

is four. Let ðX;�Þ be a log canonical pair such that
� is a �-big R-divisor. Then any log MMP on KX þ

� with scaling over U terminates with a good

minimal model or a Mori fiber space of ðX;�Þ over
U. Moreover, if KX þ� is �-pseudo-effective, then

any log MMP on KX þ� over U terminates.

Corollary 1.5 (Finite generation of adjoint
ring). Let � : X ! U be a projective morphism

from a normal variety to a variety, where the

dimension of X is four. Let �� ¼ ð�1; � � � ;�nÞ be
an n-tuple of �-big Q-divisors such that ðX;�iÞ is

log canonical for any 1 � i � n. Then the adjoint

ring
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 !

is a finitely generated OU -algebra.
We note that we need to construct log flips for

log canonical pairs to run the log minimal model

program. Fortunately, the existence of log flips for

log canonical pairs is known for all dimensions
(cf. [22] for threefolds, [8] for 4-folds and [4] and [13]

for all higher dimensions). Therefore we can run the

log minimal model program for log canonical pairs
in all dimensions. By the above corollaries, we can

establish almost completely the minimal model

theory for any log canonical 4-fold ðX;�Þ such that
� is big.

The contents of this paper are as follows: In

Section 2, we collect some notations and definitions
for reader’s convenience. In Section 3, we prove

Theorem 1.2. In Section 4, we discuss the log mini-

mal model program for log canonical 4-folds and
prove Theorem 1.3, Corollary 1.4 and Corollary

1.5.
Throughout this paper, we work over the

complex number field.

2. Notations and definitions. In this sec-
tion, we collect some notations and definitions. We

will freely use the standard notations in [5]. Here we

write down some important notations and defini-
tions for reader’s convenience.

2.1 (Divisors). Let X be a normal variety.

WDivRðXÞ is the R-vector space with canonical
basis given by the prime divisors of X. A variety X

is called Q-factorial if every Weil divisor is Q-Cart-

ier. Let � : X ! U be a morphism from a normal
variety to a variety and let D ¼

P
aiDi be an

R-divisor on X. Then D is a boundary R-divisor if

0 � ai � 1 for any i. The round down of D, denoted
by xDy, is

P
xaiyDi where xaiy is the largest

integer which is not greater than ai. D is pseudo-

effective over U (or �-pseudo-effective) if D is
�-numerically equivalent to the limit of effective

R-divisors modulo numerical equivalence over U . D

is nef over U (or �-nef ) if it is R-Cartier and
ðD � CÞ � 0 for every proper curve C onX contained

in a fiber of �. D is big over U (or �-big) if there

exists a �-ample divisor A and an effective divisor E
such that D �R; U Aþ E. D is semi-ample over U

(or �-semi-ample) if D is an R�0-linear combination

of semi-ample Cartier divisors over U, or equiv-
alently, there exists a morphism f : X ! Y to a

variety Y over U such that D is R-linearly

equivalent to the pullback of an ample R-divisor
over U .

2.2 (Singularities of pairs). Let X be a nor-

mal variety and � be an effective R-divisor such
that KX þ� is R-Cartier. Let f : Y ! X be a

birational morphism. Then f is called a log reso-

lution of the pair ðX;�Þ if f is projective, Y is
smooth, the exceptional locus ExðfÞ is pure codi-

mension one and Supp f�1
� � [ ExðfÞ is simple

normal crossing. Suppose that f is a log resolution
of the pair ðX;�Þ. Then we may write

KY ¼ f�ðKX þ�Þ þ
X

biEi

where Ei are prime divisors on Y . Then the log

discrepancy aðEi; X;�Þ of Ei with respect to ðX;�Þ

is 1þ bi. The pair ðX;�Þ is called Kawamata log
terminal (klt, for short) if aðEi; X;�Þ > 0 for any log

resolution f of ðX;�Þ and any Ei on Y . ðX;�Þ is

called log canonical (lc, for short) if aðEi; X;�Þ � 0

for any log resolution f of ðX;�Þ and any Ei on Y .

ðX;�Þ is called divisorially log terminal (dlt, for
short) if � is a boundary R-divisor and there is

a log resolution f : Y ! X of ðX;�Þ such that

aðE;X;�Þ > 0 for any f-exceptional divisor E on Y .
Definition 2.3 (Log minimal models). Let

� : X ! U be a projective morphism from a normal

variety to a variety and let ðX;�Þ be a log canonical
pair. Let �0 : Y ! U be a projective morphism from

a normal variety to U and � : X Y be a bira-

tional map over U such that ��1 does not contract
any divisors. Set �Y ¼ ���. Then the pair ðY ;�Y Þ

is a log minimal model of ðX;�Þ over U if

(1) KY þ�Y is nef over U , and
(2) for any �-exceptional prime divisor D on X, we

have

aðD;X;�Þ < aðD; Y ;�Y Þ:

A log minimal model ðY ;�Y Þ of ðX;�Þ over U is

called a good minimal model if KY þ�Y is semi-
ample over U .

Finally, let us recall the definition of semi log

canonical pairs.
Definition 2.4 (Semi log canonical pairs, cf.

[11, Definition 4.11.3]). Let X be a reduced S2

scheme. We assume that it is pure n-dimensional
and normal crossing in codimension one. Let

X ¼ [Xi be the irreducible decomposition and let

� : X0 ¼ qX0
i ! X ¼ [Xi be the normalization.

Then the conductor ideal of X is defined by
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condX ¼ HomOX
ð��OX0 ;OXÞ 	 OX

and the conductor CX of X is the subscheme defined

by condX. Since X is S2 scheme and normal crossing

in codimension one, CX is a reduced closed sub-
scheme of pure codimension one in X.

Let � be a boundary R-divisor on X such that

KX þ� is R-Cartier and Supp� does not contain
any irreducible components of CX. An R-divisor �

on X0 is defined by KX0 þ� ¼ ��ðKX þ�Þ and we

set �i ¼ �jX0
i
. Then ðX;�Þ is called semi log

canonical (slc, for short) if ðX0
i;�iÞ is lc for any i.

3. Proof of the main theorem. In this

section, we prove Theorem 1.2. Before the proof, let
us recall the useful theorem called dlt blow-up by

Hacon.

Theorem 3.1 (cf. [10, Theorem 10.4], [20,
Theorem 3.1]). Let X be a normal quasi-projective

variety of dimension n and let � be an R-divisor

such that ðX;�Þ is log canonical. Then there exists a
projective birational morphism f : Y ! X from a

normal quasi-projective variety Y such that
(1) Y is Q-factorial, and

(2) if we set

�Y ¼ f�1
� �þ

X

E:f-exceptional

E;

then ðY ;�Y Þ is dlt and KY þ�Y ¼ f�ðKX þ

�Þ.
Proof of Theorem 1.2. Without loss of general-

ity, we can assume that U is affine. Let f :

ðY ;�Y Þ ! ðX;�Þ be a dlt blow-up of ðX;�Þ. Then
�Y is big over U . Indeed, �Y ¼ f�1

� �þ E where E

is the sum of all f-exceptional prime divisors with

coefficient one. By the definition of �-big divisors,
there is a �-ample divisor A and an R-divisor G ¼P

diðgiÞ on X, where ðgiÞ are principal divisors,

and an R-Cartier divisor D on U such that � is
the sum of AþGþ ��D and an effective divisor.

Set A0 ¼ AþGþ ��D. Then A0 is �-ample and ��
A0 is effective, and therefore f�A0 is big over U and

f�1
� �� f�1

� A0 is effective. We can write f�A0 ¼

f�1
� A0 þ E0 for some f-exceptional divisor E0. Pick
a positive integer m satisfying that mE � E0 is

effective. Then

m�Y � f�A ¼ ðmf�1
� �� f�1

� AÞ þ ðmE � E0Þ

is effective. Since f�A0 is big over U , �Y is also big

over U . Thus we can replace ðX;�Þ with ðY ;�Y Þ
and assume that ðX;�Þ is a Q-factorial dlt pair.

Let V be the finite dimensional subspace in

WDivRðXÞ spanned by all components of �, and set

N ¼ fB 2 V j ðX;BÞ is lc and KX þ B is �-nefg:

Then N is a rational polytope in V (cf. [11, Theo-
rem 4.7.2 (3)], [23, 6.2. First Main Theorem]).

Therefore we can find finitely many �-big Q-divi-

sors �1; � � � ;�l 2 N which are sufficiently close to �

and positive real numbers r1; � � � ; rl such thatPl
i¼1 ri ¼ 1 and

Pl
i¼1 ri�i ¼ �. Then ðX;�iÞ are

dlt because Supp�i 	 Supp� and �i are suffi-
ciently close to �. Since we have KX þ� ¼Pl

i¼1 riðKX þ�iÞ, it is sufficient to prove that

KX þ�i is �-semi-ample for any i. Thus we may
assume that � is a Q-divisor.

If x�y ¼ 0, then ðX;�Þ is klt and Theorem 1.2

follows from [5, Corollary 3.9.2]. Thus we may
assume that x�y 6¼ 0. Let k be a positive integer

such that kðKX þ�Þ is Cartier. Pick a sufficiently

small positive rational number � such that ��
�x�y is big over U and ð2k� � dimXÞ=ð1� �Þ < 1.

Since ðX;�Þ is dlt, ðX;�� �x�yÞ is klt. By [5, Cor-
ollary 1.4.2], the log MMP on KX þ�� �x�y with

scaling of a �-ample divisor

X = X1 X2 · · · Xi · · ·

over U terminates. Let �i be the birational trans-

form of � on Xi. Then ðXm;�m � �x�myÞ is a log
minimal model or a Mori fiber space h : Xm ! Z of

ðX;�� �x�yÞ over U for some m 2 Z>0.

Let fi : Xi ! Vi be the contraction morphism
of the i-th step of the log MMP over U, that is,

Xiþ1 ¼ Vi or Xiþ1 ! Vi is the flip of fi over U . Then

KXi
þ�i is nef over U and fi-trivial for any i � 1.

Indeed, by the induction on i, it is sufficient to

prove that KX þ� is f1-trivial and KX2
þ�2 is nef

over U . Recall that k is a positive integer such that
kðKX þ�Þ is Cartier. We show that KX þ� is

f1-trivial and kðKX2
þ�2Þ is a nef Cartier divisor

over U. Since KX þ� is nef over U, for any
ðKX þ�� �x�yÞ-negative extremal ray over U , it

is also a ðKX þ�� x�yÞ-negative extremal ray

over U . Then we can find a rational curve C on X
contracted by f1 such that 0 < �ðKX þ�� x�yÞ �

C � 2 dimX by [10, Theorem 18.2]. By the choice of

�, we have

0 � kðKX þ�Þ � C

¼
k

1� �
ðKX þ�� �x�y� �ðKX þ�� x�yÞÞ � C
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<
k�

1� �
� 2 dimX < 1:

Since kðKX þ�Þ is Cartier, kðKX þ�Þ � C is an

integer. Then we have kðKX þ�Þ � C ¼ 0 and thus
KX þ� is f1-trivial. By the cone theorem (cf.

[11, Theorem 4.5.2]), there is a Cartier divisor D on

V1 such that kðKX þ�Þ � f�1D. Since kðKX þ�Þ is
nef over U , D is also nef over U. Let g : W ! X

and g0 : W ! X2 be a common resolution of X

X2. Then g�ðKX þ�Þ ¼ g0�ðKX2
þ�2Þ by the neg-

ativity lemma because KX þ� is f1-trivial. Then

kðKX2
þ�2Þ is linearly equivalent to the pullback of

D and therefore it is a nef Cartier divisor over U.
Thus, KXi

þ�i is nef over U and fi-trivial for any

i � 1.

Like above, by taking a common resolution of
Xi Xiþ1 and the negativity lemma, we see that

KXi
þ�i is semi-ample over U if and only if KXiþ1

þ

�iþ1 is semi-ample over U for any 1 � i � m� 1.
Moreover Xm is Q-factorial and �m is big over U by

the construction. Therefore we can replace ðX;�Þ
with ðXm;�mÞ and assume that X is a log minimal

model or a Mori fiber space h : X ! Z of ðX;��

�x�yÞ over U. We note that after replacing ðX;�Þ
with ðXm;�mÞ, ðX;�Þ is lc but not necessarily dlt.

Case 1. X is a Mori fiber space h : X ! Z of

ðX;�� �x�yÞ over U .
Proof of Case 1. First, note that in this case

KX þ� is h-trivial by the above discussion. More-

over x�y is ample over Z. By the cone theorem (cf.
[11, Theorem 4.5.2]), there exists a Q-Cartier Q-di-

visor � on Z such that KX þ� �Q;Uh
��. Since x�y

is ample over Z, Supp x�y dominates Z. In partic-
ular, there exists a component of x�y, which we

denote T , such that T dominates Z. Let f :

ðY ;�Y Þ ! ðX;�Þ be a dlt blow-up (see Theorem
3.1) and eT be the strict transform of T on Y . Then

KX þ� is semi-ample over U if and only if KY þ

�Y is semi-ample over U . Furthermore, we have
KeT þDiffð�Y � eT Þ �Q; U ððh 
 fÞ jeT Þ

�
� since eT

dominates Z. Thus it is sufficient to prove that

KeT þDiffð�Y � eT Þ is semi-ample over U . Since
ðY ;�Y Þ is dlt, eT is normal by [21, Corollary 5.52].

By [19, 17.2. Theorem], we see that the pair

ð eT;Diffð�Y � eT ÞÞ is lc. Then KeT þDiffð�Y � eT Þ is
semi-ample over U by the relative abundance

theorem for log canonical ðn� 1Þ-folds. So we are

done. �

Case 2. X is a log minimal model of ðX;��

�x�yÞ over U .

Proof of Case 2. In this case, both KX þ� and
KX þ�� �x�y are nef over U . Set M ¼ KX þ�

and M 0 ¼ KX þ�� �x�y. By [5, Corollary 3.9.2],

M 0 is semi-ample over U . Therefore we may assume
that x�y 6¼ 0, and there exists a sufficiently large

and divisible positive integer l such that both lM

and l�x�y are Cartier and ����OXðlM
0Þ ! OXðlM

0Þ
is surjective. Then, in the following diagram,

π∗π∗OX(lM ′) |X\ ∆ π∗π∗OX(lM) |X\ ∆

OX(lM ′) |X\ ∆

∼=
OX(lM) |X\ ∆

the left vertical morphism is surjective. Moreover,

the lower horizontal morphism is an isomorphism.

Therefore the right vertical morphism is surjective.
Thus ����OXðlðKX þ�ÞÞ ! OXðlðKX þ�ÞÞ is sur-

jective outside of x�y.

Next, set D ¼ Diffð�� x�yÞ and consider the
following exact sequence

0 ! OXðl
0M � x�yÞ ! OXðl

0MÞ

! Ox�yðl
0ðKx�y þDÞÞ ! 0

where l0 is a sufficiently large and divisible positive
integer such that 1=l0 � �. Then we have

l0M � x�y ¼ l0 M �
1

l0
x�y

� �
:

Moreover, �� ð1=l0Þx�y is big over U and M �

ð1=l0Þx�y is nef over U. Since ðX;�� ð1=l0Þx�yÞ is
klt, by [5, Lemma 3.7.5], we may find a �-big

Q-divisor Aþ B, where A � 0 is a general ample

Q-divisor over U and B � 0, such that ðX;Aþ BÞ
is klt and �� ð1=l0Þx�y �Q;U Aþ B. In particular,

ðX;BÞ is klt. Furthermore, Aþ ðl0 � 1ÞðM �

ð1=l0Þx�yÞ is ample over U . Thus we have

l0M � x�y

�Q; U KX þ Aþ ðl0 � 1Þ M �
1

l0
x�y

� �
þ B

and R1��OXðl
0M � x�yÞ ¼ 0 (cf. [17, Theorem

1-2-5]). Then ��OXðl
0MÞ ! ��Ox�yðl

0ðKx�y þDÞÞ
is surjective and thus ����OXðl

0MÞ �Ox�y !

����Ox�yðl
0ðKx�y þDÞÞ is surjective.

We can check that the pair ðx�y; DÞ is semi log
canonical. Indeed, since ðX;�� �x�yÞ is klt and

since X is Q-factorial, by [21, Corollary 5.25], x�y

is Cohen–Macaulay. In particular, x�y satisfies
the S2 condition. Moreover, since ðX;�Þ is lc, x�y
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is normal crossing in codimension one. We also

see that D does not contain any irreducible
components of Cx�y by [6, 16.6 Proposition]. There-

fore ðx�y; DÞ is semi log canonical by [19, 17.2

Theorem]. Since Kx�y þD ¼ Mj
x�y

is nef over U,
Kx�y þD is semi-ample over U by [14, Theorem 2]

and the relative abundance theorem for log canon-

ical ðn� 1Þ-folds.
By these facts, in the following diagram,

π∗π∗OX(l′M) ⊗O ∆ π∗π∗O ∆ (l′(K ∆ + D))

OX(l′M) ⊗O ∆

∼=
O ∆ (l′(K ∆ + D))

the right vertical morphism and the upper horizon-

tal morphism are both surjective. Furthermore, the

lower horizontal morphism is an isomorphism.
Therefore the left vertical morphism is surjective.

Then ����OXðl
0ðKX þ�ÞÞ ! OXðl

0ðKX þ�ÞÞ is

surjective in a neighborhood of x�y.
Therefore, ����OXðlðKX þ�ÞÞ ! OXðlðKX þ

�ÞÞ is surjective for some sufficiently large and
divisible positive integer l. So we are done. �

Thus, in both cases,KX þ� is semi-ample over

U. Therefore we complete the proof. �

4. Minimal model program in dimension

four. In this section, we discuss the log minimal

model program for log canonical 4-folds and prove
Theorem 1.3, Corollary 1.4 and Corollary 1.5.

Proof of Theorem 1.3. It immediately follows

from Theorem 1.2 since the relative abundance
theorem for log canonical threefolds holds (cf.

[18, 1.1 Theorem]). �

Proposition 4.1. Let � : X ! U be a pro-
jective morphism of normal quasi-projective vari-

eties, where the dimension of X is four. Let ðX;�Þ

be a log canonical pair and let A be an effective
R-divisor such that ðX;�þ AÞ is log canonical and

KX þ�þ A is �-nef. Then we can run the log MMP

on KX þ� with scaling of A over U and this log
MMP with scaling terminates.

Proof. We can run the log MMP on KX þ�

with scaling of A over U by [11, Remark 4.9.2].
Therefore we only have to prove the termination of

the log MMP with scaling.

Suppose by contradiction that we get an
infinite sequence of birational maps by running

the log MMP with scaling of A

(X = X1,Δ = Δ1) · · · (Xi,Δi) · · ·

over U . Let Ai be the birational transform of A on

Xi and set

�i ¼ inff� 2 R�0 j KXi
þ�i þ �Ai is nef over Ug

for every i � 1. Let Xi ! Vi be the contraction
morphism of the i-th step of the log MMP on KX þ

� with scaling of A over U . Note that by

[3, Lemma 3.8], the log MMP with scaling termi-
nates for all Q-factorial dlt 4-folds. By the same

argument as in the proof of [11, Lemma 4.9.3], we

obtain the following diagram

(Y 1
1 ,Ψ

1
1)

α

· · · (Y 1
i ,Ψ

1
i )

αi

· · ·

(X1,Δ1) · · · (Xi,Δi) · · ·

such that
(1) ðY 1

i ;�
1
i Þ is Q-factorial dlt and KY 1

i
þ�1

i ¼

��
i ðKXi

þ�iÞ,

(2) the sequence of birational maps

(Y 1
i ,Ψ

1
i ) · · · (Y ki

i ,Ψki

i ) = (Y 1
i+1,Ψ

1
i+1)

is a finitely many steps of the log MMP on

KY 1
i
þ�1

i over Vi

for any i � 1, and
(3) the sequence of the upper horizontal birational

maps is an infinite sequence of divisorial

contractions and log flips of the log MMP on
KY 1

1
þ�1

1 over U .

For every i � 1 and 1 � j < ki, let Aj
i be the

birational transform of ��
1A on Y j

i and set

�j
i ¼ inff� 2 R�0 j KY j

i
þ�

j
i þ �Aj

i is nef over Ug:

Then we have �j
i ¼ �i for any i � 1 and 1 � j < ki.

Indeed, since KXi
þ�i þ �iAi is nef over U and it is

also trivial over Vi, there is an R-Cartier divisor D,

which is nef over U , on Vi such that KXi
þ�i þ �iAi

is R-linearly equivalent to the pullback of D. Since

A1
i ¼ ��

iAi, by the condition (1), KY 1
i
þ�1

i þ �iA
1
i is

also R-linearly equivalent to the pullback of D.
Thus KY 1

i
þ�1

i þ �iA
1
i is nef over U . Moreover, by

the condition ð2Þ, KY j
i
þ�

j
i þ �iA

j
i is also R-linearly

equivalent to the pullback of D. Therefore KY j
i
þ

�
j
i þ �iA

j
i is nef over U and trivial over Vi for any

0 � j < ki. We also see that KY j
i
þ�

j
i þ �Aj

i is not

nef over Vi for any � 2 ½0; �iÞ by the condition (2).
In particular it is not nef over U. Therefore we have

�j
i ¼ �i for any i � 1 and 1 � j < ki.

By these facts, we can identify the sequence of
birational maps
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(Y 1
1 ,Ψ

1
1) · · · (Y j

i ,Ψ
j
i ) · · ·

with an infinite sequence of birational maps of the

log MMP on KY 1
1
þ�1

1 with scaling of A1
1 ¼ ��

1A

over U . But then it must terminate by [3, Lemma
3.8]. It contradicts our assumption. So we are done.

�

Proof of Corollary 1.4. The first half of the
assertions immediately follows from Proposition 4.1

and Theorem 1.3. For the latter half, if KX þ� is

�-pseudo-effective then it is �-effective by the first
half of this corollary. By [2, Theorem 1.3], termi-

nation of any log MMP follows. So we are done. �

Proof of Corollary 1.5. Without loss of gen-
erality, we can assume that U is affine. Then the

assertion follows from Proposition 4.1 and Theo-

rem 1.3 with the same argument as in the proof of
[15, Lemma 3.2] and the discussion of [15, Section 4].

�
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