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�is paper is concerned with the blow-up solutions of the critical Gross-Pitaevskii equation, which models the Bose-Einstein
condensate. �e existence and qualitative properties of the minimal blow-up solutions are obtained.

1. Introduction and Main Results

In this paper, we deal with the Cauchy problem of the
nonlinear Schrödinger equation with a harmonic potential

��� + Δ� − |�|2� + ���������4/�� = 0, � ∈ R
�, � ≥ 0, (1)

� (0, �) = �0 (�) , (2)

where � = �(�, �): [0, 
) × R
� → C is the wave function, �

is the space dimension, and Δ denotes the Laplace operator
on R

�. Equation (1) is also called Gross-Pitaevskii equation
(see [1, 2]), which models the Bose-Einstein condensate (see
[3, 4]).�eharmonic potential |�|2 describes amagnetic �eld.

With the nonlinear term |�|4/�� being replaced by |�|�−1�, it
is well known that the exponent  = 1 + 4/� is the minimal
value for the existence of blow-up solutions (see e.g., [5, 6]).
Hence (1) is called critical Gross-Pitaevskii equation.

Let us recall the classical nonlinear Schrödinger equation

��� + Δ� + ���������4/�� = 0, � ∈ R
�, � ≥ 0, (3)

� (0, �) = �0 (�) . (4)

For Cauchy problem (3)-(4), Ginibre and Velo [7] established

the local existence in�1(R�). Glassey [8],Weinstein [9], and
Zhang [10] proved that, for some initial data, the solutions of
the Cauchy problem (3)-(4) blow up in �nite time.

For the Cauchy problem (3)-(4), it is well known that

there exists aminimumof�2 norm for the initial data of blow-
up solutions (see [9]). More precisely, let �(�) be the ground
state, which is the unique, positive, radially symmetric solu-
tion (see [11]) of the semilinear elliptic equation

−Δ� + � − |�|4/�� = 0, � ∈ �1 (R�) . (5)

Weinstein [9] proved that the solutions of the Cauchy
problem (3)-(4) are globally de�ned if ‖�0‖�2 < ‖�‖�2 .
On the other hand, for any � ≥ ‖�‖�2 , there exist blow-
up solutions with ‖�0‖�2 = �. Since then, much progress
has been made on the blow-up rate and pro�le of the blow-
up solutions of the Cauchy problem (3)-(4) (see [12–15]). In
particular, based on the pseudoconformal invariance of (3)
and the variational characterization of the ground, elaborate
and interesting conclusions were established on the existence
and pro�le of the minimal blow-up solution, which is the
blow-up solution �(�, �) such that ‖�0‖�2 = ‖�‖�2 (see
[13, 15, 16]). By using the pseudoconformal invariance of (3),
Weinstein [15] constructed the explicit blow-up solution with
critical mass (‖�0‖�2 = ‖�‖�2) for (3) in the form

(� + ��)−(�/2)�( �� + ��) �(��|�|2)/4(	+��)��(
+��)/(	+��), (6)
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where �, �, �, � ∈ �, �� − �� = 1, and �� < 0. Moreover,
Weinstein proved that, for any minimal blow-up solution�(�), the following holds:

lim
�→

�(�)�/2� (�, � (�) (� + ! (�))) = � (�) , (7)

where 
 is the blow-up time and !(�) ∈ R
� and �(�) ∈ R are

some suitable functions.
Merle [13, 16] proved that �(�, �) is a minimal blow-up

solution of (3) if and only if there exist # ∈ R, $ > 0, �0 ∈
R
�, and �1 ∈ R

� such that

� (�, �) = ( $
 − �)
�/2���+(�|�−�1|2/4(−+�))−(��2/(−+�))

× �( $
 − � ((� − �1) − (
 − �) �0)) .
(8)

For the Cauchy problem (1)-(2), local well-posedness in
energy space was established in Cazenave [17]. Moreover,
from the result of Carles [18] and Zhang [6, 19], it is known
that �(�) is globally de�ned if ‖�0‖�2 < ‖�‖�2 . In other words,‖�0‖�2 ≥ ‖�‖�2 if �(�) blows up in �nite time.

Let �(�) and�(�) be the solutions of the Cauchy problems
(1)-(2) and (3)-(4), respectively. Under the condition of�0(�) = �0(�), Carles [18] established a formula, which
re�ects the relation between �(�) and �(�). According to the
formula, Carles [18] established the following statements.

(1) If �(�) blows up at a �nite time 
�, then 
� ≤ &/2.
(2) If �(�) blows up at 
� < &/2, �(�) blows up at time
� < ∞.

(3) Conversely, �(�) blows up at time 
� < ∞; then �(�)
blows up at 
� < &/2.

(4) If �(�) blows up at
� = &/2,�(�) exists globally (
� =∞).

Moreover, Carles studied the qualitative properties of
minimal blow-up solutions �(�) with 
� < &/2 (see [18, 20]).
As for the minimal blow-up solutions with 
� = &/2, though
the existence was established by the formula in [5], there is no
further information on the qualitative properties obtained by
the formula. Up to our knowledge, there is no result about the
qualitative properties of the minimal blow-up solutions �(�)
of (1) with 
� = &/2.

�e purpose of the present paper is to investigate the
qualitative properties of the minimal blow-up solutions
without any limit to the blow-up time.�e formula presented
in [18] is not used to carry out the objective. We follow the
ideas of Merle [13, 16], as well as Weinstein [15], in which the
pro�le and uniqueness of the minimal blow-up solutions for
(3) were investigated. However, in contrast to (3), (1) loses
the invariance of pseudoconformal invariance, which is very
important in the arguments of [13, 15, 16]. �erefore, some
appropriate modi�cations will be made in the argument of
this work to reach our goal. In particular, we note that some
techniques developed by Pang et al. [21] are adopted in this
paper.

We state our main results.

�eorem 1. �ere exist initial data �0 with ‖�0‖�2 = ‖�‖�2 for
which the solution of the Cauchy problem (1)-(2) blows up in a
	nite time.

�eorem2. Let�(�) be a blow-up solution of (1)with ‖�0‖�2 =‖�‖�2 . �en there is !0 ∈ R
� such that

� (�, �) *→ ‖�‖2�2-�0 (9)

in the sense of distribution as � → 
.
�eorem 3. �ere exists 3 > 0 such that

5555∇� (�)5555�2 ≥ 3
 − � , ∀� ∈ [0, 
) . (10)

Remark 4. For any blow-up solutions of (1), we know that
 ≤ &/2 (
 is a blow-up time). When 
 < &/2, the
formula presented in [18] is valid. For the minimal blow-up
solutions with
 < &/2, the conclusion of the above theorems
can be found in [18]. However, there exist minimal blow-up
solutions with 
 = &/2. For example, if the initial �0(�) =�0(�) = �(�), with �(�) being the solution of problem (5),
the solution �(�) of (1) will blow up at 
 = &/2, while the
corresponding solution of (3) is a solitary wave ����(�). �e
minimal blow-up solutions with 
 = &/2 were sensible as
pointed in [18].

In this paper,��(R�), ‖ ⋅ ‖��(R�), and∫
R
� ⋅ �� are denoted

by ��, ‖ ⋅ ‖�� , and ∫ ⋅��, respectively. �e various positive
constants are also denoted by 3.

�is paper proceeds as follows. In Section 2, we establish
some preliminaries. In Section 3, we give the proof of the
existence and pro�le of the minimal blow-up solutions of (1)
(�eorems 1 and 2). In Section 4, we derive the argument of
the lower bound of the blow-up rate of the minimal blow-up
solutions of (1) (�eorem 3).

2. Preliminaries

2.1. Local Wellposedness. �e energy space of (1) was de�ned
as

Σ := {� ∈ �1, |�| � ∈ �2} . (11)

�e inner product of the space Σ is de�ned as

⟨�, V⟩ := ∫∇�∇V + �V + |�|2�V��. (12)

�e norm of Σ is denoted by ‖ ⋅ ‖Σ. Moreover, we de�ne an
energy functionalE on Σ by

E (�) := ∫ |∇�|2 + |�|2|�|2 − 11 + 2/�|�|2+4/���. (13)

From Cazenave [17], we have the local well-posedness for
the Cauchy problem of (1) follows.

Proposition 5. For any �0 ∈ Σ, there exist
 > 0 and a unique
solution �(�, �) of the Cauchy problem (1)-(2) in 3([0, 
); Σ)
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such that either 
 = ∞ (global existence) or 
 < ∞ and
lim�→‖�(�)‖Σ = ∞ (blowup). Moreover, for any � ∈ [0, 
),
it holds the conservation laws of mass

5555�(�)5555�2 = 5555�05555�2 (14)

and the energy

E (� (�)) = E (�0) . (15)

2.2. Variational Characterization of the Ground State. Con-
sider the equation

−Δ� + $� − |�|4/�� = 0, � ∈ �1 (R�) . (16)

For (16), we set some notations such asX� (the solution set),
G� (the ground solution set), andG as follows:

X� = {� ∈ �1; � ̸= 0, −Δ� + $� − |�|4/�� = 0} ,
G� = {� ∈ X�; G (�) ≤ G (V) , ∀V ∈ X$} ,

G = ⋃
�∈�+

G�,
(17)

where G(�) = ∫(1/2)|∇�|2 + ($/2)|�|2 − (1/4/� +
2)|�|2+(4/�)��.

For any � ∈ X�, the following two identities hold true:

∫ |∇�|2 + $|�|2�� = ∫ |�|2+(4/�)��,
∫ (� − 2) |∇�|2 + �$|�|2��

= ∫ �1 + 2/�|�|2+(4/�)�� (Pohozaev’s identity) .
(18)

�e above two equalities imply

H (�) = 0, ∀� ∈ X, (19)

where

H (�) := ∫ |∇�|2 − 12/� + 1|�|2+(4/�)��. (20)

Naturally, we get

� ∈ G� ⇐⇒ {� ∈ X�,‖�‖�2 ≤ ‖V‖�2 , ∀V ∈ X�. (21)

According to Cazenave [17], the set G� can be described
as

G� = ⋃{���M� (⋅ − !) ; # ∈ �, ! ∈ R
�} , (22)

whereM� is a positive, spherically symmetric, decreasing, and
real valued function.

It is of importance that Kwong [11] proved the uniqueness
for the solution �(�) of the problem

−Δ� + � − |�|4/�� = 0, � ∈ �1,
� (�) = � (|�|) ,

� (�) > 0.
(23)

Noticing the fact that �(�) = M�|�=1, it is easy to check that
M� = $�/4�($1/2�) ∈ G�, 5555M�5555�2 = ‖�‖�2 . (24)

It follows from (21), (22), and (24) that

� ∈ G� ⇐⇒ {� ∈ X�,‖�‖�2 = ‖�‖�2 , (25)

G� = ⋃{���M� (⋅ − !) ; # ∈ �, ! ∈ R
�} ,

= ⋃{���$�/4�($1/2 (⋅ − !)) ; # ∈ �, ! ∈ R
�} . (26)

With functionalH de�ned by (20), we now introduce the
following constrained minimization problem

I (‖�‖�2) ≡ inf {H (O) | O ∈ �1, 5555O5555�2 = ‖�‖�2} . (27)

Now, we claim that

� ∈ G ⇐⇒ �
is a solution to the minimization problem (27) .

(28)

In fact, (�/(� + 2))‖�‖4/��2 is the minimum of the
functional (see Kwong [11] or Weinstein [9])

Q (�) = 5555∇�55552�25555�55554/��25555�55552+4/��2+4/�
, � ∈ �1, (29)

which derives the Gagliardo-Nirenberg inequality

5555�55552+4/��2+4/� ≤ � + 2� (5555�5555�2‖�‖�2 )
4/�5555∇�55552�2 . (30)

�e inequality (30) implies the following lemma on the
functionalH.

Lemma 6 (see Weinstein [9]). For any O ∈ �1, one has

[1 − ( 5555O5555�2‖�‖�2 )
4/�] 5555∇O55552�2 ≤ H (O) . (31)

Lemma 6 implies that

H (O) ≥ 0, if
5555O5555�2 ≤ ‖�‖�2 . (32)

It follows from (19), (27), and (32) that

I (‖�‖�2) = 0. (33)
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Hence, from (19) and (25), it holds that

� ∈ G V⇒ �
is a solution to the minimization problem (27) .

(34)

On the other hand, if � is a minimizer of the variational
problem of (27), it solves the Euler-Lagrange equation (16).
So � ∈ X� for some $ > 0, and by (27) and (25), we know� ∈ G� ⊂ G. �is implies that

� ∈ G ⇐V �
is a solution to the minimization problem (27) .

(35)

Hence (28) holds true.
Putting together (22), (25), and (28), we summarize the

variational characterization.

Proposition 7. Each of the following three statements is
equivalent:

(i) � ∈ ⋃�∈R+ G�,

(ii) � is a solution to the minimizing problem
min {H(�), ‖�‖�2 = ‖�‖�2},

(iii) � = ���$�/4�($1/2(� − �0)), for some # ∈ R, $ ∈ R
+,

and �0 ∈ R
�.

2.3. Lemmas

Lemma 8 (see Zhang [6]). Let �0 ̸= 0, the initial datum of
Cauchy problem (1)-(2), satisfy

E (�0) ≤ ∫ |�|2�����0����2��; (36)

then �(�) blows up in a 	nite time.

Consider the constrained minimization problem

Q (Y) ≡ min {H (O) | O ∈ �1, 5555O5555�2 = Y} . (37)

For Q(Y), we cite a lemma in [15].

Lemma 9 (see Weinstein [15]). (a) Consider Q(Y) = 0 orQ(Y) = −∞.
(b) Let Y < ‖�‖�2 and �� be a minimizing sequence; then

it holds that Q(Y) = 0 and �� ⇀ 0 weakly in �1.

Now, we recall some lemmas on the compactness.

Lemma 10 (see Brezis and Lieb [22]). Let O ∈ �1
loc
, ‖∇O‖�2 ≤3, and \(|O| > ]) ≥ - > 0. �en there exists a shi� 
�O(�) =O(� + !) such that, for some constant Y = Y(3, -, ]),

\(^ (0, 1) ∩ [
�a > ]2]) > -. (38)

Lemma 11 (see Lieb [23]). Let O� be a uniformly bounded

sequence of functions inc1,� with 1 <  < ∞. Assume further
that there are positive constant3 and d satisfying \(|O�| > d) ≥
3. �en there exists a sequence !� ∈ R

� such that

O� (⋅ + !�) ⇀ O ̸= 0 weakly in c1,�. (39)

Lemma 12. Let # be a real-valued function on R
� and V ∈�1(R�) with ‖V‖�2 ≤ ‖�‖�2 . �en

�������I∫ V (�) ∇# (�) ��������� ≤ (2H (V) ∫ |V (�)|2|∇# (�)|2��)1/2.
(40)

Proof. It follows from (30) and ‖V‖�2 ≤ ‖�‖�2 that
H (����V) ≥ 0 (41)

for all real numbers Y. On the other hand, it has

H (����V) = Y2 ∫ |V|2|∇#|2�� − Y∫I (V∇V) ∇#�� + H (V) .
(42)

�us the discriminant of the equation in Y must be negative
or null and the desired inequality follows.

Lemma 13. �ere is a constant �0 such that
∫ |�|2����� (�, �)����2�� ≤ �0. (43)

Proof. Setting e(�) = ∫ |�|2|�(�, �)|2��, we have
e� (�) = 2I∫�∇���,

e�� (�) = 4E (�) − 4e (�) .
(44)

It follows that

e (�) = (e (0) − E (0)) cos � + e� (0) sin � + E (0) , (45)

which implies the conclusion.

Lemma 14 (see [16, page 433]). Let �� ∈ �1, �0 > 0, and�0 > 0, for arbitrary f, satisfy
H (��) ≤ �0,5555��5555�2 ≤ ‖�‖�2 ,5555∇��5555�2 *→ ∞,

∫
|�|>�0

����������2�� ≤ ] (f) ,
(H)

where ](f) > 0 depends only on f. �en, it holds that

∫
|�|>4�0

����∇������2�� ≤ g, (46)

with g = g(h0, �0 > 0).
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3. Profile of the Minimal Blow-Up Solution

Now we prove the existence of the minimal blow-up solu-
tions.

Proof of �eorem 1. Setting �0 = �(�, �) = ���/2�(��) with� being arbitrary positive real number and � being complex
number satisfying |�| = 1, then

5555�05555�2 = ‖�‖�2 . (47)

From (15) and (19), the corresponding energy is

E (�0) = (1 − |�|4/�) |�|2�2 ∫ |∇�|2��
+ ∫ |�|2�����0����2�� = ∫ |�|2�����0����2��.

(48)

�usLemma 8 infers that�(�, �) blows up in a �nite time.

Employing the concentration compactness lemma, we
can prove the following proposition which is crucial to the
study of the blow-up pro�le (�eorem 2).

Proposition 15. Let �(�) ∈ 3([0, 
), Σ) be a blow-up solution
of the Cauchy problem (1)-(2) and 
 is the blow-up time. Set�(�) = ‖∇�‖�2/‖∇�(�)‖�2 and (G��)(�, �) = ��/2�(��, �). If

5555�05555�2 = ‖�‖�2 , (49)

it holds that

G�(�)� (⋅ + ! (�) , �) ���(�) *→ � (⋅) in �1, as � *→ 
 (50)

with !(�) ∈ R
� and i(�) ∈ R.

Proof. Let �� → 
. We choose �� = �(��) to satisfy55555∇G��� (⋅ + !�, ��)55555�2 = ��5555∇� (⋅ + !�, ��)5555�2 = ‖∇�‖�2 .
(51)

Setting �� ≡ G���(⋅ + !�, ��), noticing that ‖�(��)‖�2 tends to∞ as �� → 
, �� → 0, and
5555��5555�2 = 5555� (��)5555�2 = 5555�05555�2 , (52)

we know that �� is uniformly bounded in �1 and there is a
weakly convergent subsequence ��� such that

��� ⇀ � in �2,
��� ⇀ � in �1. (53)

We note that

H (���) = �2��H (� (���)) ≤ �2��E (�0) *→ 0,
l *→ ∞. (54)

Since we have assumed ‖�0‖�2 = ‖�‖�2 , by (52), (54), and (31),
we know that �� is a minimizing sequence for the variational
problem (27).

Next, we will prove that the minimizing sequence ��
has a subsequence ��� and a family !� such that ���(⋅ − !�)
has a strong limit in �1. To see this, we need to make
use of the concentration-compactness lemma (Lions [24])
which means that ��� has one of three properties: vanishing,
dichotomy, and compactness.

Vanishing. For every m < ∞, one has

lim
�→∞

sup
�∈R�

∫
��+ �(!)

��������� (�)������
2�� = 0. (55)

Dichotomy. �ere exist a constant Y ∈ (0, ‖�‖�2) and

sequences �1
� and �2

� , bounded in�1, such that, for all ] > 0,
there exists l0 > 0 such that for l > l0

�����55555�1
�
55555�2 − Y����� ≤ ], �����55555�2

�
55555�2 − (‖�‖�2 − Y)����� ≤ ],

555555��� − �1
� − �2

�
555555"1 ≤ ],

555555��� − �1
� − �2

�
555555�� ≤ ] for 2 ≤  < 2�� − 2,

distance (supp�1
� , supp�2

� ) *→ ∞.

(56)

Compactness. �ere exists !� in R
�. For any ] > 0, we can

�nd m < ∞ such that

∫
��+ �(!)

��������� ������
2�� ≥ ‖�‖2�2 − ]. (57)

Now, we exclude the cases of vanishing and dichotomy.

Exclusion of Vanishing. By (52), (51), and (54) there are31 > 0
and 32 > 0 such that

5555��55552�2 ≤ 31, 5555��55552+4/��2+4/� ≥ 32 > 0. (58)

By the boundness of ‖��‖"1 and the Sobolev inequality, there
exist i > 2 + 4/� and 33 > 0 such that

5555��5555��� ≤ 33. (59)

Now, we show the existence of positive constants ] and - such
that

\ (���������� > ]) ≥ - > 0. (60)
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Indeed, from (58) and (59), for su�ciently small ] > 0, we get
�2 ≤ ∫ ����������2+4/���

= ∫{|��|<#}
����������2+4/���

+ ∫{#<|��|<(1/#)}
����������2+4/��� + ∫{|��|>(1/#)}

����������2+4/���
≤ 32431

∫{|��|<#}
����������2��

+ ∫{#<|��|<(1/#)}
����������2+4/��� + 32433

∫{|��|>(1/#)}
�������������

≤ 32431

5555��55552�2 + ∫{#<|��|<(1/#)}
����������2+4/���

+ 32433

5555��5555�����
≤ 322 + \ (���������� > ]) (1] )

2+4/�.
(61)

�us we know that (60) with - = (32/2)]2+4/� is valid. From
(60) and Lemma 10, there exist Y and !� satisfying

\({|�| ≤ 1} ∩ {������ (⋅ + !�)����} > ]2) > -. (62)

�us,

∫
|�|≤1

��������� (⋅ + !�)������
2�� ≥ ( ]2)2-, (63)

which excludes the occurrence of vanishing.

Exclusion of Dichotomy. Suppose by contradiction that
dichotomy occurs. �en, by the same argument as that in the
case of vanishing we can get

0 < n < \ {# < ������1
�
�����} , (64)

where # and n are two constants and �1
� is bounded in

�1. Hence, by Lemma 11, there are a subsequence �1
�� and a

sequence !� such that

�1
�� (⋅ + !�) ⇀ � ̸= 0 in �1. (65)

Using (56) gives rise to

0 = Q (‖�‖�2) ≥ lim inf�→∞ H (�1
��) + lim inf�→∞ H (�2

��)
= lim inf�→∞ H (�1

��) . (66)

On the other hand, the fact ‖�1
��‖�2 < ‖�‖�2 implies with

Lemma 6 that

lim inf�→∞ H (�1
��) ≥ 0. (67)

�us, for any �xed f∗, it has
0 = Q (‖�‖�2) ≥ lim inf�→∞ H (�1

��) = sup
�
inf
�≥�

H (�1
��)

≥ inf
�≥�∗

H (�1
��) . (68)

We can then extract a minimizing subsequence, which we

rename it by�1
�� ; that is, lim�→∞H(�1

��) = 0. Using Lemma 9

yields

�1
�� *→ 0, (69)

which is impossible from (65).

Occurrence of Compactness. It follows from the previous
arguments that compactness occurs. By (57), we get

‖�‖2�2 − ] ≤ ∫
��+ (!)

��������� ������
2�� ≤ ∫ ��������� ������

2�� ≤ ‖�‖2�2 . (70)

For ���(⋅ + !�) being bounded in �1(R�), there exist � ∈
�1(R�) and a subsequence, which we again label it by ��� ,
such that

��� (⋅ + !�) ⇀ � in �1. (71)

Given m > 0, the embedding �1(R�) o→ �2({|�| ≤ h})
is compact and

∫
|�|≤�

���������2�� = lim
�→∞

∫
�
+ (�)

��������� ������
2��. (72)

Making use of (70) derives

∫
R
�

���������2�� ≥ ‖�‖2�2 − ] (73)

for any ] > 0. Hence, it holds that
∫
R
�

���������2�� = ‖�‖2�2 . (74)

It follows that

��� (⋅ + !�) *→ � in �2, (75)

which implies with the Gagliardo-Nirenberg inequality (30)
that

��� (⋅ + !�) *→ � in �2+4/�. (76)

To show ��� → � in �1, we only need to show that‖∇�‖�2 = ‖∇�‖�2 .
From (51) and (54), we know that

0 = lim
�→

H (���� )
= ‖∇�‖�2 − 12/� + 1 lim

�→
∫ ��������� ������

4/�+2��
= ‖∇�‖�2 − 12/� + 1 lim

�→
∫ ���������4/�+2��.

(77)
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Hence, ‖∇�‖�2 < ‖∇�‖�2 derives E(�) < 0. �is contradicts
Lemma 6 and the fact � ̸= 0.

Since� solves theminimizing problem (27), it satis�es the
Euler-Lagrange equation (16). Noticing the fact ‖∇|�|‖�2 ≤‖∇�‖�2 , we infer that |�| is also a solution to problem (27).
�us it is a nonnegative solution of (16). It follows from‖�‖�2 = ‖�‖�2 , ‖∇�‖�2 = ‖∇�‖�2 , and Proposition 7 that

� = � (⋅ + !�) ��� (78)

for some ! ∈ R
� and i ∈ R. By rede�ning the sequence i�,

we can set i = 0.
Proof of �eorem 2. It follows from Proposition 15 that

�� (�) ����� (�, � (�) (� + � (�)))����2*→ |� (�)|2 in �1 as � *→ 
,
(79)

����� (�, � + � (�))����2 *→ ‖�‖2�2-�=0 as � *→ 
. (80)

Using Lemma 13 derives that

lim sup
�→

|� (�)| ≤ √�0‖�‖�2 . (81)

Hence we have a positive constant h0 such that

∀� ∈ [0, 
) , |� (�)| ≤ h0. (82)

∫
 (0,�)

����� (�, �)����2���
= ∫

 (0,�)

����� (�, �)����2 (� − � (�)) ��
+ ∫

 (0,�)

����� (�, �)����2� (�) ��
= ∫

 (−�(�),�)

����� (�, ! + � (�))����2!�!
+ ∫

 (−�(�),�)

����� (�, ! + � (�))����2� (�) �!.

(83)

From (82), for arbitrary h > h0, there is a - > 0 such that^(0, -) ⊂ ^(−�(�), h). �e formula (80) implies that

∫
 (0,�)

����� (�, �)����2��� − ∫ |� (�)|2� (�) �� = 0. (84)

On the other hand, Lemma 13 implies that

∫
|�|>�

����� (�, �)����2��� ≤ �0h . (85)

�us

lim
�→

{∫ ����� (�, �)����2��� − ∫ |� (�)|2��� (�)} = 0. (86)

By Lemma 12, we obtain

���
�������∫ ����� (�, �)����2����������

= �������2I∫� (�, �) ∇� (�, �) ���������
= 2I �∑

�=1
∫ ������ (�, �) ∇� (�, �) ⋅ ∇#� (�) �������

≤ 2 �∑
�=1

(2H (� (�)) ∫ ����� (�, �)����2�����∇#� (�)�����2��)
1/2 ≤ 3,

(87)

where #�(�) = ��. Hence there exists �1 ∈ R
� such that

lim
�→

∫ ����� (�, �)����2��� = −(∫ |� (�)|2��)�1. (88)

Combining (86) with (88), we know that �(�) → −�1 as � →
 and we have

|� (�, �)| *→ ‖�‖2�2-�=�1 . (89)

4. Blow-Up Rate

To establish the lower bound of the blow-up rate, we use the
following proposition.

Proposition 16. Letting !0 be the blow-up point determined
in �eorem 2, it has

lim
�→

∫ ����� − !0����2����� (�, �)����2�� = 0. (90)

Proof. Let us de�ne a positive function ℎ(�) ∈ 31(R�) such
that

ℎ (�) = ℎ (|�|) = {{{{{{{

= 0, |�| < 1,> 0, 1 < |�| < 2,
= |�|24 , |�| > 2,

(91)

and ℎ'(�) = g2ℎ(�/g) for g > 0 and it is valid that

����∇ℎ' (�)����2 ≤ 3ℎ' (�) , ∀� ∈ R
�. (92)
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Carrying out direct computation and using Hölder’s inequal-
ity, we have

��������
��� ∫ ����� (�, �)����2ℎ' (� − !0) ����������

=
�����������2I

�∑
�=1

∫� (�, �) ∇� (�, �) ⋅ ∇ℎ' (� − !0) ��
�����������

≤ 3(∫
|�−�0|≥'

����∇� (�, �)����2��)
1/2

× (∫ ����� (�, �)����2∇ℎ' (� − !0) ��)1/2

≤ 3(∫
|�−�0|≥'

����∇� (�, �)����2��)
1/2

× (∫ ����� (�, �)����2ℎ' (� − !0) ��)1/2,

(93)

which implies

���������
���(∫ ����� (�, �)����2ℎ' (� − !0) ��)1/2

���������
≤ 3(∫

|�−�0|≥'

����∇� (�, �)����2��)
1/2.

(94)

Integrating on both sides gives rise to

sup
�∈[0,)

(∫ ����� (�, �)����2ℎ' (� − !0) ��)1/2

≤ (∫ �����0 (�)����2ℎ' (� − !0) ��)1/2

+ 3∫

0
(∫

|�−�0|≥'

����∇� (~, �)����2��)
1/2�~.

(95)

From the fact �0 ∈ Σ, we have
sup
�∈[0,)

(∫ ����� (�, �)����2ℎ' (� − !0) ��)1/2

≤ ] (g) + 3∫

0
(∫

|�−�0|≥'

����∇� (~, �)����2��)
1/2�~.

(96)

By the virtue of Lemma 14 and Proposition 16, there existg1 and 32 > 0 such that

∫
|�−�0|≥'1

(����∇� (~, �)����2��)1/2�~ ≤ 32, ∀~ ∈ [0, 
) . (97)

Using the dominated convergence theorem, we infer that

lim
'→∞

∫

0
(∫

|�−�0|≥'

����∇� (~, �)����2��)
1/2�~ = 0. (98)

�us, it holds that

lim
'→∞

sup
�∈[0,)

(∫
|�−�0|≥'

����� (�, �)����2����� − !0����2��) = 0, (99)

which implies that there is �# > 0 such that, for ∀� ∈ [0, 
),
∫
|�−�0|≥	�

����� − !0����2����� (�, �)����2�� ≤ ]2 . (100)

�e identity ‖�(�)‖�2 = ‖�0‖�2 = ‖�‖�2 shows that
∫
|�−�0|≤��

����� − !0����2����� (�, �)����2�� ≤ �2# ‖�‖�2
≤ ]2 , for �2# = ]2‖�‖�2 .

(101)

In addition, we have

∫
��≤|�−�0|≤	�

����� − !0����2����� (�, �)����2��
≤ �2# ∫

��≤|�−�0|≤	�

����� (�, �)����2��.
(102)

Using�eorem 2 yields

lim
�→

∫
��≤|�−�0|≤	�

����� − !0����2����� (�, �)����2�� = 0. (103)

In conclusion, for all ] > 0, we have shown that

lim
�→

∫ ����� − !0����2����� (�, �)����2�� ≤ ]2 + ]2 ≤ ]. (104)

Now, we establish the lower bound of the blow-up rate.

Proof of �eorem 3. Simple calculation yields

��� ∫ ����� − !0����2����� (�, �)����2��
= 4I∫ (� − !0) � (�, �) ∇� (�, �) .

(105)

�erefore, the inequality (40) in the case #(�) = |� − !0|2
implies that���������

���(∫ ����� − !0����2����� (�, �)����2��)1/2
��������� ≤ 3. (106)

Integrating from � to 
, by Proposition 16, we obtain

���������(∫
����� − !0����2����� (�, �)����2��)1/2

��������� ≤ 3 (
 − �) . (107)

Combining the above inequality and the following
inequality

(∫ ����� (�, �)����2��)2

≤ (∫ ����� − !0����2����� (�, �)����2��)(∫ ����∇� (�, �)����2 ��) ,
(108)
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we get the result

5555∇� (�)5555�2 ≥ ‖�‖�23 (
 − �) . (109)
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