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Two similar i ty laws a r e  known f o r  the mean-velocity profile in a turbu- 

lent boundary layer  with constant pressure .  These a r e  Prandtlf  s law of the 

wall and von ~&rrn&n's momentum-defect law. Both concepts have recently 

been generalized empirically, the law of the wall to flows with a rb i t r a ry  

pressure  gradient by Ludwieg and Tillmann, and the defect law to  a certain 

c lass  of equilibrium flows by F. Clauser.  

In the present paper i t  is shown that the pressure  distribution c o r r e s -  

ponding to a given equilibrium flow can be computed precisely i f  i t  i s  assumed 

that a certain parameter  D = ( ~ ~ / g ) d g / d  T, is constant, where g and 7, a r e  

the dynamic pressure  in the f r e e  s t r e a m  and the shearing e t ress . a t  the wall. 

The hypothesis D = constant is suggested by a study of the integrated conti- 

nuity equation and i s  supported by a rigorous analogy between the c lass  of 

equilibrium flows defined by Clauser and the c lass  of laminar flows studied 

by Falkner  and Skan. The hypothesis D = constant is also verified directly 

using experimental data for  several  equilibrium turbulent flows. 

Two limiting cases  of equilibrium flow a r e  explored. The f i r s t  limiting 

case is characterized by a completely logarithmic mean-velocity profile out- 

side the sublayer and by a constant friction coefficient; this flow should appear  

in a wedge-shaped converging channel. The second limiting case  is a continu- 

ously separating boundary layer  which grows linearly; the dimensionless pres - 

sure  gradient ( x / ~ ) d ? / d x  is approximately twice that f o r  the corresponding 

laminar flow. Typical shearing-stress  profiles a r e  computed f o r  several  

equilibrium turbulent flows including the two limiting cases .  



STATEMENT OF THE PROBLEM 

1. Introduction. F o r  fifty years  the problem of turbulent shea r  

flow 5as occupied a conspicuous place in ty7e l i te ra ture  of fluid me- 

chanics. During this t i r ~ ~ e  the principle of physical s imilar i ty  has 

always been an important tool in tne study of easily observable rr-ean 

quantitiez like the rrAean-velocity distribation. F o r  tlle turbulent 

boundary layer,in particular,  g rea t  progress  h a s  been made in dealing wit11 

w h t  I will call  t5.e direct  problem w f  representing ana!yticaLl!y t h e  

mean-velocity and s'7.earing-stress profiles in flows whic.2 have beer, 

*ever, no satisfactory solutisa !la:, yet been faun2 observe2 experirnentaj iy  . MOT-. 

fo r  the inverse  problem of predicting the s a m e  quantities in flows which 

, 
have not necessar i ly  been observed but which develoi2 in  a specified 

environment. 
\ 

F o r  turbulent flow tile prin;itive s ta te  of the a r t  makes a solution 

of the  di rec t  prcblem very nearly a prerequisi te  f n r  a so!~tion of the 

inverse  problem. This sitxation has no real  analogy in larriinar flow, 

if i t  i s  presumed that every fluid flow i s  ultimately determined by i t s  

environment through the agency of cer ta in  equations of motion and  state  

toget;:er wit!> cer tain initial and boundsry conciitions . Ti-e 2iif erence 

l ies  in the fact  that the e q u a t i o ~ s  of motion f o r  larr~inar  flow a r e  fo r  

practical purposes known, an5 any  difficulties a r e  therefore mathen-;&- 

t ical  r a the r  than physical in nature.  On the other  hand, the equations 

of mean motion fo r  turbulent flow have yet to be formulate< completely, 

and any discussion of t ~ r b u l e n t  shea r  flow must  proceed in tEe vacuum 

cFea tefJ L . .  :- - - - f -  - *  - - - q - - -  - - A : - -  
u y  I i r A p ~  L ~ C L L  U ~ I L C L  b i ; ~ ~ e i i i t ;  of t r a ~ s p o r t  p r o c e s s e s  in ever: t!lf: 

si,mple> t turbulent rnaticns . 



2 .  The d i r ec t  problem. Various theoret ical  and empi r ica l  

a t t acks  on the  d i r ec t  problem f o r  the  turbulent boundary l aye r  have 

led long ago to the recognition of two s imi la r i ty  laws f o r  the  mean-  

veloci ty  profile. These a r e  P r a n d t l t s  law of the wall  and von ~ A r m i n ' s  

momentum-defect  law. Recently both concepts have been extended e m -  

pirically,  the  law of the  wall to  f lows with a r b i t r a r y  p r e s s u r e  gradient 

by Ludwieg and ~ i l l m a n n ( l ) ,  and the  defect law to a spec ia l  c l a s s  of 

(2) equi l ibr ium flows by F, Clause r  . 
Following these  d e ~ e l o p r ~ e n t s ,  I have proposed i n  another  

, 

paper(3)  a formulat ion of the mean-velocity profi le which incorpora tes  

the  s imi l a r i t y  laws in  t he i r  extended f o r m  but which is not res t r ic ted  

t o  equi l ibr ium flow. To be  specific,  consider  turbulent flow of an  in- 

compres s ib l e  fluid past  a smooth plane surface,  a t  which the  relat ive 

velocity vanishes  and the f r ic t ion i s  Newtonian. F o r  flows which a r e  

s teady  and two-dimensional i n  the mean, i t  i s  found empi r ica l ly  that  

the  mean-velocity profile may  be  quite generally represen ted  by a f o r -  

mula  

L 
where  u, = ?w/P The quantity T, ( x )  is  the  wall  shear ing 

s t r e s s ;  ~ ( x )  i s  a boundary-layer thickness which is uniquely defined; 

and A is von ~ A r m i n ' s  un iversa l  constant, taken h e r e  as 0.400. The 

function a/£ )  , called the law of the  wall, has  the proper t ies  that $(r) --r £ 

f o r  a- 0 ( r ( I , say) ,  and {(z) -+(//K)-& r + c , where  c 

is a second constant taken a s  5.10, f o r  z --t ao ( £ > 5 0 ,  say) .  The 

function w (5) , which I have called the law of the wake, has  by definition 
h 

the  proper t ies  that  w (b) = 0 , w ( i )  = Z , and / 7 d vv = I . The pa rame te r  
0 



r ( x )  , which c'escribes the relctive amplitude of &Le wr:ke nnd wall 

co rn~onea t s ,  i s  relate' to the local friction coefficient Cf = L 

t3y t:!e expression 

%k 
where 'A, ( x )  i s  tile velocity in the external s t ream,  € i s  o constant , 

and, by :?efinition, 

I 

.a. ?. 

Tke cs~zstarit E irr EG. ( 3 )  accol rnts  fo r  the departure of tibe flow in t Le  

sublayer  f r o m  i:le logarithmic law oi t";e wall. Using  t h e  notation Y ~ , / 9  = F 
fo r  ccnirea~ience, G is def ined  by 

M 

0 

( i )  
and has a ~UE-.erfcrL :rcIue in the neighborhood of 2 7 .  

---- 

These rel4tionships suggest that f?e develo2rr1e~t s f  a gecerzl  

turbulent boxndar;. layer  can b e  described in t a r r r ~ s  of two constants P 
2nd /* c h a r ~ c t e r i z i n g  tlie fluid and four paran-eters  ~ 1 ,  , U ,  , s , and 

cnaracterizi,rg the st--te of tile flow, the  l c t te r  quantities being can- 

paran-eters  in any region determines not oaly the surface fr ic t ion and the 



sate of boundary-layer grourtli, but the complete mean-velocity profile 

2nd therefore,  a t  least  witkin the usual boundary-layer approximation, 

tile s!-~earing-stress field and t:.e ra te  of energy t r ans fe r  f r o m  the mean 

rriotion to the turbulent secondary motion. 

I want  to emphdsizc t'aat the twc  functians called tile law of tne 

wall and the l aw cf ti;e wake 21-e t reated Acre a s  completely empirical 

functions established by direct. observation of the mean-velocity pro- 

f i le .  No a t t e m ~ t  i s  made to discuss  the problem of tarbulence per se ,  -- 

and this omission is at the san:e tinre t;le grea tes t  s t rength an? the 

grea tes t  weakness of the present  development. 

The important point i s  that Eq. (1) provides a complete and 

almost a rb i t ra r i ly  accurate  analytic representation of the mean-velocity 

profile for  a large c lass  of flows as a l inear  combination of two supposeely 

universal functions { ( L J ~ T / Y )  2nd PV j y / & )  . Eq. ( I )  therefore con- 

sti tutes a useful if tentative solution of the d i rec t  problem f ~ r  the turbu- 

lent bo'iTnGzry 1 a \ r ~ r .  .- 1 

3 .  Equilibrium flow. An equilibriuri  flow, as originally defined 

b y  Clacrser, i s  one having a defect law of tke f o r m  

outs ide  tl?e sublayer.  An entirely cqui-r ,~lent statement,  assuming the 

mean-velocity profile itself to 'he given by Eq. (!), is that the parameter  

is constant. 

1- +-:-r.  *--,.mP...+ -...*A- 7 . - . : I 1  L- -,.--,.--- 2 ..$ --,. 3. - - & : - - I - -  --.:*I. 
rl* e ~ 1 ;  ~ J I  GDGIIL b j a p e ; s  L w r L l  uc LULILCLIIC'U a ~ i l ? u D L  C I L L L L  C L Y  w I L I A  

equilibrium flows k v i n g  tile property ( 3 ) .  F o r  reasons which wiil be- 



* 

come apparent la ter ,  the defect law i s  an essent ial  element in the d is -  

cussion, while the law of the wake i s  not. That i s ,  the function w ( y / & )  

need not be the same  f o r  various equilibrium flows a s  long as Eq . (5)  

implies a relationship of the f o r m  of Eq. (1) and conversely.  In what 

follows, however, I will  retain the notation of Eq. ( 1 )  in o rde r  to  show 

the dependence of various quantities on the single parameter ,  e.g. T ,  

which charac ter izes  an equilibrium turbulent flow. 

4. The inverse  problem. F o u r  pa ramete r s  - -  nr, ( 3 )  , & , ( x ) ,  

t h e  
mean- v e l o c i t y  prof  ; l e .  

8 ( x )  , and F ( x )  --  occur  in  F o u r  independent relationships 

among these pa ramete r s  a r e  required in  any formulation of the inverse  

problem. Two of these relationships a r e  provided by the local friction 

law (2 )  and by the von ~ & r m ; n  momentum-integral equation which will 

be introduced in i t s  proper  place. A third relationship i s  ordinari ly  

included in specified conditions f o r  a par t icular  flow; e .  g. = con- 

stant f o r  an  equilibrium flow, o r  A, = A , ( x )  f o r  a prescr ibed ambient flow. 

The assumption that a fourth equation can  be found is not essen-  

tially different f r o m  the traditional s ingle-parameter  hypothesis. Both 

express  the hope that the turbulent mixing process  can somehow be 

represented by a single empir ical  relationship describing t3. e respcrree 

of the-boundary layer  to  i t s  environment. Numerous relationships, 

sometimes supported by physical arguments  and sometimes not, have 

been proposed to  se rve  this need in var ious engineering applications. 

However, the law of the wake and the concept of equilibriitrn flow a r e  

new elements  in  the problem which suggest that the office of fourth 

equation ought properly to be declared vacant, and i t  i s  my object in  

the present  paper to propose a candidate f o r  this  office in the special  

c a s e  of equilibrirrm flow. 



KINEMATIC SIMILARITY 

1. The continuity equation. The central idea in the discussion 

is the concept of kinematic similarity.  This concept involves con- 

siderations sufficiently general so that it can only be introduced by 

making what m a y  at f i r s t  appear to be a digression of the wildest kind. 

F o r  the sake of brevity I will gut the =latter in the f o r m  of a theorem, 

accepting the risk that this choice of terminology may approach the 

threshold of pain in persons accustomed to more  approximate methods 

af dealing with turbulent boundary-layer flows. 

THEOREM: Consider a shear  flow with mean-velocity components M ( x ,  ,t) 

and " ( x ,  y,t) such that d ~ / d x  + dv/dy = 0. Assume u = v = 0 

a t  y - 0  and & ~ u / d $ i  = ~ ; ( x , t )  where r )A- i s  a constant. 
Y - + O  

Suppose that u i s  independent of 7 f u r  7 l a rge r  than some value 

where 

/ /A  = 

p i s  a constant; 2, ( x ,  t) = 

- I / ; 9 =,qP i 

and 

Then the curve obtained by plotting h v / ~ s u  against ? / P S  f o r  fixed 

x and it; must leave the origin with slope unity and must coincide 

fcr  > 5 witfithe ;tr2ighf line ru,,ing with s loge  threugh the 

point (1,l). 



To prove the theorem, note f i rs t  that a velocity profile of the 

fo rm u/u, = { ( y u , / g )  automatically implies(4' the relationship 

v / u  = ?/A . The assumption of Newtonian friction a t  the wall, because it 

requires A/!!, = y u , / v  + higher order  t e rms  in Y , is 

therefore sufficient to establish the result ~f the theorem a t  the surface. 

Outside the shear flow, on the other hand, AL ( x ,  ,f ) = (x, 6, -L ) 

=A, / x , i )  , and d V/J id = - d u ,  ( x , f ) / d  x , so that Y ( x , ~ , $ )  - v ( x , ~ , t )  

= - (? - 6 )  d*c,/d x , and therefore 

where 5 = v, ( x , i )  = v (x ,6,4) .  Now in tilo coordinate system 

(A  v / s u  , ? / s )  the straight line defined by the last  equation 

intersects the straight line v / 5 u  = y / ~  at  the  point (P, P), where 

and 

Eliminating v', / S U ,  between iqs. (6)  and (71, the integral of the 

continuity equation outside the shear flow becomes 



Finally, f r o m  the definition (4) f o r  displacement thickness s t  it can 

be shown that 

Substituting f o r  v , / u ,  in the expression (7) f o r  P ,  there i s  obtained 

af ter  a little manipulation 

and the resul t  stated in the theorem follows. 

2.  Equilibrium turbulent flow. F o r  an  equilibrium turbulent 

flow the parameter  i s  constant in the expression ( 2 )  fo r  the velocity 

ratio 4, /4,, 

and in the expression ( 3 )  fo r  the displacement thickness * , 

When these relationships a r e  used in the  definition (10) lor  P, there 

i s  obtained irr~mediately 

P = + = constant 



At f i r s t  o r  even secon5 glance t'lis r e s i l t  i s  astonishing. F o r  

consider t':at the pz ramete r j  D zn2 P ha.~e j a s t  been defined and 

connected by one of the most  gene r~ . l  theoretical relationships which 

r-igiit be ievelopec? f o r  ilows of bouncary - layer  ty'e without being so 

general a c  to be ~ s e l e s s .  The relationskips ( 2 )  and ( 3 ) ,  on the other  

hand, a r e  of t:ie essence of contemporary e r n ~ i r i c a !  knowledge of 

phenomena in  turbulent boundary layers ;  tne emphasis i s  on tne w o r d  

empir ical .  That these apparently unrelated lines of investigation a r e  

Pouni to converge in  the simple equation (I!) n-ust be ei ther  -a remarkable 

coincidence o r  a spontaneous rr-anifestation of a fund-mental o r d e r  in  

tile problem being studied here .  

3 .  The laminar Falkner-Skan flows. Having an explicit iormuld 

f o r  P ( x )  in Eq. l  it i j  natural to zsk i f  any other boundary-layer 

flaws kno,an f o r  . w ~ ; p i -  .,,,,, P is  independent of x . I will 3~v.1 s h ~ ~ . ~ . r  

(5 )  
that tile family of l z z i n a r  flows f i r s t  studied by Falliner and Skar, 

has this property in co=mon with the c lass  of eqaiiibrium turbulent 

flows define< by Clauser .  

T t e  Falkner-Slian flows a r e  solutions of the laminar  boundary - 

ldyer 'equations wit': ::-ie b o u d a r y  ccniit ions u = v = 0 -t = 0, X > 0 ; 

u --+ A, ( x )  is - a,, x > 0 ; and the special external condition 

where A A ~  , X ,  ) 0 , and n a r e  parameters .  Thking c s t r e ~ r r .  

function of t'-.e fcrnri 



wit!> -U = d +/d $i 2nd v = - ~ $ 1 2 ~  , an2 with 

f';e~-e i s  obtailled f;;e non-linear ordinary ?iff  e r e n t h 1  equation 

w.:ere = 2 ~ / ( n c f )  and t'ie p r imes  indicate differentiation with respect  

t o  y . Tile boundary conaitioms on {(r, ~) a r e  8 = f '= 0 at 7 = 0 

snd --+ I a s  
i4 ' Y - " .  

~ a r t r e e ' "  has tabulated { ' (?, H) together with { "(0, M )  f o r  

vzr iozs  vzl:;es izf ,B . Tiiese c r l c ~ l a t i o n s  have recently been repested 

and the numerical  resu l t s  reported in  g rea t e r  detail  by ~ n i t i i ' ~ ' .  No 

r e d  solutions of E+ (15) have been found f ~ r  f3< - 0.1988 ; thzt is, 

fo r  - / < M <- 0.0904 , and tke uniqueness of the solutions f c r  

negative /6 apparently requi res  an s?ditional conciiticn h a t  

should approach unity f rom below as rapidly a s  possible f o r  increasing . 

If t:ie ra t io  v LL i s  c o m ~ u t e i !  f o r  t h e  F a l h e r - S k a n  flows using / 
the express ion  (L?) f o r  the s t r e a m  function, there  is obtainel5 

w5are  7, = 7 ( x , ~ )  . Tke pa rame te r  is  defined in t h e  t;;eorem 



presented ea r l i e r .  Now -# spproac' les unity f o r  izroe , and 

{(?, n )  therefore a p p r u a c - ~ e s  (n) + 7 , where 4 (n) is  a negative 

c o n ~ t z n t .  Very f a r  outside t:,e b c ~ n 2 a r ; r  lcryer, i t  follows f rorn  Eq. (16) 

tkat  

Cornparing this expression wit5 Eq. (9 ) ,  i t  i s  seen tnat 

and 

f o r  tile flows in question. Furt 'cerrnor~e, i t  can  be shown f r o m  ti-;e 

7% 

deiinitirn ( 5 )  f o r  d i sp lace ren t  thickness that 6 = (7/7) [ 7  - f (?)I = 
Y--& 

- AS/? ,  . Thus 

i c r  l- the Falkne r - Skan flows . 

From Eq. (16) i t  is also seen that Y l  /\ V / S U  i s  a function of 
, =hv/rs'tu 

7, y /S  = 7 zalone, with n as parameter ,  and thus that ,\ v /  P *c = 

2 s  a filnction of y / ~ 6  = / Z  5 * i s  indepenzent of Reynolla number.  

Sever31 typical curves,  computec",irorn SrLi t : l t j  tables for  v a r i o u s  values  

04 VL , are  oilown i n  F i g .  1. T i e s e  curves obviously d o  not .j,er,end on 



the definition a3opted f o r  tl-e boun2;ry-layer t1:icknes -, s . 

Eq;. {I  7 )  an2 (13)  s low tr:at t;lere i s  a l so  3 relationship between 

t ce two 5 a r a n ~ e t e r s  D and P . This relationsl.ip, hcwever, does 

depend on tr,e definition oi 8 . IP q ,  i s  a rb i t ra r i ly  tcken as the 

v a l ~ e  of 7 fo r  which u/u, = 0.99 , the  cnrve plotted in F i g .  2 

i s  obtainec2 i rorn the nume:-ical solcltions tsbulatec? by Smith. 

4. The l i r i t i n ,  larrrirlar s inkf lcw.  Alt'r._o-.~g!i bo th l l a r t r ze  and 

Smith h a - ~ e  q~1estione.i the physical signiiicnnce of s o l ~ t i o n s  s f  t L e  

F2lkner-Skan equztion (15) fo r  P > 2 , I L r t r e e  mafie cnlcnlatiions 

fo r  /3 = 2 (0 = 5 M) an6 ,B = 2.4 wit;iout finding any zinonlslous 

behavior of {(?, h) . The situation a p p e a r s  t o  be that for 

sdficient ly  negc! ti v e  values cf n , accord ing  to Eqs. (13) and ( I&) ,  

t'.e reference velocity A, an3 t:?,erefclrt- the f r e e - s t r e a m  velocit,: A, 

must  be negetive i f  and 7 a r e  to  be r ea l .  Conseql~ently, the 

external flow must  be away f rom the ori;;in in the range - +  . 0 9 0 v  < n  (a, 

0;- -C.1;&2 ( 8  < 2 , and towarti tjLe origin in the range - a < n < - 1, 

or z<p<m . 

The limitin:; solution of Ec;. ( I ; )  fo r  p --+ + w ( n 4 - / f rom 

below) ic easily folznc! eit i ier by a singular ~ e r t u r b a t i o n  f o r  large 
f3 , 

in whit-I 7' is replaced by  B/@ and / I r i r)  i, replaced by 4(0)/0; 

o r  b y  assuzxing a a t ream iunction oi  t ~ e  f o r m  (5 b 

wit'; 



M I  X = Al,, X ,  = constant 

In ei ther  event, taking h e  c;se of sink flow in the external 

s t r eam,  o r  negative 4, and a, , the function 2 (0) = R'(e) = &/a, 

must  satisfy the equztion 

w h e r e  pririles indicate ?ifiereritiation wit r ebped t  to 6 an5 tze  

I 
b o . i ; ~ d r y  conditions a r e  f (0)  = 0 , 7 ( M )  = / . Muiiiplying by 2 and 

inte2rating once, tale sur face  shearing s t r e s s  i s  found to be 

1nte;;r;iting aga in ,  the veloczty  proiile can  be expressed in closed 

Q 

Tiles e re l s t ions ' i?~  ;.re actually 3 boundarj- layer  np[>roxirn-?tion lo r  

l a rge  Reynolds number to the knawn exact ssll.;tion of the Navi er-Stolces 

equniion; l o r  flow in n converging cia me^"'. It i s  f:;erefore not sur- 

p r i s i n g  to find that t17.e ?resent  ~rab1ex-n has no real soliltion if the ilov* 

in the external  s t r e a m  i s  away f r o m  ra ther  than tow.ir6 t::e origin 

(pos i t i -~e  xr,  an2 A, , p -+ - 0 0 ,  n -+ - / f r ~ r r  above j . 



so  that 

The most  important proaerty of the solution ( 2 0 )  of the Fa lkner-  

Skan equation fo r  sink flow i s  that tne s t reaml ines  throaghout the flow 

a r e  s t raight  lines through the origin  wit:^ v / -U = . It follows (4) 

that the velocity profile can be written in the f o r m  a/! ,= qjY&,/v). 

F u r t h e r n ~ o r e ,  the friction coefficient i s  constant, and therefore 

D =  BR,,,/CP&L.t7 = 1 .  

3 .  ' The hyjothesis D = constant. I have shown that the two 

parameters  D and P occgr naturally together in tne integrate6 

continuity equation; that D a n d  P a r e  se?ara te ly  constant f o r  any 

one of the Falkner-Skan laminar  flows; and that P i s  constant for  an 

equilibrium turbulent flow. Litt le imagination i s  required to antici2ate 

the specific hypothesis which will shortly be made for  equilibrium turbu- 

lent flow, namely 

0 = 
d A  -44, 

= constant 

Frorr, t,:e definition i t  i s  seen that the ~a r -a rne te r  0 depends on the 

relative magnitude and r s t e  of chzinge of u, and d7. , o r  alternatively 

o.f tke f r e e - s t r e a m  dynanyic p res su re  8 and tile sarfnce s t e a r i n g  c t r e s z  

7, T'ie situation i s  tlierefora a hap7y one, in that the hypot:leaia 

D = constant czn be tested a p r i a r i ,  - 



Seven equi l ibr ium o r  near -equ i l ib r ium flows a r e  inclclded in  a n  

( 3  ex tens ive  su rvey  of the  expe r i r~ l en t a l  l i t e r a tu r e  r e ao r t ed  e l sewhere  . 
F o r  s i x  of t ! ~ e s e  seven f lows,  F ig .  3 shows 2 plot in  logarithrrjic co-  

o rd ina t e s  of x * , / N , ~  aga ins t  , where  JX ,~  and u r o a r e  a r b i t r a r y  con- 

s t an t  r e f e r e n c e  velocities.; ucc, is i n f e r r ed  f r o m  the law of the wall .  

The  sup?osi t ion tha t  the data  might  define a s t r a i gh t  l ine is borne out 

i n  e a c 3  c a s e ,  and the c o r r e s p n d i n g  v ~ l a e s  of D and P a r e  l is ted 

i n  t5e adjacent  Table  I  and plotted i n  F i g .  4. 

TABLE I 

SUMMARY O F  EXPERIMENTAL DATA ON D AND P IN EQUILIBRIUM 

TURBULENT FLOW 

Reference  o r  Remarks  P =  l+TT D =  "I4  D (revised) 
d a , u ,  

P u r e  wal l  flow 1 1 

Ludwieg and ~ i l l r n a n n " ) ,  Channel  VII 1.20 - t 0.02 1.22 t 0.03  - 

~ a u e r ' ~ ' ,  20O s lope  

40° s lope 

boo  s lope 1.23 t 0 .  u2 1.36 t 0. ~3 - - 

~ i e ~ h a r d t " ~ ' ,  constant  p r e s s u r e  1.55 - t L C 1  r LI 

~ l a i l s e r " ' ,  S e r i e s  1 

Series 2 

P u r e  wake f low 
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III. SOLUTION OF THE INVERSE PROBLEM 

1. The von ~ A r m & n  momentum-integral equation. Three of 

the four equations needed in the formulation of the inverse problem for  

equilibrium turbulent flow a r e  the stipulation 

TT = constant 

together with the local friction law (2) 

and the momentum-integral equation of von ~ & r m & n ,  which for  the con- 

ditions considered here is  

* 
The new variables 6 and 0 in Eq. (22)  a r e  the boundary- 

layer displacement and momentum thicknesses respectively, defined by 

Eq. (4) and by 

These quantities a r e  readily expressed in terms of A,, II , s ,  

and 7-r fo r  the profile given by Eq. ( I ) .  Hereafter I propose to neglect 

the departure of the flow in the sublayer f rom the logarithmic law of the 

wall; then substitution of Eq. (1) in Eq. (4) yields Eq. (3) with E = 0, 



and substitutian in Eq. ( 2 3 )  yields 

where 0, and f l c  a re  define2 b y  

Taking the wake function w j y / d )  f rom Ref. 3,  then 

For  future use it  may be noted that the elimination of S between 

Eqs . (24) and (25)  provides a formula for the profile shape parameter 

0 - = 2fi-i- f lZ 
s* / -  -- 

H a ,  0, 

In applying these relationships, a convenient f i r s t  step i s  the 

use of Eqs. ( 28 )  and (24) successively in Eq. (22) to eliminate 6 and 

6 *  in favor of a,, A T ,  and 8 . Remembering that i s  constant, 



the resclt is 

T._e second step i s  to suppress one of the three derivatives in the last 

eq--lation with the aid of the lscal friction law (2) in differentiated form. 

The natural choice for  elimination is c! S / J ~  , yielding 

The thirb step, suggested by experience with the special case A,  = 

constant, i s  the recognition s f  the quantit!~ 

as a fundamental inc ependent variable. Differentiating the last expression, 

then 

where D = d ~ ,  *i,/d&r?u, by definition. Eq. (29 becomes finally 

To rec<.pitulate, Eq. (3C ) i s  the rriorr-entirm-integral equation (22)  



evaluated for  the special mean-velocity profile (1) with constant . 
The defect law (5)  has been taken to apply throughout the flow, including 

the sublayer, so that Eqs. ( 2 9  and (30) a r e  at  least a~yr~~pto t ica l l j r  valid for 

large Reynolds numbers. Because no assumption has yet been made 

concerning the parameter 0, the effect of the manipulation just carried 

out has been to change the nature but not the number of the variables in 

the problem. It i s  conceivable that the form of Eq. (30) would eventually 

suggest the assumption D = constant a s  a heuristic measure, even if 

attention had not been attracted to this hypothesis by consideration of 

the continuity equation. 

2.  Integration of the von ~ A r r n s n  equation. I will now assume 

that an equilibrium turbulent flow has the property 

d r  D = -- - 
a, JUT 

- constant 

Eq. (31) evidently provides the fourth relationship needed in the for- 

mulation of the inverse problem, and i s  to be considered jointly with 

the momentum-integral equation ( 3 0 ) ,  the local friction law (2), and 

the equilibrium condition (21 ). Now Eq . (31 ) i s  itself a differential 

equation which may be integrated immediately, with the result 

where u , ~ ;  A,  (x.) and A , ~  = A, ( x , ) ;  x ,  i s  any convenient reference 

point. Returning to Eq. ( 3 3 ) ,  the awkward factor on the left-hand 

side can be elim-inated by observing, in view of Eqs. (2)  and ( 3 2 ) ,  that 



wirere so = 5 (x.) and to = £ ( x , )  Subs t i t~ t ing  fo r  s in Eq. ( 3 i ) ) ,  

there  is ubtr-tined ii-z;ll;r 

Tile varizbles x and L are  separated in  Eq. (34.1, an6 integration can 

be czrr ied 013  in closed form if / - ) is an integer  o r  half- 

ic teger .  F o r  ex=ii~Lple, i f  D = 4 / 3 ,  



T:ae qusntities ( X , 6 , f ) and ( X ,  , so , Z ,  ) in these 

expressions m 2 y  obviously be considered as variables and parameters  

respectively o r  vice versa, de2ending on the application. Note that 

twc independent constants of integration, 6 and 2 ,  , a r e  e~corintered 

in i~ i t eg r s t i ng  tke sys tem (31) and (34).  Eecs:lee I = K U , ~ ~  c'etermines 

SJJ, / p  for LP e~~:iILi!:riuni flow by virtile of tl:e local friction law ( 2 ) .  

t h i s  izeins t l a t  the two p>ysical s c l l e s  & and P / U ,  may he  s p c i f i e d  

irzdepenclently .;t any one station. 

I 'nave evalustec! Eqs . (35)  and ( 3 6 )  numerically, taking = u. 24 

and D = 1.33. T::cse values are in.tendeil to  represent  the spillway 

flow with  4~~ slops st -~dier!  by ~ - . n e r ' ~ )  (F ig .  8 of Ref. 3) .  Calculations 

I:;ise zlao been made fo r  = G *  55 3126: D = 0, ~0~respol?din.9.g to the 

.:^low wit:: 2 constmnt e+:terna'l velocity of 33.0  nieterc p e r  second 

' L . F . - J i e l  ' 
, oy TNieg:;,zrit(Li' (Fig.  4 of Ref.  3 ) ,  2nd f o r  77- = 1.54 and 

D = 0.7 '95,  c o r r e s -  



pending to  tile flow with moderately r is ing p r e s s u r e  studied by Clause r  ( 2 )  

(Fig. 15 of Ref. 3). Taking the constants 25, and r, in  each case  f r o m  

the experimental  data a t  a point well downstream, the  calculated and 

* 
measured  values f o r  S ( x ) ,  A, (x) , and t ( x )  a r e  compared in F ig .  5. 

The value D =0.745 attr ibuted to  C lause r ' s  flow i s  different f r o m  

the experirr-enta! value 0 = 0.86 l isted in  Table I. The need f o r  sorr,e r e -  

vis ios~  in  the or iginal  value of D can  b e  argued f r o m  the momentum- 

integral  equation i n  the differentiated f o r m  (Zr?).  L e t  this equation be 

rewri t ten a s  

Now the quantity ~ ' A / s  can a l so  be  evaluated by differentiating the 

local  f r ic t ion law (2 )  to  obtain 

The f i r s t  of these  two equations a s s u m e s  two-dimensional momentum 

balance a s  well as s imi la r i ty  in the mean-velocity profile i n  t h e  sense  

required by the law of the wall and the defect  law. The second equation 

a s s u m e s  s imi l a r i t y  only. Taking = 1.54 and D = 0.86 f o r  C lause r t s  

f i r s t  s e r i e s  of experi r r~ents ,  together with a typical  value E = 13, 

i t  i s  found that  the  computed values of A/S and d6/$x a r e  negative. 

1 have therefore  p re fe r r ed  to r e v e r s e  the calculation, estimating d s /AX 
rEc 

from the experiments  and calculating D ins tead.  The revised values 

* 
That the revisions should be i n  opposite direct ions  fcr Clauser ' s  

two flows i s  suggested by slight discrepancies  in  momentum balance 

reported e l sewhere  (Cf. tile i ; l~ct iuns ( x  i i s .  15 and 16 of Ref. 3 ) .  



fo r  D a r e  listed in Table I, together with a n  estimate of probable e r r o r  

corresponding to an  uncertainty of - + 20 percent in 9 6 /dx . 

3. The shearing-stress  profile. The distribution of shearing 

s t r e s s  within a n  equilibrium turbulent boundary layer may be found by 

integrating the boundary -layer equations 

2 

for  the profile of Eq. (1) with constant . Noting that r, = ,Q"r 

by definition, the result  of a tedious lot of algebra i s  

where t = K U , / U ~ ,  5 =  K L ( / U ~  , and W ,  and QL a r e  

incomplete integrals corresponding to fl, and f12 in Eqs. (26) 

and (27 ' ) .  Tl~efunctiorls 

w ,  (T, and 0 2  ( y/s) a r e  defi~ied and tabulated in Ref. 3 .  

Taking s U ~ / Q  = 5000 f o r  four equilibrium flows which have been 

observed experimentally - -  f i r s t ,  P = 1.24, D = 1.33; second P = 1.55, 

0 = G; third, P = 2.54, D = 0.80; and fourth, P= 4.93, D = 0.86 - -  the 

mean-velocity profile according to Eq. ( I )  and the total shearing-stress  

profile according to Eq. (39)  a r e  shown in Fig. 6. Also shown a s  a 

(3 c ross  -hatched region i s  the velocity defect in  the equivalent wake . 



4. Uniqaenes s . One important consequence of the hypotl~esis 

D = constant for  an equilibriuz turbulent boundary layer l ~ a s  to do 

with the matter of uniqueness. Given a value for D , an integral of 

Es. (34) can presumably be found in the form ( x -  x 0 ) / 5 ,  = E (t, to, 7T, D). 

Eliminating the thicimes s 6 ,  in favor of 5 with t h e  aid of Eq . f33),  

this intezrj l  can be writter. ( x  - x.)/s = F ( 2 ,  f ,, 7, D) . Now if 

'rr (or /' ) 2 n d  D a re  separately constant for an squiliEriurr flow, 

it is reasonzble to suppose that these quantities a r e  related by  some 

function D ( P )  like tile one for  iaminar flow shown in Fig. 2 .  If so, 

then tile dependence of the flow on t'le param-eter D need not be stated 

; - < * 1 . v .  *lq,.o 
F j A p L A L I C L y ,  L l i U U  

1 1  it is (x-x,,/z = ( , o ,  a A&*.-..y, 

possible to specify tile origin o r  initial point x, , so , Lo , etc. 

in such a way tkat 2, de,2ends on 7/- alone. For  example, assume t kz t  

the nlomenturii thickness 6' vanishes fo r  x =. x, = 0 , and note tiaat 

Eq. (28)  then requires x u , / ! ,  = ;5 = 2,  = zf2,(7T)/h!, (d. The 

integral of Eq. (34) under these conditions can therefore be expressed 

laltirrlately as 

But i f  &u,/r' hnd s / X  f o r  constant 77- are  functions of 2 = d1*, /AT 

alone, k e n  so a r e  u, x / p  and u , x / $  . Sc '?ED ire s X / X  s X/B , 

u, 6/i, , az l  similar q uantitieo, by virtue of various relations7:i;rs derived 

ear l ier  for  equilibrium turbulent f Low. 

Given D = constant, therefore, the conclusion is that quantities 

like S* /B  . Cf = 2 and Re = A, e / ~  can be expressed 

as one -parameter 1u:lctiori: of 2 uniquely deiined s treamwise Reynolds 

n u d e r  k? = a, w/v for  the class of equilibrium turbulent flows even when 

a, depends on x . This conclusion does not require the assumption 



that the wake iunction wj7/s )  in Eq. (1) i s  universal,  because the 

nLean-velocity proiile in an equi~ibriun? flow i s  adequately expressed 

for  tllc parjiose of this argurr enc b y  trLe defect law (5) .  N e i t h e r  would 

t h e  conclusion stated here  be cnangedi if the exact mean-velocity profile 

in the sdblayer nai been considered in Eqs. ( 24 )  and ( 2 5 ) ,  as t h e  quantities 

a, (7l) and R,JTT) could then be re i laced  by fl, (TT, t) and R,(TT, £) . 



IV. THE FUNCTION D ( P )  

1. Tile pure wall flow. In this and the next section I will attempt 

to treat  the Limiting c a s e s  T =  0 and T= 00 by arguments which 

amount to extrapolations based on the idea of kinematic similarity. In 

the temporary absence of experimental evidence these arguments may 

be accepted o r  rejected on their meri ts  without serious ly prejudicing 

any of the ear l ier  discussion. 

Consider f i r s t  the limiting case T =  0 in Eq. (1). The mean- 

velocity profile i s  given by the law of the wall, 

and it  followst4' that uh, and 7 ~ T /  a r e  constant on mean strearn- 

lines and that ' 

where //A = - (I/! ,)  d&,/dx a s  before. The shearing-stres s profile 

i s  most readily obtained by putting O, = 0, = I in Eq. (39); 

L 

. a " - ( 1 -  s L) 7iv = s[-.(~+)~+ AT j n s )  117 - L ( n s )  Mi- + 2 ] (41) 

At y = 5 , therefore, where u = u ,  and 7 = 0 , 

Several arguments can be found, all of them unfortunately some- 

what porous, f o r  supposing that if the parameter 0 i s  constant for the 



pure  wall flow it ought to have the value unity. Certainly the point 

P = D = 1 is favorably located in  F ig .  4 with respec t  to the experimentally 

determined points in accelerat ing flow, i f  the hypothetical function D ( P )  

f o r  equil ibrium turbulent flow i s  to resemble  the one in  Fig.  2 f o r  

l aminar  flow. The s t a t e r - en t  D = 1 can  also be argued f r o m  the physical 

p r e m i s e  that  the mean-velocity profile fo r  pure wall flow has  only one 

charac te r i s t ic  length, v/u, , s o  that  ~ u , / v  ought to  b e  constant.  

Alternatively, suppose f o r  the sake  of regular i ty  that  v / u  in  

Eq . (40)  and T/T, in  Eq. (41 ) a r e  functions of t / / ~  alone. Then 

A/& is constant f r o m  ($0). and a,/u, i s  constant and thus D = 1 

f r o m  (42) .  Moreover,  S U ~ / P  is constant f r o m  (z), s o  that  B S / J X  

is a l so  constant and 6 va r i e s  l inear ly  with x . 
Ii D = 1 the re  is no entrainment  of fluid in  the boundary layer  con- 

s idered  here ,  because y = s is a mean s t reamline.  This and other  

points of resemblance between the pure  wall flow and the limiting Fa lkne r -  

Skan flow f o r  n = - ( o r  P = oo suggest  that  the flow h e r e  is actually a 

sink flow moving toward the or igin .  This view is supported by the 

following argument;  if u , Y S , A, , and u, a r e  positive and 

D = I ,  then Eq.  (42) requi res  A/& and /j to be  negative, a t  l e a s t  f o r  

l a rge  Reynolds numbers .  Eq. (40) then requi res  v / a  and v to  be  

a l so  negative.  Finally, ~ u , / ~ x  and J ~ , / d x  a r e  both positive from 

the definitions of )r and D . These s ta tements  can only be reconciled 

with the s ta tement  that d s k x  i s  a (negative) constant i f  the flow is 

proceeding toward the or igin  x = 0 through negative values of x . 
A comparison of the laminar  and turbulent sink flows emphasizes  

the fac t  that  any velocity profile which could be  wri t ten in  the f o r m  of 

the law of the  wall with constant &,/A, would be a possible profile in 



sink flow. Only the function of Eq. (20) has the additional pro2erty that 

the boundary-lzyer momentum equation i s  satisfied at  the same time 

that 7 =,u 3 u / d  y .  For  turbulent flow, an the other handJ the boundary- 

layer n~omentum equation i s  automatically satisfied because AL i s  given 

and 7 is computed therefyorn. In either case the friction coefficient . 

is constant but its value can apparently be chosen arbitrarily. 

The logarithn-~ic mean-velocity profile and the corresponding 

* 
shearing-stress profile in the pure wall flow a re  shown in Fig. 6 for  

S.W,/P = 5000 and D = 1. 

9 
'1 have also conlputed the function T/% for  s ~ ~ / g  = lo3, lob, and 10 , 

and have found that the various curves can really not be disti~guiahed 

in the figure. That i s J  T/% a s  a function of /& i s  for practical 

purposes independent of the Reynolds number SU,/P . These calcu- 

lations presumably refer to physically different boundary layers, not to 

different stations in the same boundary layer. 

2. The pure wake flow. The profile parameter in Eqs. (2) 

and ( 3 )  i s  a measure of the relative magnitude of the wake and wall com- 

ponents in the mean-velocity profile. According to Eq. ( 3 ) ,  becomes 

indefinitely large when 7, approaches zero.  However, when Eq. (1) 

i s  milltiplied by A,/&, and A, i s  put equal to zero, having f i rs t  

been eliminated b y  Eq. ( 3 ) ,  the mean-velocity profile becornes 

since w = 2 when LA=.&,  by definition, This i s  the profile at  a point 

of separation o r  reattachment. The pure wake flow i s  obtained on assuming 



thai this same  profile holds f o r  al l  values of x . In the present instance, 

6 X/S , Q/& , and are constants having the values 0.500, 0.120, 

and 4.18 rejpectively. ( 3 )  

To begin with, an important property of the p u r e  wake flow follows 

directly from the rnornenturrL-i'ntegral equation of von ~ a r r n i n  fo r  two- 

dimensional flow. Taking Q/S = constant and T~ = 0 , Eq. (22)  

becomes 

and therefore 

2 +  sI/B 
= constant 

Furthermore,  the shearing-stress  profile is readily obtained by 

integrating the boundary-layer sys tem (37)  and (38) directly fo r  the 

mean-velocity distribution (4 3 ) .  The result  is 

Now svppose that either v/u o r  7/9 f o r  this particular flow is a function 

of Y / b  alone. Zq . (46) o r  (47 )  tken implies 



s o  that  5 va r i e s  l inear ly  with x ; and this proper ty  is obviously 

interchangeable with the or iginal  condition on v / u  o r  7/g . 
Finally,  i f  d6/8x i s  in  fac t  constant f o r  the  turbulent boundary- 

l aye r  flow with r, = 0 , then Eq . (45) requires ,  on taking f o r  convenience 

I/(,?+ s X / ~ )  0.162 
= , x = constant 

The corresponding Falkner-Skan flow with T, = 0 was  charac te r ized  by 

0.0904  

/ 
= constant 

and the presen t  resu l t  i s  a t  l eas t  consis tent  with the empi r i ca l  observation 

that  tarbulent flow will in  genera l  support  a m o r e  rapid p r e s s u r e  rise. 

Clauser ' s  data i n  Fig.  4 suggest  that the  value of D which is 

appropr ia te  f o r  the  pure  wake flow i s  D = 1. Consider  a l s o  that  Eq. (46) 

evaluated a t  = 5 , in  conjunction with Eq. (44). r equ i r e s  

* 
This expression substituted in  the defining equation (7)  f o r  P yields 

But P = I + /7 i s  infinite f o r  the pure  wake flow, and therefore  D must  

b e  equal to unity. 

* 
This  expression f o r  Pis valid f o r  l aminar  flow a s  long a s  u / ~ ,  depends 

only on ld /s and T, i s  ze ro .  Knowing that P= 2 s 7s and D = 4n/(3n- I), 

according to Eqs .  (17) and (19), an est imate  of the l imiting value of n i n  



the separating Falkner-Skan flow i s  readily obtained. Taking 5% = 1/2 

and 6% = 4 a s  reasonable  vi lueo,  then D = 217 o r  n =  - l / L L  = -0.0909. 

As quoted e a r l i e r ,  the  exact  value f o r  n is -0.0904. 

The mean-velocity distr ibution (43 ) and the shear ing - s t r e s s  dis t r i -  

bution (47)  a r e  plotted i n  F ig .  6 f o r  the wake function wjY/h) of Ref. 3 .  

The shear ing s t r e s s  being computed a s  T / ? ~ ~ ,  , it is not necessary  

to specify the value of 9 5 / 8 x  f o r  the hypothetical p a r e  wall flow con- 

s idered  he re .  

The presen t  formulation does not in  fac t  yield a value f o r  the 

derivative BS/JX , and i t  would b e  surpr i s ing  if i t  did. However, an  

es t imate  f o r  d 6 / d x  can  b e  based on the supposition that  the pure wake 

flow studied h e r e  cor responds  i n  some  sense  to  the  half-wake studied 

experinientally by Liepmann and ~ a u f e r ' ~ ' ) ,  The two flows differ i n  the 

presence o r  absence of a s t r eamwise  p r e s s u r e  gradient  and in the con- 

s t ra in t  a t  the boundary 7 = 0 . Keeping i n  mind the observed insensit ivity 

of the wake component, i .  e .  the defect law, t o  wall  conditions such a s  

roughness i n  equi l ibr ium flows with finite 7, , and reserv ing  the 

question of the finite no rma l  velocity in  the f r e e  s h e a r  l aye r  a t  the point 

corresponding to  the wall, the two mixing p roces ses  might be  expected 

to  be s i m i l a r  a t  l eas t  n e a r  the free boundary at 7 = & . If so, a tentative 

estimate'" f o r  B ~ / & X  i n  the separat ing equi l ibr ium flow i s  ds/dx = S/X  = 

0.252.  

3 .  An interpolation formula.  In any prac t ica l  application of the 

concept of equi l ibr i~zm flow, f o r  example to  diffuser design, some in te r -  

polation method i s  needed to s u ~ p l e ~ e n t  the experimental  values of D ( P )  

in  Table I. The method proposed h e r e  ciegends on the development of two 



quantities which, unlike the parameters D and P, remain finite as 

increases from zero to infinity. One such quantity i s  the strength of the 

equivalent wake, Z T I - ~ , / ~ ~ ,  = 2 T/Z  . Another i s  the rate of mass 

entrainment in the boundary layer. Defining 

then the quantity s i s  seen to be the velocity of propagation of the 

boundary = 6 with respect to the f r e e  stream. Now the ratio s / u ,  

may be expressed in terms of the local friction coefficient and the 

parameter 7?- with the aid of Eqs. (2) and (3);  

where a = K U , / U ~  . But ( s / z )  dz/dx i s  a knownfunctionof 

f , , and D from Eq. (30); thus 

The case of pure wake flow may be treated separately to obtain ZIT/£ = 1, 

and, from Eqe .(43) and (461, 

F o r  given values of and D and for a specified value of su, /$, 

the quantities z , 2 / , and S / U L U ,  may be computed f rom Eqs. (2) 

and (49). Plotting s /w 2, against 2 T/E for  the six flows of Fig. 6 and using 



essent ia l ly  s t ra ight  line interpolation except n e a r  7?-= 0 , tile inverse 

.I. 

c~lculat ion".  f o r  D(P) lezds fo r  s&,/P = 5000 to  the curve  shown in 

$c 

F o r  Claimer 's  second flow it  Llp,>edrs  that the param-eter D ought t o  

he tzken a s  0 . 2 6 6  if a snLootL curve is  to  be obtained in  the coordinates 

( 2 ~ / £  s / ~ ~ A , ) ~  

Fig .  4. T : ~ i s  calculztion, as might be e x 2 e ~ t e - r ~  is ncjt a t  al l  sensi t ive  to 

tke v a l ~ e  c:;osen f o r  s d 7 / p .  

,:. The hy i~::ietical function D ( P )  . Perhaps  the n o s t  instructive 

;~;~gisic:;l interpretatiicn of the hy~c t5es i s  D = constant comes f r o m  the 

f ~ c t  r :at t ~ e  n,eann streanz:lines m a s t  in te rsec t  at 2 ccarrrr~ora origin f o r  any 

region in w'iich v / !  for f ixed x is a linear function of y .  O n e s u c h  

reelon is tile one near  the wzll, including She sublayer  in t,ze case of 

turbulent flo-:!; h e r e  v /u=  A . In t kc  absence of a boandary ily-er there  r /  
is a curre :  ?onling relationship v ' /u  = D L//A f o r  the non-viscous 

-i12-.7_.Sient flcpw. T 1-JS t:,e Faran eter D descr ibes  the way in  which any 

divergence o r  convergerice or" tE-e external  flow, which i s  t o  s a y  a n y  a 

pressure g r ~ d f e n t ,  affects t3e s?-.ear flow in  the neighbor:*,ood of the wall. 

T:-es e re= a r k s  ~ . r , p l y  egerzlly $ o r  lari-inar an i tarbulent 30-j.ndczx-y l a y e r s ,  

Fur% ;errr.ore, l o r  t,~rbv.:.ler,t l lovr  t:ie inter?ret=f ion just given, like the 

deiect  lzw r t s e l f ,  does not involve t...e viscosit;r of t'le Lluid explicitly --  

. ence t:-e t e r ~  kinernztic s imilar i t ; - .  

IY r ~ z t  16 :$ltin ately nee-Se-2, ::oweirer, is not & 3dfh3 y s i c ~ l  interi~refiation 

but z p ~ysicr-l  principle, frsrr, evllich. n;ignt be rieducec! not only tile 

e:ci;ten~e of r i -~ct ion D (P)  f o r  equilibrium t ~ r b a l e s t  flow bat the 



f ~ r x  3f "Lrais function. Altilocgh Fiz. 3 clearly jxstifies tke sss~rn~:&ion 

D = constant  ,lo I n  interpolation device fo r  the .~artic;lzr equi l ibr ium 

flows in cJaestioa, ctiler rezsons a;- ust be folm-J for  n-sking t ! & i ~  assum,,tion 

in h e  generrl case.  Tbe theoren,  :rresenteJ esrl ier ,  in whica  the two 

- e .ur,a~-e&ers D and P f i r s t  occur, 2rnountc at best on1 j t o  circ ~ m -  

stzr1ti;l egidence. So i'aes t h e  I~ari l l le l  tiseatcent i iven  here to lam inar 

a d  tcr,? .ile-:t eq :%l i ; f i r i~~x f lows .  In t:ae absenc e GE a ,~:2ys1cdl f : r inci le ,  

t jereiare, any d i s c ~ o s i o . ~  sf a f u n c t ~ o n  D (P )  re? .ires in act of Zaith 

in t ? l t  r,eit*.er of tl:e two statements D = ccrnstsnt o r  P = colnstant 

c-n be 5:-.i" ts imsl . .. - t , ~ e  b t l ~ e r .  T L ~  ilr-stler; hesvi~i;, been state;-l ia 

ti,ese ters-s, it follows frorc-. e-r,erience with t12e special  but by no 3-eans 

trivial case a, = constznt or D = O that a ser ious  a t t c r r  -t skto~ll.! be ~*-,a2e 

to ai:ccir,t direct1 i ;nJ s~ez;iic:ll;- f o r  the  c c n c e ~ t  of a deFect law. 
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Fig. 1. Kinematic Similarity 
for the Laminar Falkner -Skan Flows 
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Fig. 2 .  The Theoretical Function D(P) 
for the Laminar Falkner-Skan Flows 



Fig .  3 .  Tes t  of the Hypothesis D = & ~ / A & & T  = constant 
f o r  Equilibrium Turbulent Flow 

F i g .  4.  The Experimental  Function D (P) 
f o r  Equilibrium Turbulent Flow 
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F i g .  5. Comparison of Calculated and Observed Development 
of T h r e e  Equil ibrium Turbulent  Flows 
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Fig .  6.  Typical Mean-velocity and Total Shear ing-s t ress  Prof i les  
in Several  Equilibrium Turbulent Flows a t  the Same Local Reynolds Number ~ d r / v '  = 5000 


