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Two similarity laws are known for the mean-velocity profile in a turbu-
lent boundary layer with constant pressure. These are Prandtl's law of the
wall and von Karman's momentum-defect law. Both concepts have recently
been generalized empirically, the law of the wall to flows with arbitrary
pressure gradient by Ludwieg and Tillmann, and the defect law to a certain
class of equilibrium flows by F. Clauser.

In the present paper it is shown that the pregsure distribution corres-
ponding to a given equilibrium flow can be computed precisely if it is assumed
that a certain parameter D = ( 7w/%)d%/d 7,, is constant, where g and 7, are
the dynamic pressure in the free stream and the shearing stress.at the wall.
The hypothesis D = constant is suggested by a study of the integrated conti-
nuity equation and is supported by a rigorous analogy between the class of
equilibrium flows defined by Clauser and the class of laminar flows studied
by Falkner and Skan. The hypothesis D = constant is also verified directly
using experimental data for several equilibrium turbulent flows.

Two limiting cases of equilibrium flow are explored.. The first limiting
case is characterized by a completely logarithmic mean-velocity profile out-
side the sublayer and by a constant friction coefficient; this flow should appear
in a wedge-shaped converging channel. The second limiting case is a continu-
ously separating boundary layer which grows linearly; the dimensionless pres-
sure gradient (x/cg)d%/dx is approximately twice that for the corresponding
lamirar flow. Typical shearing-stress profiles are computed for several

equilibrium turbulent flows including the two limiting cases.
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' STATEMENT OF THE PROBLEM

1. Introduction. For {ifty years the problem of turbulent shear
flow has occupied a conspicuocus place in the literature of fluid me-
chanics. During this time the principle of physical similarity has
alwaysﬁ been an important tool in the study of easily observable mean
guantities liké the mean-velocity distribution. For the turbulent
boundary layer,in particular, great progress has been made in dealing with

what I will call the direct problem of representing analytically the

mean-velocity and shearing-stress profiles in flows which have been

P

observed experimentaily. However, no satisfactory solution has yet been iound

{or the inverse problem of predicting the same quantities in flows which

have not necessarily been observed but which develop in a specified

environment.
~

For turbulent flow the primitive state of the art makes a solution

or a solution of the

[0}
$=in

of the direct problem very nearly a prerequisite
inverse problem. This situation has no real analogy in laminar flow,
if it is presumed that every fluid flow is ultimately determined by its
environment through the agency of certain equations of motion and state
together with certain initial and boundary conditions. The diiference
lies in the fact that the equations of motion for laminar flow are for
practical purposes known, and any difficulties are therefore mathema-
tical réther than physical in nature. On the other hand, the equaticns
of mean motion for turbulent flow have yet to be formulated completely,
and any discussion of turbulent shear flow must proceed in the vacuum

understanding of

[
o

v

)

created immperfect

simplest turbulent moticns.,
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2. The direct problem. Varicus theoretical and empirical

attacks on the direct problem for the turbulent boundary layer have

led long ago to the recognition of two similarity laws for the mean-
velocity profile. These are Prandtl's law of the wall and von Karmain's
momentum-defect law. Recently both concepts have been extencded em-
pirically, the law of the wall to flows with arbitrary pressure gradient
by Ludwieg and Tillmann(l) and the defect law to a special class of

(2)

equilibrium flows by F. Clauser™ .

Foliowing these developments, I have proposed in another
paper(3) a formulation of the mean-velocity profile which incorporates
the similarity laws in their extended form but which is not restricted
to equilibrium flow. To be specific, consider turbulent flow of an in-
compressible fluid past a smooth plane surface, at which the relative
velocity vanishes and the friction is Newtonian. For flows which are
steady and two-dimensional in the mean, it is found empirically that

the mean-velocity profile may be quite generally represented by a for-

mula ‘
o g(ese) o T (1) v
U v x )
. <
where .« ., = ”FW//O . The quantity 7, {X) is the wall shearing

>

‘stress; 5()() is a boundary-layer thickness which is uniquely defined;
and X is von Karman's universal constant, taken here as 0.,400. The

function %[f) , called the law of the wall, has the properties that %(z) — Z
for z— 0 ( 2 {1 , say), and %(z)—»(//x)«@ﬂz + ¢ , where C

is a second constant taken as 5.10, for =z — © ( 2 > 50, say). The

function w (;) , which I have called the law of the wake, has by definition

e
the properties that W(O) =0, W(/) = 2 , and /F dw = | . The parameter
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7r(x) , wnich describes the relative amplitude of the wake and wall
. 5 ) s e . 2 <
components, is related to the local friction coefficient Cf = 2wy,

by tne expression

L A Sur 4 osee 4 2T (2)
ALT WV

X
and to the displacement thickness & (X) by the expregsion

*
X _S._.’“_’ = | + I +
5/(17- 8""7’/‘)

(3)

! - ¥ . < « o a‘=
where «, (x) ig the velocity in the external stream, € 1s a constant |

and, by definition,

S
*
) = (/—fi—/ agy {4)

wha
3

—

The constant € in Eg. (3) accounts for the departure of the flow in the
sublayer from the logarithmic law of the wall. Using the notation 77,1,(—,~/;) = ;

for cocnvenience, ¢ is defined by

, : (=) . .. . ;
and has a numerical value® ) in the neighborhood of 27.

These relationships suggest that the development of a general
turbulent boundary layer can he described in terms of two constants /D
and /u characterizing the fluid and four parameters «, , L4 , ) , and

1 craracterizing the state of the {low, the latter quantities being con-

1, "
e of these four

f-

1 r sl Kn le
le variable X . Knowlec
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parameters in any region determines not only the surface friction and the
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rate of boundary-layer growth, but the complete mean-velocity profile
and therefore, at least within the usual boundary-layer approximation,
the shearing-stress field and the rate of energy transfer from the mean
motion to the turbulent secondary moticn.

I want to emphasize that the two functions called tae law of the
wall and the law of the wake are treated here as completely empirical
functions established by direct observation of the mean-velccity pro-
;éile. No attempt is made to discuss the problem of turbulence per se,
and this omission is at the same time tiie greatest strength and the
greatest weakness of the present development.

The important point is that Eq. {l) provides a complete and
almost arbitrarily accurate analytic representation of the mean-velocity
profile for a large class of flows as a linear combination of two supposedly
universal functions %(qu-,-/v) and w (?f/g) . Eg. {l} therefcre con-

stitutes a useful if tentative solution of the direct problem for the turbu-

3. Equilibrium flow. An equilibrium flow, as originally defined

by Clauser, is one having a defect law of the form

“ot - F(E) (5)

outside the sublayer. An entirely eguivalent statement, assuming the
mean-velocity profile itself to be given by Eqg. (!}, is that the parameter

I is constant.

81 - vt T owril]l ha ~mmoamaemard ot -~ S el
In th yresent Daper i1 wWiii D€ concerned ailmost CNLLTCLY

[

equilibrium flows having the property {5). For reasons which will be-
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come appafept later, the defect law is an essential element in the dis-
cussion, while the law of the wake is not. That is, the function w (%/5)
need nét be the same for \.rarious equilibrium flows as long as Eq. (5)
implies a r‘elationship of the form of Eq. (1) and conversely. In what
fol.lows, however, I will retain the notation of Eq. (1) in order to show
the dependence of various quantities on the single parameter, e.g. i,

which characterizes an equilibrium turbulent flow.

4. The inverse problem. Four parameters -- ¢, (x), AL (x),
44, mean-velocity profile.
S (x) , and W_(X) -- occur in '€ Four independent relationships

among these parameters are required in any formulation of the inverse
problem. Two of these relationships are provided by the local friction
law (2) and by the von Kdrman momentum-integral equation which’will
be introduced in its proper place. A third relationship is ordinarily
included in specified conditions for a particular flow; e. g. I = con-
stant for an equilibrium flow, or /CL(:A,(X) for a prescribed ambient flow.
The assumption that a fourth equation can be found is not essen~
tially different f{rom the traditional single-parameter hypothesis. DBoth
express the hope that the turbulent mixing process can somehow be
represented by a single empirical relationship describing the respouse
of the boundary layer to its environment. Numerous relationships,
sometimes supported by physical arguments and sometimes not, have
been proposed to serve this need in various engineering applications.
However, the law of the wake and the concept of equilibrium flpw are
new elements in the problem which suggest that the office of fourth
equation ought properly to be declared vacant, and it is my object in
the present paper to propose a candidate for this office in the special

case of equilibrium flow.
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II. KINEMATIC SIMILARITY

l. The continuity equation. The central idea in the discussion

is the concept of kinematic similarity. This concept involves con-
siderations sufficiently general so that it can only be introduced by
making what may at first appear to be a digression of the wildest kind.
For the sake of brevity I will put the matter in the form of a theorem,
accepting the risk that this choice of terminology may approach the
threshold of pain in pérsons accustomed to more approximate methods

of dealing with turbulent boundary-layer flows.

THEOREM: Consider a shear flow with mean-velocity components .« (X, 1%,1’:)
and V(X,%t) such that 314/&)( +a\//c91f= O. Assume U = Vv =0

at y:O and /uau/az; = Tw(x,%_) where/u_ is a constant.

'7—>o

Suppose that « is independent of Y for Y larger than some value
S(x, 'f;’) . Define u~,.(x t)=/ 7w/p where P is a constant; « Ax,t) =
w(x,8,t); & *(x, +) /(/—u/u)dwf ///\ //,uT) duur /X ;v = /4//0

and

QI u,/ax
L+ /I x

5% dUn (5%, /o) /DX
S Odn (u, Juur) /I X

D(x,%)

P(X’f):

Then the curve obtained by plotting )\\//P5M against 17_//95 for fixed

x and ¢ must leave the origin with slope unity and must coincide
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To prove the theorem, note first that a velocity profile of the
form M/xxT = {(7MT/V) automatically implies(4) the relationship
y/,u. = 7//\ . The assumption of Newtonian friction at the wall, because it
requires ,a,/u? = ea/ur/w + higher order terms in %, is
therefore sufficient to establish the result of the theorem at the surface.
Outside the shear flow, on the other hand, « (x, 7,{‘) = (X,.S,{)
=, (x,%), and av/c)z/ = - 0u«, (X,f)/ax , so that \/(X,z/;é)— V(x,é,f)

:_[7-5)&u,/ax , and therefore

S w S, AL a,b(-r/&)(

Av _ A s M a&,/ax(%_/) ‘)

where v = v, (X)‘é) = Vv (x.,é,f). Now in the coordinate system
(/\ v/Su R ;//5) the straight line defined by the last equation
intersects the straight line A v/5,a = 7/5 at the point (P, P), where

A\// .

P= Fu P (7)

- D

~ IR

and

D(x,f) . O u, /O x

Eliminating A v, /54, between Zqs. (6) and (7), the integral of the

continuity equation outside the shear flow becomes

Lhv oy op(Lr ) ©)
5 osa ! Plss !
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Finally, from the definition (4) for displacement thickness 5 it can

be shown that

o8* . v, , (8-8%) ou,
o X AL, AL, D X

Substituting for v, /4./., in the expression (7) for P, there is obtained

after a little manipulation

5% 0 ln (5%, /) /Ox
P(x,¢) S S a5 ax (10)

and the result stated in the theorem follows.

2. Equilibrium turbulent flow. For an equilibrium turbulent

flow the parameter T is constant in the expression (2) for the velocity

ratio /u,/u_,,

o A A5§T+xc+27r

and in the expression (3) for the displacement thickness 5%,

W 52’ = / +77— + _i..__
5l Sk /v

When these relationships are used in the definition (10) for £, there

is obtained immediately

P = | + J = constant (11)
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At first or even second glance this result is astonishing. For
consider that the parameters D and P have just been defined and
connected by one of the most general theoretical relationships which
mignt be developed for flows of boundary-layer type without being so
general as to be useless. The relétions-hips {2) and (3), on the other
hand, are of the essence of contemporary empirical knowledge of
phenomena in turbulent boundary layers; the emphasis is on the word
empirical. That these apparently unrelated lines of investigation are
found te converge in the simple equation (1l) must be either a remarkable
coincidence or a spontaneous manifestation of a fundamental order in

tire problem being studied here.

. The laminar Falkner-Skan flows., Having an explicit formula

3
for P(X) in Eq. {1C), it is natural to ask if any other boundary-layer

P

\ . § . . -
flows are known for which ,D is independent of X . I will now show

that the family of laminar flows first studied by Falkner and Skan

as this property in common with the class of equilibrium turbulent

<3
4]

flows defined by Clauser.
The Falkner-Skan flows are solutions of the laminar boundary-
layer eguations with the boundary conditions « =v=0 at y = O, x>0 ;

U — AL, (X) as z; — 00, x> O ; and the special external condition

where Wy 5, Xo > © , and . are parameters. Taking a stream

function of the ferm
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%(X»’f)‘*‘ Mo Xo (?%)uixj ({_O))%I%(V,n) C(13)

with «w = a‘#/&? and v = - 8%/&/( , and with

0loy) - S = ()% 4

there is obtained the non-linear ordinary Jifferentizl equation

14 A0 oW

wiere f9 2>4/(n+/) and the primes indicate differentiation with respect
to o The boundary conditions on 7/[7, )'z) are %: % =0 at 7= o
and%l—»/ as )Z——>oo.

(%) ] ! . . "

Hartree has tabulated % (7, n) together with % (O, )fz) for
various values of /ﬁ . These calculations have recently been repeated
and the numerical results reported in greater detail by Srrz.it%1(7). No
real solutions of Eq. (15) have been found for ﬁ(—- 0./988 ; that is,
for -/ < n-0.0904 , and the uniqueness of the solutions fcr
negative B apparently requires an additional éon(iition that 7/ - ,Lc/u,
should approach unity from below as rapidly as possible for increasing -

If the ratio v/,u is computed for the Falkner-Skan flows using

the expression (13) for the stream function, there is obtained

- 2 ’*" [(/-h . ﬁ(i)_] (16)

A
" S /-3n /+n 2 07)

where 7, = % (X,S) . he parameter A is defined in the thecorem

7
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4
presented earlier. Now{ ()7) approaches unity for large 7 , and
{(7, n) therefore approaches % (»n)+ 7 where 7 (n) is a negative
£

constant, Very far outside the beundary layer, it follows from Eq. (l§)

that

—_ ", /\V | = 4 n _ . 27{ .—/)
24 Sul 3n -1 2 S

Comparing this expression with Eq. (9}, it is seen that

D(n) B :jnyi/ o

and

% (n)

P(n) = »Zm (12)

for the flows in question. Furthermore, it can be shown from the

* .
definition (4) for displacement thickness that & = (y/)z)vzlflw [7 - {(7” =
- 43/71 . Thus

P
—
D

e

x
P(n) = ,255{

for the Falkner-Skan flows.
From E . {l6) it is also seen that Av /S« is a function of
n 7/5 = » alone, with n  as parameter, and thus that A V/PSM_ =
{
. x o, .
23 a function of %/PS = %/2,5 is independent of Reynolds number.

Several typical curves, computed {rom Smith's tables for various values

of »n , are snown in Fig. 1. These curves obviously do not degend on
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the definition adopted for the boundary-layer thickness & .

Eqgs. {17) and (13} show that there is also a relationship between
the two parameters D and P . This relationship, however, does
depend on the definition of & . I n, is arbitrarily taken as the
value of 7 for which ,u/ul: 0.99 , the curve plotted in Fig, 2

iz obtained from the numerical solutions tabulated by Smith.

4. The limiting laminar sink flow. Although both Hartree and

Smith have guestioned the physical significance of solutions of the
Falkner-Skan equation (1%) for 8 > 2 , Hartree made calculations

for B =2 (n =% 00) and B = 2.4 without finding any anomalous
behavior of %(YZ, Pz) . The situation appears to he that for

sufficiently negative values of n , according to Egs. (13) and (14},

te reference velocity ., and therefore the free-stream velocity «,
must be negative if <7L and n are to be real. Conseqguently, the
external flow must be away from the origin in the range -+.0904<n< @,
or -C.1388 < B8 <2, and toward the origin in the range — @ <<~/

or 2 </S oo .

The limiting solution of Eq. (15) for B —r+oo (rn — ~1 from
below} is easily found either by a singular perturbation for large J=
in which 7 is replaced by 9//5 and %{7) is replaced by '4(9)/F,
| ()

or by assurning a stream function of the form

%= Ly Xy /¥ %(5)

luo Xo(




o
s}
[oN

AL, X = MU, X, = constant

In either event, taking tnhe czse of sink flow in the external
/
stream, or negative «, and ««(, , the function ? (6) - 4 (9) = M/u,

must satisfy the eguation

where primes indicate differentiation with respect to & and the
3 ae e o . ) .
boundary conditions are ?(0) =0, 7(00) =/ . Multiplying by ¢4 and

integrating once, the surface shearing stress is found to be

TW = ’f‘_’_ _4‘_ /MoXo‘
e Xy 3 Y P

Integrating again, the velocity wrofile can be expressed in closed

32

form =as

E . L. . . -
These relationshipes are actually a boundary-layer approximation ior

large Reynclds number to the known exact sclution of the Navier-Stokes
equations for flow in a converging channel(g). It is therefore not sur-
nrising to find that the present problem has no real solution if the flow
in the external stream iz away from rather than toward the origin

{positive «, and w, , p—>—o00, n—>—/ frorm abovej.
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&
Tan (1+/EE)(1-/F)
9(?) r (1=2)/2% /z//” /—/éﬂ)(/+/z)

?(@)z/{%/: Btd/n/z (% /MOX’ Wd/p—-a;)—a(zo)

The most important property of the solution (20) of the Falkner-
Skan equation for sink flow is that the streamlines throughout the flow
are straight lines through the origin witn v/u = lf/)( . It follows (4)
that the velocity profile can be written in the form ,u.//a,r= cp(l/,a—,-/w).

Furthermore, the friction coefficient is constant, and therefore

D=dbrn,/d by = 1.

. The hypothesis D = constant. I have shown that the two

(841

parameters [0 and f? occur naturally together in the integrated
continuity equation; that O and P are separately constant for any

one of the Falkner-Skan laminar flows; and that F is constant for an
equilibrium turbulent flow. Little imagination is required to anticipate
the specific hypothesis which will shortly be made {for equilibrium turbu-

lent flow, namely

d Ln w,

o = —— = constant

A At
From the definition it is seen that the parameter [ depends on the
relative magnitude and rate of change of «, and 4, , or alternatively
of the free~-stream dynamic pressure g and the surface shearing stress
The situation is therefore a happy one, in that the hypothesis

Tw -

3

D = constant can be tested a pricori,
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Seven equilibrium or near-equilibrium flows are included in an
(3)

extensive survey of the experimental literature reported elsewhere

a

For six of these seven flows, Fig. 3 shows a plot in logarithmic co-

ordinates of /a,//u,o against u—,./,uTo, where «, and u,are arbitrary con-
stant reference velocities; ., is inferred from the law of the wall.
The supposition that the data might define a straight line is borne out
P are listed

in each case, and the corresponding values of O and

in the adjacent Table I and plotted in Fig. 4.

. TABLE I
SUMMARY OF EXPERIMENTAL DATA ON D AND P IN EQUILIBRIUM

TURBULENT FLOW

Reference or Remarks P=1+1T D = L Lty D (revised)
AL
Pure wall flow 1 1
Ludwieg and Tillmann“), Channel VII 1.20 + 0.02 1.22 + 0.03
Bauer'?) 20° siope 1,22+ 0,02 1.42 + 0.03
40° slope 1.24 + 0.02 1.33 + 0.03
60° slope 1.23 + 6,02 1.30 + 0.03
Wieghardt(w), constant pressure 1.55 + 6.0l O
Clauser(z), Series 1 2.54 + .05 0.86 + 0.05% 0.795 + 0. 012
Series 2 4.93 + 0. 16 06.75 + 0.05 0.863 + 0.002
Pure wake flow o0 1
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11II. SOLUTION OF THE INVERSE PROBLEM

1. The von Karman momentum-integral equation. Three of

the four equations needed in the formulation of the inverse problem for

equilibrium turbulent flow are the stipulation

T = constant ' (21)

together with the local friction law (2)

w4 o Al Sur 4 e + 2T
%4

'y
AA T

and the momentum-integral equation of von Karman, which for the con-
ditions considered here is
L
Tw - 2o A ufe s S Ly, (22)

—_ = My = =

L 4 x A x

The new variables & and @ in Eq. (22) are the boundary-

layer displacement and momentum thicknesses respectively, defined by

Eq. (4) and by

s
9=/%(/—i‘f—/>o€% (23)

These quantities are readily expressed in terms of -« ,, w4, , & ,
and || for the profile given by Eq. (1). Hereafter I propose to neglect
the departure of the flow in the sublayer from the logarithmic law of the

wall; then substitution of Eq. (1) in Eq. (4) yields Eq. (3) with € = O,
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X
x e = n () (24)

S
and substitution in Eq. (2°) yields

2

2 x
2(55—9 Zz = . (m) . )

where fl, and [22_ are defined by

n,(m) = +77'Zf_§_dw (26)
/1. 2 B 2
- am [y Tyt o

Taking the wake function W(y/é) from Ref. 3, then

Q,(YT) = | + 17

02,(T) = 1+ 1.600T + 0.761 T~

For future use it may be noted that the elimination of & between

Egs. (24) and (25) provides a formula for the profile shape parameter

5*/6,

e 2 L), | (28)
S* e, T

In applying these relationships, a convenient first step is the
use of Eqs. (28) and (24) successively in Eq. (22) to eliminate & and

*
§ in favor of &, , .+, and S . Remembering that T is constant,



o
-y -

the result is

2
W —

s du Kfi’.)z

ALy A X Adr
e [(em) S (<)o) 2 (20
v d8f(s)n, 1) - 2(0.-2,))

T: e second step is to suppress one of the three derivatives in the last

equation with the aid of the local friction law (2) in differentiated form.

The natural choice for elimination is %5/0“ , yielding

The third step, suggested by experience with the special case «,

constant, is the recognition of the quantity

as a fundamental incependent variakble

. Differentiating the last expression,
then

b dz (D—! oA (D_,>/ A tr
Zd)( D ALy A x

M A x

where D = L Ln Jx,/awmur by definition. Eq. (29 becomes finally

dx | de

< > [ZZ_Q,-ZZQZ_—ZZIZ,(%)+ZQZ<7{—D—)](3Q)

To recapitulate, Eq. (3C ) is the mornentum-~-integral equation (22)
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evaluated for the special mean-velocity profile (1) with constant 7 .

The defect law (5) has been taken to apply throughout the flow, including

the sublayer, so that Eqs. {29 and (30) are at least asymptotically valid for
large Reynolds numbers. Because no assumption has yet been made
concerning the parameter D, the effect of the manipulation just carried

out has been to change the nature but not the number of the variables in

the problem. It is conceivable that the form of Eq. (30) would eventually
suggest the assumption D = constant as a heuristic measure, even if

attention had not been attracted to this hypothesis by consideration of

the continuity equation.

2. Mtegration of the von Karman equation. I will now assume

that an equilibrium turbulent flow has the property

D = AL J’(’(I B
= 2, JMT = constant (31)

Eq. (31) evidently provides the fo‘nrth relationship needed in the for-
mulation of the inverse problem, and is to be considered jointly with
the momentum-integral equation (30), the local friction law (2), and
the equilibrium condition (21). Now Eq. (31) is itself a differential

equation which may be integrated immediately, with the result

D
A o [ M ) (32)
Jl/o Ad g

where o= (Xo) and My = M (xo); X, is any convenient reference
point. Returning to Eq. (30), the awkward factor & on the left-hand

side can be eliminated by observing, in view of Egs. (2) and (32), that
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where &, = ) (xo) and Z, = £ (x°> . Substituting for $ in Eq. (30),

there i3 ¢btained finally

The variebles X and Z are separated in Eq. (34), and integration can

be carried out in closed form if //(/ - D) is an integer or half-

integer. For example, if D =4/3,

KZ(X:SXO) = (5{2/"202.) . e * [ Ei(z)-Ei (Z°)]

o o {35)
+ 2(), % - l]
Z x
where Ef(i)- /%——cﬂx and

-3 zZ-z,
s _ (;a) o (36)
S Z,



The quantities ( x , & , 2 Yand{ X,, &, , £, )in these
expressions may obvicusly be considered as variables and parameters
depending on the application. Note that
&, and Z, , are encountered

respectively or vice versa,

two independent constants of integration,
in integrating the system (31) and {34)., DPecause Z = Ku,/c(-r cdetermines

S,u-,./t) for an ecuilibriura flow by virtue of the local friction law (2),
this means that the two physical scales & and P/aT may be specified

independently ot any one siation.
I have evaluated Egs. {3%5) and (36} numerically, taking 7T = ¢.24

Calculations

and D =1.33.
. o . - PR
flow with 40 S‘A.Ope studied by Bailer(g) “l‘ 1Z. & of Ref, f)).
= 0.55 and D =0, corresponding to the

32.0 nieters per second

onstant external velocity of
T = 1.54 and

flow with 2 ¢
e i on I 203 I . -
studied by \Nzegr;aru‘i‘ (Fig. 4 of Ref. 3}, and for
corres-

D =0.795,
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(2)

ponding to the flow with moderately rising pressure studied by Clauser
(Fig. 15 of Ref. 3). Taking the constants &, and Z_, in each case from
the experimental data at a point well downstream, the calculated and
measured values for 5%(X), w,(x), and = (x) are compared in Fig. 5,
The value D =0795attributed to Clauser's flow is different from
the experimental value D = 0,86 listed in Table I. The need for some re-
vigion in the original value of D can be argued from the momentum-
integral equation in the differentiated form (27). Let this equation be

rewritten as

A o =z2%n,(1-pD) -2= [.Q,D +Q2</~D)J + 21,
5

Now the quantity K)'/\/S can also be evaluated by differentiating the

local friction law (2) to obtain

KA T [z(/—o) + /J
) A5 /L x

The first of these two equations assumes two-dimensional momentum
balance as well as gimilarity in the mean-velocity profile in the sense
required by the law of the wall and the defect law. The second equation
agsumes similarity only. Taking T =1.54 and D = 0.86 for Clauser's
first series of experiments, together with a typical value Z =13,

it is found that the computed values of )\/S and o(é/afx are negative.
I have therefore preferred to reverse the calculation, estimating O(S/OQX

%k
from the experiments and calculating D instead. The revised values

That the revisions should be in opposite directions focr Clauser's

two flows is suggested by slight discrepancies in momentum balance

reported elsewhere (Cf. the functions %(x) in Figs. 15 and 16 of Ref. 3).
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for D are listed in Table I, together with an estimate of probable error

corresponding to an uncertainty of + 20 percent in cﬂé/c/x .

3. The shearing-stress profile. The distribution of shearing

stress within an equilibrium turbulent boundary layer may be found by

integrating the boundary-layer equations

5 + _‘azf = O (27)
o QU _ A, /2T
MSY’LV?}?'M’ Ax P oy (38

2
for the profile of Eq. (1) with constant /] . Noting that 7, = f T

by definition, the result of a tedious lot of algebra is

cA(1-z) = L[5 o2t (10)sE(@0)
(39)
—Z(/—D)z(wz—w,) - 25w, + ng]

where =z = ;(u,/,u7, g = xu/ur , and W, and W, are

incomplete integrals corresponding to {), and (), in Eqs. (26)

and (27). The functions
W, (77', ’7/5) and Wg (77—, ;//5) are defined and tabulated in Ref. 3.

Taking SMT/\? = 5000 for four equilibrium flows which have been

observed experimentally -- first, P =1.24, D = 1.33; second P =1.55,

D = 0; third, P = 2.54, D = 0.80; and fourth, P=4.93, D= 0.86 -- the
mean-velocity profile according to Eq. (1) and the total shearing-stress
profile according to Eq. (39) are shown in Fig. 6. Also shown as a

(3),

cross-hatched region is the velocity defect in the equivalent wake
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4, Unigueness. One important consequence of the hypothesis
D = constent for an equilibrium turbulent boundary layer has to do
with the matter of uniqueness. Given a value for D , an integral of
Eg. (34) can presumably be found in the form (x—xo)/So = £ {z, z,, 1T, D)_
Eliminating the thickness &, in favor of & with the aid of Eq. (33),
this integral can be written (x - xo)/é = F (Z, Zq, I, D) . Now if
T (or P jyand D are separately constant for an equilibrium flow,
it is reasonable to suppcse that these quantities are related by somne
function D (P) like the one for laminar flow shown in Fig. 2. I so,
then the dependence of the flow on the parameter [0 need not be stated

/ngi o d

z z ”\ Tinallar 1t o
- A L2y Zoy 1y ° L & L a2 2O

nally,
possible to specify the origin or initial point X,, &, , 2, , etc.

in such a way that Z, depends on || alone. For example, assume that
the momenturn: thickness & vanishes for x = X, = O , and note that
Eq. (28) then requires X, fu, = Z = Z, = Z_QZ(W)/_Q‘(W). The

integral of Eq. {34) under these conditions can therefore be expressed

ultimately as

5 = H{(z,T)

But if SJX-,- /V and 5/X for constant /I are functions of Z = X, /xx—r
alone, then so are . x/p and x/;) . Sc alsoc are S*/x s 579 ,
AL, 9/1) , and simnilar quantities, by virtue of various relationships derived
earlier for equilibrium turbulent flow.

Given [ = constant, therefore, the conclusion is that quantities
like 5*/9 s Cf = Zurz/a,‘a , and Ry = 4, 9/1) can be expressed
as one-parameter functionz of 2 uniquely defined streamwise Reynolds
number A = «, X/V for the class of equilibrium turbulent flows even when

«t, depends on X . This conclusion does not require the assumption



that the wake function w(7/5) in Eg. (1) is universal, because the
mean-~velocity profile in an equiiibrium flow is adequately expressed

for the purpose of this argument by the defect law (5)., Neither would

the conclusion stated here be changed if the exact rhean—velecity proiile
in the sublayer had been considered in Egs. (24)and (25), as the quantities

_Q/ (7T) and -Qz (YT) could then be replaced by _Q, (77; Z) and 02(77_, Z.) .
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IV. THE FUNCTION D(P)

l. The pure wall flow. In this and the next section I will attempt

to treat the limiting cases T =0 and T= o by arguments which
amount to extrapolations based on the idea of kinematic similarity. In
the temporary absence of experimental evidence these arguments may
be accepted or rejected on their merits without seriously prejudicing
any of the earlier discussion.

Consider first the limiting case =0 in Eq. {l). The mean-

velocity profile is given by the law of the wall,
w o f ()
Uy 2

and it follows(4) that ,u/,ur and 77447-/1) are constant on mean stream-

lines and that

vy
7 (40)

where //)\ = - (//,u?-) a/ur/o/x as before. The shearing-stress profile

is most readily obtained by putting @, = w, =/ in Eq. (39);
2 ) y © ; |
7 ~ e L _ &
K—S—(/"—,/:;v>— —g—[—-D(KE) +(K2<—7) Z(Ku7>+2‘] (41)
At y = & , therefore, where «=«, and 7T = 0O ,
A (x“)l(hp)fz( u’>+2.
B pre prat (42)

Several arguments can be found, all of them unfortunately some-

what porous, for supposing that if the parameter D is constant for the



A

pure wall flow it ought to have the value unity. Certainly the point

P = D =11is favorably located in Fig. 4 with respect to the experimentally
determined points in accelerating flow, if the hypothetical function D(P)
for equilibrium turbulent flow is to resemble the one in Fig. 2 for
laminar flow. The statement D = 1 can also be argued from the physical
premise that the mean-velocity profile for pure wall {low has only one
characteristic length, 1)/,(,(7— , So that SMT/V ought to be constant.

Alternatively, suppose for the sake of regularity that v/,u in
Eq. (40) and T/’I'W in Eq. (41) are functions of 74/1/5 alone. Then
)\/S is constant from (40), and ,a,/uT is constant and thus D =1
from (42). Moreover, SuT/w is constant from (2), so that Jg/afx
is also constant and & varies linearly with x .

If D =1 there is no entrainment of fluid in the boundary layer con-
sidered here, because Y = > is a mean streamline. This and other
points of resemblance between the pure wall flow and the limiting Falkner-
Skan flow for n= -/ or 8 =co suggest that the flow here is actually a
sink flow moving toward the origin. This view is supported by the
following argument; if .« , 7 S , ««, , and «, are positive and
D =1, then Eq. {42) requires A/S and A to be negative, at least for
large Reynolds numbers, Eq. (40) then requires v/,u and v to be
also negative. Finally, G/,uT/o/x and &/u,/ofx are both positive from
the definitions of A and D . These statements can only be reconciled
with the statement that 0?5/0&( is a (negative) constant if the flow is
proceeding toward the origin x = O through negative values of x

A comparison of the laminar and turbulent sink flows emphasizesb
the fact that any velocity profile which could be written in the form of

the law of the wall with constant ,u,/,ur would be a possible profile in
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sink flow. Only the function of Eq. (20) has the additional property that
the boundary-layer momentum equation is satisfied at the same time
that 7 =/u au/ay . For turbulent flow, on the other hand, the boundary-
layer momentum equation is aﬁtomatically satisfied because « 1is given
and 7 is computed therefrom. In either case the friction coefficient -
is constant but its value can apparently be chosen arbitrarily.

The logaritamic mean-velocity profile and the corresponding
shearing-stress profile* in the pure wall flow are shown in Fig. 6 for

SMT/V = 5000 and D = 1.

¥
1 have also computed the function ’r/’rw for S,uT/V = 103, 106, and 109,

and have found that the various curves can really not be distinguished
in the figure. That is, T/TW as a function of 7/5 is for practical
purposes independent of the Reynolds number S« /12 . These calcu-
lations presumably refer to physically different boundary layers, not to

different stations in the same boundary layer.

2. The pure wake flow. The profile parameter I in Eqgs. (2)

and (3) is a measure of the relative magnitude of the wake and wall com-
ponents in the mean-velocity profile. According to Eq. (3), T becomes
indefinitely large when 7, approaches zero. However, when Eq. (1)
is multiplied by uf/xz, and _w, is put equal to zero, /] having first
been eliminated by Eq. {3), the mean-velocity profile becomes

o S () - Lw() (43)

Ry B 2 2 S

since w = 2 when u= ., by definition. This is the profile at a point

of separation or reattachment. The pure wake flow is obtained on assuming
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that this same profile holds for all values of x . In the present instance,

8)75 s 9/5 , and 576’ are constants having the values 0,500, 0.120,

and 4.18 respectively, (3)
To begin with, an important property of the pure wake flow follows

directly from the momentum-integral equation of von Karman for two-

dimensional flow. Taking Q/S = constant and 7, = O, Eq. (22)

becomes
/I AS ( 5f) I A,
s ax (fre)m g © (44)
and therefore
2+ 5V0
S,u/~ = constant (45)

Furthermore, the shearing-stress profile is readily obtained by
integrating the boundary-layer system (37) and (38) directly for the

mean-velocity distribution (43). The result is

viw ¥ (’*5’\79) /WJ; (46)

PEYLES S 2+ &8%/6
/8

Tlpul ()Y (/+.’S"‘/9 w s¥/e / y
AdS5/d x (2+5*/9)5 2+ S%/o w 5 2+§*/6> p (47)

(@]

Now suppose that either v/u or T/g for this particular flow is a function

of 7/8 alone. Zqg. (46) or (47) then implies

g5 ( S *) S du
= 7 = — -+ = i ‘ =
. 2 o ) > constant
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so that & wvaries linearly with x ; and this property is obviously
interchangeable with the original condition on v/u or ”r/g

Finally, if G/S/d’x is in fact constant for the turbulent boundary-
layer flow with 7, = O , then Eq. (45) requires, on taking for convenience

S5 =0 at x =0

3

1 /(2+87/8) 0. 162
X = AL X

= constant

The corresponding Falkner-Skan flow with 7, =O was characterized by

0.0904
L, X = constant

and the present result is at least consistent with the empirical observation
that turbulent flow will in general support a more rapid pressure rise.

Clauser's data in Fig. 4 suggest that the value of D which is
appropriate for the pure wake flow is D = 1. Consider also that Eq. (46)
evaluated at Yy = & , in conjunction with Eq. (44), requires

AV, - D(j—/—é*/@)
S, =

&
This expression substituted in the defining equation (7) for A yields

- o5y )

But ~ = /+ 7T 1is infinite for the pure wake flow, and therefore D must

be equal to unity.

&
This expression for Pis validfor laminar flow as long as A(/A, depends
only on 77/5 and 7, is zero. Knowing that P=2,3975 and D:4n/(3n—/>,

according to Egs. (17) and (19), an estimate of the limiting value of » in
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the separating Falkner-Skan flow is readily obtained. Taking 5%/5 =1/2
*
and & /9 = 4 as reasonable values, then O = 2/7 or n= -1/11 = -0.0909.

As quoted earlier, the exact value for »n 1is -0.0904.

The mean-velocity distribution (43) and the shearing-stress distri-
bution (47) are plotted in Fig. 6 for the wake function w(y/é) of Ref. 3.
The shearing stress being computed as T/’rmax , it is not necessary
to specify the value of JS/JX for the hypothetical pure wall flow con-
sidered here.

The present formulation does not in fact yield a value for the
derivative JS/JX , and it would be surprising if it did. However, an
estimate for c/é/aéx can be based on the supposition that the pure wake
flow studied here corresponds in some gsense to the hailf -wake studied
experimentally by Liepmann and Lau.fer(u). The two flows differ in the
- presence or absence of a streamwise pressure gradient and in the con-
straint at the boundary Y = O . Keeping in mind the observed insensitivity
of the wake component, i.e. the def‘ect law, to wall conditions such as
roughness in equilibrium flows with finite 7, , and reserving the
question of the finite normal velocity in the f{ree shear layer at the point
corresponding to the wall, the two mixing processes might be expected
to be similar at least near the free boundary at Y = 5 . If so, a tentative
estimate(s) for %S/d’x in the separating equilibrium flow is o@é/oéx = 5/X =

0.252.

3. An interpolation formula. In any practical application of the

concept of equilibrium flow, for example to diffuser design, some inter-
polation method is needed to supplement the experimental values of D(P)

in Table I. The method proposed here depends on the development of two
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guantities which, unlike the parameters D and P, remain finite as T
increases from zero to infinity. One such quantity is the strength of the
equivalent wake, ZW'MT/XMI = 2_77'/2 . Another is the rate of mass
entrainment in the boundary layer. Defining

_ds oL 1 %[/ou,(é—g*)] (48)

S
Z cﬁX ,L(/ PJX.,

then the quantity s is seen to be the velocity of propagation of the
boundary ¥ = S with respect to the free stream. Now the ratio 5/,(4,
may be expressed in terms of the local friction coefficient and the
parameter [/ with the aid of Eqs. (2) and (3);

S Jd= _
Al L

where =z = K/(.(,/x,(-r . But (8/7:) a@z/oéx is a known function of

Z , I, and D from Eq. (30); thus

.Lf__ _ (Z—V)(/-D)
x* L, (1-D)(z20,-220,) - 2Dz0, +20), (49)

The case of pure wake flow may be treated separately to obtain 277/2 =/,

and, from Eqgs.(48) and (46),

s 1 dS /+8"/e>
X2 AL, 2wr Ax 2+ 5%/6

For given values of // and D and for a specified value of S /;),
the quantities =z , 2 /= , and s/x’ial may be computed from Eqgs. (2)

and (49). Plotting 5 /%, against ZW/;E for the six flows of Fig. 6 and using



esgentially straight line interpolation except near =0 , the inverse

calculation for D(P) leads for 5MT/V = 50090 to the curve shown in

o

"For Clauser's second flow it appears that the parameter D ought to

e taken az 0.366 if a smooth curve is to be obtained in the coordinates

(27 /2 , s/x*w,).

Fig. 4. This calculation, as might be excected, is not at all sensitive to

the value chosen for S,u—r/v.

2

4, The hyncthetical function D (P) .  Perhaps the most instructive

physical interpretation of the hygothesis [ = constant comes from the
{act that the m.ean streamlines must intersect at 2 cormmon origin for any
region in which v/,u for fixed X 1is a linear function of 2 One such
region ig the one near the wall, including the sublayer in tne case of

turbulent flow; here v/,uz 7//l . In the abscence of a boundary layer there

7]

= W

igs a corresponding relationship v/u: D?Z(/)\ for the non-viscous
ambient flow. Thus the parameter [ describes the way in which any
divergence or convergence of the external flow, which is to say any .
pressure gradient, affects the shear flow in the neighborhood of the wall.
These remarks aoply egually for laminar and turbulent boundary lavers.
Furthermore, for tarbulent {low the interpretation just given, like the
defect law itself, does not involve tie viscosity of the fluid explicitly --
irence the term kinematic similarity.

What is ultinmately needed, hewever, is not a physical interpretation
but z physical principle, frorm which might be deduced not only the

existence of = function D (P) for eguilibrium turbulent flow but the



forrm. of this function. Although Fig. 3 clearly justifies the nssumption

D = constant as an interpolation device for the particular eqailibrium’
flows in guestion, other reasons rrust be found for making this assumption
in the general case. The theoren: presented earlier, in which the two
sarameters £ and F~ first occur, amounts at vest only to circum-
stantizl evidence. So fces the parallel treatment given here to laminar
and turiulent eqgiilibrium flows. In the absence of a physical principle,

thereiore, any digcussion of a function D(P) regaires an act of {aith

in that neither of the two statements O = constant or £ = constant

o]

can be said to imzoly the otier. Thre problen having been stated in
tiese terms, it follows frormm ex.erience with the special but by no m.eans
trivial case ««, = constant or [ = 0 that a serious attem»t sho:ld be masde

to account directly and specifically for the concept of a defect law.
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Kinematic Similarity
for the Laminar Falkner-Skan Flows
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Fig. 2. The Theoretical Function D(P)
for the Laminar Falkner-Skan Flows



Fig. 3. Test of the Hypothesis D = A éﬂ#,/d«gﬂﬂr = constant
for Equilibrium Turbulent Flow
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