Prog. Theor. Phys. Vol. 59 (1978), June

Remarks on the Indefinite-Metric
 Quantum Field Theory of General Relativity

Noboru NAKANISHI
Research Institute for Mathematical Science
Kyoto University, Kyoto 606
February 18, 1978
Recently, the present author ${ }^{1}{ }^{1}$ has formulated the indefinite-metric quantum field theory of the gravitational field as an extension of the Kugo-Ojima formalism ${ }^{2}$ of the Yang-Mills field. Our formalism is based on the BRS transformation $\boldsymbol{\delta}$ introduced in that work: ${ }^{1)}$ It is a nilpotent derivation defined on the basis of the infinitesimal general coordinate transformation $\Phi(x) \rightarrow \Phi^{\prime}\left(x^{\prime}\right)$, where x_{μ} and $x_{\mu}{ }^{\prime}$ denote the coordinates of the same space-time point. Then δ is not commutative with the differential operator ∂_{μ}, that is,

$$
\begin{equation*}
\delta\left(\partial_{\mu} X\right)=\partial_{\mu} \delta(X)+\kappa \partial_{\mu} c^{\lambda} \cdot \partial_{\lambda} X, \tag{1}
\end{equation*}
$$

where c^{λ} denotes one of the Faddeev-Popov (F-P) ghosts and X is an arbitrary field polynomial obeying bose or fermi statistics,
κ being the gravitational constant.
Very recently, Nishijima and Okawa ${ }^{37}$ and Kugo and Ojima ${ }^{4)}$ have independently formulated the quantum field theory of the gravitational field on the basis of the BRS transformation introduced previously. ${ }^{5)}$ This operation, which we denote by ∂^{\prime}, is again a nilpotent derivation, but it is defined on the basis of the transformation $\Phi(x) \rightarrow \Phi^{\prime}(x)$, so that it commutes with ∂_{μ}. The above authors assert that δ^{\prime} is more satisfactory than δ because only the former corresponds to the quantum-theoretical generator of the BRS transformation, though their formalism is more complicated than ours.

Now, the purpose of this Letter is twofold. First, we show that our theory based on δ and theirs based on δ^{\prime} are mutually equivalent, as far as the Landau-gauge case is concerned. Secondly, we extend our theory to the non-Landau-gauge case, which is much simpler than that in their formalism.

As is easily seen, ${ }^{3,2,4,1)} \delta$ and $\dot{\delta}^{\prime}$ are mutually related through

$$
\begin{equation*}
\delta^{\prime}(X)=\delta(X)+\kappa c^{2} \partial_{\lambda} X, \tag{2}
\end{equation*}
$$

as far as X is a polynomial in ordinary
tensors and c^{ρ}. The discrepancy between the δ theory and the δ^{\prime} one arises when one introduces an auxiliary boson field b_{ρ} and another F-P ghost \bar{c}_{ρ} : In the former one assumes that

$$
\begin{equation*}
\partial\left(b_{\rho}\right)=0, \partial\left(\bar{c}_{\rho}\right)=i b_{\rho} \tag{3}
\end{equation*}
$$

while in the latter

$$
\begin{equation*}
\partial^{\prime}\left(b_{\rho}\right)=0, \partial^{\prime}\left(\bar{c}_{\rho}\right)=i b_{\rho} . \tag{4}
\end{equation*}
$$

Evidently, (3) and (4) are different if (2) is applied also to b_{ρ} and \bar{c}_{ρ}. Correspondingly, the action integrals of both theories are different.

It should be noted, however, that there is no reason for directly identifying b_{ρ} and \bar{c}_{ρ} in the δ theory with those in the δ^{\prime} theory. That is, we should distinguish (b_{ρ}, \bar{c}_{ρ})'s in both theories from each other. Hence we replace b_{ρ} and \bar{c}_{ρ} in the δ^{\prime} theory by $b_{\rho}{ }^{\prime}$ and $\bar{c}_{\rho}{ }^{\prime}$, respectively. We propose the conversion formula

$$
\begin{equation*}
b_{\rho}^{\prime}=b_{\rho}-i \kappa c^{\wedge} \partial_{\lambda} \bar{c}_{\rho}, \bar{c}_{\rho}^{\prime}=\bar{c}_{\rho} \tag{5}
\end{equation*}
$$

Then (3) is equivalent to

$$
\begin{equation*}
\bar{\partial}^{\prime}\left(b_{\rho}^{\prime}\right)=0, \hat{\partial}^{\prime}\left(\bar{c}_{\rho}^{\prime}\right)=i b_{\rho}^{\prime} \tag{6}
\end{equation*}
$$

Indeed, with (3) and (2), (5) reduces to $b_{\rho}{ }^{\prime}=-i \bar{o}^{\prime}\left(\bar{c}_{\rho}\right)$, i.e., (6); conversely, with (6) and (2), (5) reduces to $b_{\rho}=-i \delta\left(\bar{c}_{\rho}{ }^{\prime}\right)$, i.e., (3).

In the o theory, the gauge-fixing Lagrangian density $\mathcal{L}_{\text {GF }}$ and the F-P ghost one $\mathcal{L}_{\text {FP }}$ are given by ${ }^{1)}$

$$
\begin{align*}
& \mathcal{L}_{\mathrm{GF}}=-(2 \kappa)^{-1} \sqrt{-g} g^{\mu \nu}\left(\partial_{\mu} b_{\nu}+\partial_{\nu} b_{\mu}\right), \tag{7}\\
& \mathcal{L}_{\mathrm{FP}}=\frac{1}{2} i \sqrt{-g} g^{\mu \nu}\left(\partial_{\mu} \bar{c}_{\rho} \cdot \partial_{\nu} c^{\rho}+\partial_{\nu} \bar{c}_{\rho} \cdot \partial_{\mu} c^{\rho}\right), \tag{8}
\end{align*}
$$

respectively. Hence in terms of $b_{\rho}{ }^{\prime}$ and $\bar{c}_{\rho}{ }^{\prime}$, we have

$$
\begin{align*}
\mathcal{L}_{\mathrm{GF}} & +\mathcal{L}_{\mathrm{FP}}=-(2 \kappa)^{-1} \tilde{g}^{\mu \nu}\left(\partial_{\mu} b_{\nu}{ }^{\prime}+\partial_{\nu} b_{\mu}^{\prime}\right) \\
& +(2 \kappa)^{-1} i \boldsymbol{\delta}^{\prime}\left(\tilde{g}^{\mu \nu}\right)\left(\partial_{\mu} \bar{c}_{\nu}^{\prime}+\partial_{\nu} \bar{c}_{\mu}^{\prime}\right) \\
& -i \partial_{\lambda}\left(\tilde{g}^{\mu \nu} c^{\lambda} \partial_{\mu} \bar{c}_{\nu}^{\prime}\right) \tag{9}
\end{align*}
$$

with $\tilde{g}^{\mu \nu} \equiv \sqrt{-g} g^{\mu \nu} .^{*} \quad \mathrm{We}$ thus see that

$$
\text { *) } \boldsymbol{\delta}^{\prime}\left(\tilde{g}^{\mu \nu}\right)=-\kappa\left[\partial_{\lambda} c^{\mu} \cdot \tilde{g}^{2 \nu}+\partial_{\lambda} c^{\nu} \cdot \tilde{g}^{\mu \lambda}-\partial_{\lambda}\left(c^{\lambda} \tilde{g}^{\mu \nu}\right)\right] \text {. }
$$

the Lagrangian density \mathcal{L} of the $\mathscr{\delta}$ theory is equivalent to that of the δ^{\prime} theory, ${ }^{3), 4)}$ as far as the Landau-gauge case is concerned.

Next, we consider an extension of the δ theory to the non-Landau-gauge case. If we give up the general linear invariance as in Refs. 3) and 4), then we may add

$$
\begin{equation*}
-(\alpha / \kappa) \sqrt{ }-g b^{\rho} b_{\rho} \tag{10}
\end{equation*}
$$

to \mathcal{L}, where $b^{\rho} \equiv \eta^{\rho \sigma} b_{\sigma}$ with $\eta^{\rho \sigma}$ being the Minkowski metric. Of course, (10) is not equivalent to const $b^{\prime} \rho b_{\rho}^{\prime}$ of Refs. 3) and 4).

The field equations then become

$$
\begin{align*}
& R^{\mu \nu}-\frac{1}{2} g^{\mu \nu} R-B^{\mu \nu}+\alpha b^{\rho} b_{\rho} g^{\mu \nu}=\kappa T^{\mu \nu}, \tag{11}\\
& \partial_{\mu}\left(\sqrt{-g} g^{\mu \nu}\right)-2 \alpha \sqrt{ }-g b^{\nu}=0, \tag{12}\\
& g^{\mu \nu} \partial_{\mu} \partial_{\nu} c^{\rho}+2 \alpha b^{\nu} \partial_{\nu} c^{\rho}=0, \tag{13}\\
& g^{\mu \nu} \partial_{\mu} \partial_{\nu} \bar{c}_{\rho}+2 \alpha b^{\nu} \partial_{\nu} \bar{c}_{\rho}=0 \tag{14}
\end{align*}
$$

in the same notation as in Ref. 1). The covariant derivative of (11) becomes

$$
\begin{equation*}
g^{\mu \nu} \partial_{\mu} \partial_{\nu} b_{\rho}+2 \alpha b^{\nu} \partial_{\nu} b_{\rho}=0 \tag{15}
\end{equation*}
$$

The BRS current $J_{b}{ }^{\mu}$ and the F-P ghost one $J_{c}{ }^{\mu}$ remain unchanged. It is natural that they are independent of α.

The asymptotic-field Lagrangian density $\mathcal{L}^{\text {asym }}$ acquires a term $-\alpha \beta^{\rho} \beta_{\rho}$, and the asymptotic-field equations become

$$
\begin{align*}
& \square \varphi_{\mu \nu}-(1-\alpha)\left(\partial_{\mu} \beta_{\nu}+\partial_{\nu} \beta_{\mu}\right)=0 \tag{16}\\
& \partial^{\mu} \varphi_{\mu \nu}-\frac{1}{2} \partial_{\nu} \varphi_{\mu}^{\mu}+\alpha \beta_{\nu}=0 \tag{17}\\
& \square \beta_{\rho}=0, \square r^{\rho}=0, \square \bar{r}_{\rho}=0 \tag{18}
\end{align*}
$$

The four-dimensional commutation relations are simply obtained from those in the Landau gauge ${ }^{1)}$ by replacing $E(x-y)$ by $\left.(1-\alpha) E(x-y),{ }^{6}\right)$ just as in quantum electrodynamics. Then the proof of the unitarity of the physical S-matrix remains unchanged.

Thus our formalism based on $\boldsymbol{\delta}$ is much simpler than the one based on δ^{\prime}.

It was quite beneficial to the present
author that he could communicate with the authors of Refs. 3) and 4) prior to making their preprints.

1) N. Nakanishi, Prog. Theor. Phys. 59 (1978), 972. See also N. Nakanishi, preprint RIMS-240.
2) T. Kugo and I. Ojima, preprint KUNS-420.
3) K. Nishijima and M. Okawa, preprint (Tokyo Univ.) UT-301.
4) T. Kugo and I. Ojima, in preparation.
5) R. Delbourgo and M. R. Medrano, Nucl. Phys. B110 (1976), 476. K. S. Stelle, Phys. Rev. D16 (1977), 953.
6) T. Kimura, Prog. Theor. Phys. 55 (1976), 1259.
