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R.EMA.RKGON THE KIJRMOI’O-SIVASHINSKY EQUATION

Basil Nicolaenko and Eruno Scheurer+
Center for Nonlinear Studies, MS B258

Los Alaams National Laboratory
Los Alamos, NM 87545

We report here a joint work in progress on the Kuramoto-Sivashinsky

equation, The question we address is the analytical study of the followiug

fourth order nonlinear evolution equation:

(0.1) ~ + A2U + &I + $IVU12 = O .

This equation has been obtained by Sivashinsky [8] in the context of

combustion and independently by Kuramoto [3] in the context of reaction

diffusion-systems . Both were motivated by (nonlinear) stability of

traveling waves, Numerical calculations have been done on this equation:

we should mention the work of Michelson-Sivashinsky [6], Aimar [2],

Manneville [5], and Hyman [7], All the results seem to indicate a

“chaotic” behavior of the solution. Therefore, the analytical study is of

interest In at~alogy with the Burger’s and Navit?r-Stokes equations. Here ke

give some existence and uniqueness results for equation {0,1), in space

dimension one ($1), and we alao study a fractional step method o~ rlumcric~l

resolution (S2). In a forthcoming joiut paper with R, Temarn, we will study

the asymptotic behavior, as t + + m, Of the solution of (0.1) Mild giv(’ an

estimate on the number of “determining modes” (ace [9]),
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$1. Existence and Un~~eness in Space Dimension One.

We are considering the f~llowing initial-value Froblem (for O < T < ‘m)

(1.1) aU+A+A IIau 2= o
at 8X4 ~x2 + + G

in [0,1] x [O,T]

(1.2) u(o) = 8

with periodic boundary conditions (the unit interval can be therefore

identified with the one dimensional torus). The case of the boundary

c~nditions :

(1.3) au & o
Ex = ~x3 =

on x = O and x = 1

could be handled in the same way, Rewriting the problem (1,1) as tit)

integral equation:

t
u(t) = S(t)o + $ J S(t-s)

o

_8’4, _al
where S(t) denote the semigroup associated to wc etlsily ot}~airl

8%4 axz’
local in iime existence and uniqueness results, It is sufficient to ~j)})]y

on u in order to get ●x{stence on [O,T] (instead of (O,TJ, ‘I’j, < T),

Indeed we wi!l prove (11*11 is the usual Lz norm):

Theorem 1, Lrt O ~atisfy
Jo ~ ,2

, ,0<k<2, Then , for hny luolut ion of’-- .. . ....”.. -,. =
8X



(1.1), (1.2), one has:

(1.4) SUP ll~~(t)ll , ? ll-(t)ll’ dt < Cste ,
o<t<T ax o.—

where O < k ~ 2, the constant depends only on 8 and T and U s u(x,t) -

Corollary 1. Under the hypothesis of Theorem 1, the problem (1.1), (1.2)

admits a unique solution u such that: U 6 L2(0,T;H4) C Lm(0,T;H2),

~ & L2(0,T;L2). (Here H2 is the Sobolev’s space of functions u such that

Proof of Theorem 1.~. .——

If the apace dimension i~ one, we make the following remark. Set

au
v% then v aatisfita a “Burger’s like”

G’
equation:

.
8411

In othrr words, we multiply (1.1) by -—-I ●fter integrating by ~arts we
8x2’

get :

(1,6) $: ll&(t)H2 + ll~:(t)ilz - IIf+(t)llz = o
8x 8X

identity reflrctu the faci
84U

thfi~, in (1.1) or (?,3), the term --~ (renpm
8X
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Q+)- sink (resp. source) of ener~y. We now distinguish two cases.
ax

a) The . ink term is dominant. Jn other wo~’ds, by Poincar6’s inequality:

(1.7) II ‘)}(t)112~A1 II q(t)llz
ax ax

a2u ,
where Al is the constant of Poincar6 (notice that — 4J O mean value).

ax2
From (1.6) and (1.7) we conclude, by Gronwall’s lemma:

(1,8) sup H!&(t)ll , _fT llfyt)ll* dt < C(ll!yll)
o<t<T o ax——

where the bound is uniform in T.

b) The sink term is not dominant. We use the interpolation inequality

and a~ain we obtain, from (1.6) and Gronwa:.1’s lemma, the bound (1.8), But

now the constant depends on T,

Comin8 back to (1.1), we note that ~(t.) s J; u(x,t) dx natisfy:

therefore U(x,t) = u(x,t) - ~(t.) satisfq:

4 2
(1.11) #u + ~-$ + 8-.+ *

8x 8X
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where now, ~: U(x,t) dx= O. Multiplying (1.11) by U and

get :

[1.12) #+ Hu(t)J 12+ I

integrating, we

$(t)//a=H#jt)112 - ‘. f-
1 au2udx
o &l .

ax

The first term in the right hand side of (1.12) is bounded using an

inequality similar to (1.9). For the second term we use Holder inequality:

(1.13)
* au2JJd Udx:ll $jt)ll Hg(t)llL4 Hu(t)llL4 .

If the space

interpolation

dimension is one, by the Sobolev imbedding theorem and

(see for instance [1], [4]), we know that:

1

(1.14) [H2, L2]Z = Hz L4

8

~

(1.15) [H2, L2]2 = H4 .

8

Using the norm inequalities associated with (1.]4), (1,15) we deduce

finally from (1.13):

92
u~x ~ ll~(t)ll {Ccllwll 2 + cll~(t)ll?(1,16)

forc>O small, ‘I%nnks to (1,8), we can control ll~(t)!l = ll~(t)!l S

RUP ll~(t)ll, and obtain from (1,12) and (1.16):
()<t <T
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(1.17) # -&llU(t) 112 + C~ll~(t)112~C~”llU(t)l~2 .
ax

By Gro~wall’s lemma, we get:

T
(1.18) sup I Iu(t) -U(t)ll ,J I

O<t<T o-.

2
%#tjllzdt< C(II19-3[1 , I gll).

T

The remaining needed estimates are proved by multiplying (1.1) by

after integration h~? parts we get:

(1.19) 4: IIq(t)
ax

The right hand side is

12+ ll~:(tmz = 1 +(t) I12
ax ax

bounded using (1.8),

following version of Poincard’s inequality I

We concltde then:

4
(1.20) sup IIfyt)ll , fT ll~(t)llz

o<t<T ax o ax..-

This completes the proof of (1.4).

the H61der i~jequality and the
3

a~(t)ll,
.3X

,a2s
I—Il.
ax2

cl

52, A Fractional Step Meihod.——-—— . .

It is natural to decompose equation (1.1) in two parts corresponding

to the nonlinear term and the linear terms. Precisely, we can split. (1.1)

in the following way:

(2,1) $3-q+41~
ax



7

(2.2) *+4+2+=0 .

ax ax

According to (2.1), (2.2) we define the following scheme. For N given

lz;ge set ~ = $ n
and u =u(n~), O<n <N. For Un

n+ 1
—- given (u” = 8) u is

obtained via:

(2.3)
U*+S

-T~+y#p in 10,1]
ax2

~4u*+l
(2.4) Un++ + ~ + z a2un+1 ~n+#7: in [0,1] .

axf$ ax2

A convenient equivalent form of (2.4) is:

a2(2.5) Un+l + ~(..—
2 n+]

+l)u -
ax2

We still suppose periodic boundary

a2un+$
-— and integrating by parts,

ax2

conditions , From (2.3), multiplying by

we get:

Similarly fr-$n (2.5) we get:

*+1 au*+* n+ 1 sun++
(2.7) (1 - 2T)II$!--I12 - IIW112 + 1[~

-T112 ~

a2
r!’1

+2Tll(-fi+l)*ll =0.
8X



Therefore, combining (2.6) and (2.7):

n+ 1
(2.8> @&J2~ (1 - 2T)-1 @12 .

Consequently, for t small enough:

(2.9)

(2.10)
au

n+ 1

l—ax

.
>e.itAZl~ . k to (2.3), (2.4) we can find bounds, as in ~1, for llun+~ll,

azun+l

Ilu ‘+111,II L1l. Then, thanks to the msximum principle we can estimate

m
inL,u

n+%
an;x~; as a consequence we can pass to the limit in the non-

linearity So are the main estimates in order to prove stability and

convergence results for the sch~’me defined by (2.3) - (2.4). Details will

be given elsewhere.
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