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REMARKS ON THE LIFESPAN

OF THE SOLUTIONS TO SOME MODELS

OF INCOMPRESSIBLE FLUID MECHANICS

RAPHAËL DANCHIN

(Communicated by Walter Craig)

Abstract. We give lower bounds for the lifespan of a solution to the inviscid
Boussinesq system. In dimension two, we point out that it tends to infinity
when the initial (relative) temperature tends to zero. This is, to the best of
our knowledge, the first result of this kind for the inviscid Boussinesq system.
In passing, we provide continuation criteria (of independent interest) in the
N-dimensional case. In the second part of the paper, our method is adapted
to handle the axisymmetric incompressible Euler equations with swirl.

Introduction

The evolution of the velocity u = u(t, x) and pressure P = P (t, x) fields of a
perfect homogeneous incompressible fluid is governed by the following Euler equa-
tions:

(0.1)

{
∂tu+ u · ∇u+∇P = 0,

div u = 0.

There is a huge amount of literature concerning the well-posedness issue for
Euler equations. Roughly, they may be solved locally in time in any reasonable
Banach space embedded in the set C0,1 of bounded Lipschitz functions (see e.g.
[1, 4, 6, 12, 13, 17, 19, 22]).

In the two-dimensional case, it is well known that Euler equations are globally
well-posed for sufficiently smooth initial data. This noticeable fact relies on the
conservation of the vorticity ω := ∂1u

2 − ∂2u
1 along the flow of the velocity field

and has been first proved rigorously in the pioneering works by W. Wolibner [20]
and V. Yudovich [21].

This conservation property is no longer true, however, in more physically relevant
contexts such as

(1) the three-dimensional setting for (0.1),
(2) nonhomogeneous incompressible perfect fluids,
(3) inviscid fluids subjected to a buoyancy force which is advected by the ve-

locity fluid (the so-called inviscid Boussinesq system below).

As a consequence, the problem of global existence for general (even smooth or
small) data is still open for the above three cases.
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In recent work [9], it has been shown that for slightly nonhomogeneous two-
dimensional incompressible fluids, the lifespan tends to infinity when the nonhomo-
geneity tends to zero. The present paper is mainly dedicated to the study of the
lifespan for the first and third items.

More precisely, in the first section of the paper, we shall consider the inviscid
Boussinesq system:

(0.2)

⎧⎪⎨⎪⎩
∂tθ + u · ∇θ = 0,

∂tu+ u · ∇u+∇P = θeN ,

div u = 0.

Here the relative temperature θ = θ(t, x) is a real-valued function,1 and eN stands
for the unit vertical vector.

As for the standard incompressible Euler equations, any functional space embed-
ded in C0,1 is a good candidate for the study of the well-posedness issue for (0.2).
This stems from the fact that System (0.2) is a coupling between transport equa-
tions. Hence preserving the initial regularity requires the velocity field to be at least
locally Lipschitz with respect to the space variable. By arguing as in [1, Chap. 7],
one may show that, indeed, System (0.2) is locally well-posed in Bs

p,q whenever Bs
p,q

is embedded in C0,1 or, in other words, for any (s, p, q) ∈ R× [1,+∞]2 satisfying

(0.3) s > 1 +
N

p
or s = 1 +

N

p
and q = 1 .

As a by-product of estimates for transport equations, we shall get various contin-
uation criteria which generalize those of [11] and of [16]. We shall finally establish
lower bounds for the lifespan of the solutions to (0.2) which show that in the
two-dimensional case and for small initial temperature, the solution tends to be
global-in-time.

As pointed out in many works (see e.g. [11]), there is a formal similarity between
the two-dimensional Boussinesq system and general axisymmetric solutions to the
three-dimensional Euler system – the so-called axisymmetric solutions with swirl.
In the second part of this paper, we adapt the method of the first part so as to
establish new lower bounds for the lifespan to those solutions in the case where the
swirl is small. In particular, we find out that the solution tends to be global if the
swirl goes to zero.

In the Appendix, we briefly recall the definition and a few basic properties of
Besov space and prove a commutator estimate.

Before going further into the description of our results, let us introduce some
notation.

• Throughout the paper, C stands for a harmless “constant”, the meaning of
which depends on the context.

• The vorticity ω associated to a vector field u over RN is the matrix-valued
function with entries

ωij := ∂ju
i − ∂iu

j .

If N = 2, then the vorticity is identified with the scalar function ω :=
∂1u

2 − ∂2u
1 and if N = 3, with the vector field ∇× u.

1It need not be nonnegative as it designates the discrepancy to some reference temperature.
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• For every Banach space X and interval I of R, we denote by C(I;X) the set
of continuous functions on I with values in X. If X has predual X∗, then
we denote by Cw(I;X) the set of bounded measurable functions f : I → X
such that for any φ ∈ X∗, the function t �→ 〈f(t), φ〉X×X∗ is continuous
over I.

1. The inviscid Boussinesq system

This section is devoted to the well-posedness issue for the inviscid Boussinesq
system (0.2). We first establish a local-in-time existence result and continuation
criteria in the spirit of those for the incompressible Euler equation. Next, we provide
a new lower bound for the lifespan. Roughly, we establish that if θ0 is of order ε,
then the lifespan is at least of order log | log ε|.

1.1. Well-posedness and continuation criteria. The present subsection is de-
voted to the proof of the following result.

Theorem 1.1. Let (s, p, q) ∈ R × [1,+∞]2 satisfy (0.3). Assume that u0 (with
div u0 ≡ 0) and θ0 belong to Bs

p,q and that, in addition, (u0,∇θ0) ∈ Lr for some
r ∈ ]1,∞[ if p = ∞. Then (0.2) admits a unique local-in-time solution (θ, u,∇P )
in Cw(]−T, T [;Bs

p,∞) if q = ∞ and in C(]− T, T [;Bs
p,q) if q < ∞. Besides, ∇θ and

u are in C(]− T, T [;Lr) if (u0,∇θ0) ∈ Lr.
Furthermore, the solution may be continued beyond 2 T whenever one of the

following three conditions is satisfied:

i)

∫ T

0

‖∇u‖L∞ dt < ∞;

ii)

∫ T

0

(
‖ω‖L∞ + ‖∇θ‖L∞

)
dt < ∞ and s>1 +N/p;

iii) N = 2,

∫ T

0

‖∇θ‖L∞ dt < ∞ and s>1 + 2/p.

Before proving this result, a few comments are in order.

1. If it is assumed that ω0 ∈ Lr instead of u0 ∈ Lr, then the vorticity of the
constructed solution is continuous in time with values in Lr.

2. In the two-dimensional case and in the Hölder spaces framework, the above
statement has been established in [7]. The critical Besov case (that is,
p = 1 + 2/p, p ∈ ]1,∞[) has been investigated in [16].

3. In [11], a continuation criterion involving the L∞ norm of the vorticity
only has been stated. However, as the first inequality after (7) in [11] fails
if m ≥ 2, we do not know whether that criterion is correct.

4. The first item has been proved recently in [16] in the two-dimensional case.
5. Let us finally mention that one may replace ‖ω‖L∞ with ‖ω‖Ḃ0

∞,∞∩Lr in

the second criterion.

Proof of Theorem 1.1. The proof of the local well-posedness in the Besov spaces
framework is a straightforward adaptation to that of the corresponding result for
the Euler system in Bs

p,q, and is thus omitted. The reader may refer to [1, Chap. 7]
for more details.

2For expository purposes, we just consider positive times.
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So let us go for the proof of the continuation criteria. Let us first assume that 1 <
p < ∞. In this case, the Marcinkiewicz theorem for Calderón-Zygmund operators
ensures that

(1.1) ‖∇u‖Lp ≤ C‖ω‖Lp .

Therefore, decomposing ω into low and high frequencies as follows:3

ω = Δ−1ω + (Id −Δ−1)ω,

and taking advantage of the remark that follows Proposition A.1 in the appendix,
we gather that

(1.2) ‖∇u‖Bs−1
p,q

≤ C‖ω‖Bs−1
p,q

.

Now, in dimension N the vorticity equation reads

∂tω+u ·∇ω+A(∇u, ω) = T∇(θeN )−∇(θeN ) with A(∇u, ω) := ω ·∇u+T∇u ·ω.
Hence applying Δj to the vorticity equation yields

∂tωj + u · ∇ωj = −ΔjA(∇u, ω) + Δj

(
T∇(θeN )−∇(θeN )

)
+ [u,Δj ] · ∇ω

with ωj := Δjω and θj := Δjθ. Therefore, because div u = 0,

(1.3) ‖ωj(t)‖Lp ≤ ‖ωj(0)‖Lp +

∫ t

0

‖∇θj‖Lp dτ

+

∫ t

0

‖ΔjA(∇u, ω)‖Lp dτ +

∫ t

0

‖[u,Δj ] · ∇ω‖Lp dτ.

Next, let us use (see the appendix) that

(1.4)
∥∥2j(s−1)‖[u,Δj ] · ∇ω‖Lp

∥∥
�q

� ‖∇u‖L∞‖ω‖Bs−1
p,q

whenever s > 0.

If s > 1 +N/p, then standard tame estimates (see e.g. [1], Chap. 2) imply that

‖A(∇u, ω)‖Bs−1
p,q

≤ C
(
‖ω‖L∞‖∇u‖Bs−1

p,q
+ ‖∇u‖L∞‖ω‖Bs−1

p,q

)
≤ C‖∇u‖L∞‖∇u‖Bs−1

p,q
.

The last inequality remains true in the limit case s = 1 + N/p and q = 1, a
consequence of the algebraic structure of A(∇u, ω) (see e.g. Inequality (52) in [9]).

Hence, multiplying (1.3) by 2j(s−1), taking the �q norm with respect to j and
taking advantage of (1.2) yields

(1.5) ‖ω(t)‖Bs−1
p,q

≤ ‖ω0‖Bs−1
p,q

+ C

∫ t

0

‖∇θ‖Bs−1
p,q

dτ + C

∫ t

0

‖∇u‖L∞‖ω‖Bs−1
p,q

dτ.

Next, in order to bound the Bs
p,q norm of θ, we use the fact that

∂tθj + u · ∇θj = [u,Δj ] · ∇θ,

whence

(1.6) ‖θj(t)‖Lp ≤ ‖θj(0)‖Lp +

∫ t

0

‖[u,Δj ] · ∇θ‖Lp dτ.

Given that, according to (a slight modification of) Lemma 2.100 of [1], we have

(1.7)
∥∥2js‖[u,Δj ] · ∇θ‖Lp

∥∥
�q

� ‖∇u‖L∞‖θ‖Bs
p,q

+ ‖∇θ‖L∞‖ω‖Bs−1
p,q

,

3The notation Δ−1 is defined in the appendix.
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we eventually get

(1.8) ‖θ(t)‖Bs
p,q

≤ ‖θ0‖Bs
p,q

+ C

∫ t

0

(
‖∇u‖L∞‖θ‖Bs

p,q
+ ‖∇θ‖L∞‖ω‖Bs−1

p,q

)
dτ.

Finally, from the equation for θ, we easily get

(1.9) ‖∇θ(t)‖L∞ ≤ ‖∇θ0‖L∞ +

∫ t

0

‖∇u‖L∞‖∇θ‖L∞ dτ.

So if ∇u is in L1([0, T [;L∞), then ∇θ is in L∞([0, T [×R
N ). Therefore, summing

up Inequalities (1.5) and (1.8) and using Gronwall’s lemma, we easily deduce that
‖ω‖Bs−1

p,r
and ‖θ‖Bs

p,r
are bounded on [0, T [. To complete the proof of the bounded-

ness of the solution in L∞([0, T [;Bs
p,r), we still have to bound u in L∞([0, T [;Lp).

For that, we use the fact that

(1.10) u(t) = u(0)−
∫ t

0

P(u · ∇u) dτ,

where P stands for the Leray projector over divergence-free vector fields. As it is
continuous over Lp (recall that 1 < p < ∞), we deduce that

(1.11) ‖u(t)‖Lp ≤ ‖u0‖Lp + C

∫ t

0

‖∇u‖L∞‖u‖Lp dτ.

Now, the standard continuation criterion for hyperbolic PDEs ensures that the
solution (θ, u) may be continued beyond T.

Let us now treat the case where s > 1 +N/p and

(1.12)

∫ T

0

(
‖ω‖L∞ + ‖∇θ‖L∞

)
dt < ∞.

We first bound ω and ∇θ in L∞([0, T [;Lp) by taking advantage of (1.1) and of
the vorticity and temperature equations. We get

‖ω(t)‖Lp ≤ ‖ω0‖Lp +

∫ t

0

‖∇θ‖Lp dτ + C

∫ t

0

‖ω‖Lp‖ω‖L∞ dτ,(1.13)

‖∇θ(t)‖Lp ≤ ‖∇θ0‖Lp + C

∫ t

0

‖∇θ‖L∞‖ω‖Lp dτ.(1.14)

Hence,

‖(ω,∇θ)(t)‖Lp ≤ ‖(ω0,∇θ0)‖Lp + C

∫ t

0

(1 + ‖(ω,∇θ)‖L∞)‖(ω,∇θ)‖Lp dτ.

So Gronwall’s lemma provides us with a bound for ω and ∇θ in L∞([0, T [;Lp).
Next, we use the following classical logarithmic interpolation inequality (see e.g.

[1]):

(1.15) ‖∇u‖L∞ � ‖ω‖Lp∩L∞ log
(
e+ ‖ω‖Bs−1

p,q

)
.

Plugging this inequality into (1.5) and (1.8) and summing, we get

‖ω(t)‖Bs−1
p,q

+ ‖θ(t)‖Bs
p,q

≤ ‖ω0‖Bs−1
p,q

+ ‖θ0‖Bs
p,q

+ C

∫ t

0

(
1 + ‖∇θ‖L∞ + ‖ω‖Lp∩L∞

)(
‖ω‖Bs−1

p,q
+ ‖θ‖Bs

p,q

)
log

(
e+ ‖ω‖Bs−1

p,q

)
dτ.
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So Osgood’s lemma implies that ‖ω‖Bs−1
p,r

and ‖θ‖Bs
p,r

are bounded on [0, T [. Bound-

ing ‖u‖Lp may be done by combining Inequalities (1.11) and (1.15). Hence the
solution (θ, u) may be continued beyond T.

Let us finally assume that N = 2 and that∫ T

0

‖∇θ‖L∞ dt < ∞.

Then Equation (1.16) gives

‖ω(t)‖L∞ ≤ ‖ω0‖L∞ +

∫ t

0

‖∂1θ‖L∞ dτ.

Hence ω ∈ L∞([0, T [×R
2) and the previous continuation criterion implies that the

solution (θ, u) may be continued beyond T.
Let us end the proof with a few comments concerning the cases p = 1,∞. If

p = ∞ and the solution also satisfies (∇θ, ω) ∈ L∞([0, T [;Lr) for some r ∈ ]1,∞[,
then arguing as for proving (1.2) yields

‖∇u‖Bs−1
∞,q∩Lr ≤ C‖ω‖Bs−1

∞,q∩Lr .

From the vorticity and temperature equations, we get

‖ω(t)‖Lr ≤ ‖ω0‖Lr + 2

∫ t

0

‖∇u‖L∞‖ω‖Lr dτ + 2

∫ t

0

‖∇θ‖Lr dτ,

‖∇θ(t)‖Lr ≤ ‖∇θ0‖Lr +

∫ t

0

‖∇u‖L∞‖∇θ‖Lr dτ.

So one may conclude that (1.5) and (1.8) hold true if the norm in Bs−1
∞,q is replaced

by the norm in Bs−1
∞,q ∩ Lr. In order to bound ‖u‖Bs

∞,q
, one may write that (using

Bernstein’s inequality to get the second line),

‖u(t)‖Bs
∞,q

� ‖Δ−1u(t)‖L∞ + ‖ω(t)‖Bs−1
∞,q

� ‖Δ−1u0‖L∞ + ‖Δ−1(u(t)− u0)‖Lr + ‖ω(t)‖Bs−1
∞,q

.

Now, according to (1.10), we have

‖u(t)− u0‖Lr ≤ C

∫ t

0

‖u‖Lr‖∇u‖L∞ dτ.

From this, it is easy to complete the proof.
Finally, if p = 1, then embedding ensures that ∇θ and u are in L∞([0, T [;Lr)

for some finite r, so that one may conclude as in the case p = ∞. �

1.2. Lower bounds for the lifespan of the solutions to (0.2). Let (θ0, u0)
satisfy the assumptions of Theorem 1.1. Then it is clear that (θε, uε,∇Πε) satisfies
(0.2) on [T−/ε, T+/ε] with initial data

θε0 = ε2θ0 and uε
0 = εu0

if and only if the triplet (θ, u,∇Π) defined by

θε(t, x) := ε2θ(εt, x), uε(t, x) := εu(εt, x) and Πε(t, x) := ε2Π(εt, x)

satisfies (0.2) on [T−, T+] with data (θ0, u0).
From this, we gather that for initial temperature and velocity of size ε2 and ε,

respectively, the lifespan is (at least) of order ε−1.
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The above result is, obviously, independent of the dimension. At the same time,
in the case θ0 ≡ 0 (corresponding to the incompressible Euler equation) global
existence holds true in dimension 2. In the case θ0 �≡ 0, the question of global
existence has remained unsolved, even in the two-dimensional case. We here want
to study whether, nevertheless, dimension 2 is somehow “better”. To answer this
question, we shall take advantage of the fact that the vorticity equation in dimension
2 has no stretching term: it reduces to

(1.16) ∂tω + u · ∇ω = ∂1θ.

Hence, taking advantage of the special a priori estimates for the transport equation
in Besov spaces with null regularity index (as discovered by M. Vishik in [19] and
by T. Hmidi and S. Keraani in [13]), one may write

(1.17) ‖ω(t)‖B0
∞,1

≤
(
‖ω0‖B0

∞,1
+

∫ t

0

‖∂1θ‖B0
∞,1

dτ

)(
1 + C

∫ t

0

‖∇u‖L∞ dτ

)
.

This will be the key to our result below.

Theorem 1.2. Assume that N = 2. Let (θ0, u0) be in Bs
p,q with (s, p, q) satisfying

(0.3). If p ∈ {1,+∞}, suppose in addition that (∇θ0, ω0) ∈ Lr for some 1 < r < ∞.
There exists a constant C depending only on r and such that (setting p = r if
p ∈ (1,+∞)) the lifespan T ∗ of (0.2) satisfies

T ∗ ≥ 1

C‖ω0‖B0
∞,1∩Lr

log

(
1 +

1

2
log

(
1 +

C‖ω0‖2B0
∞,1∩Lr

‖∇θ0‖B0
∞,1∩Lr

))
·

Proof. Let us first notice that, according to the continuation criteria derived in
Theorem 1.1, it suffices to show that if the solution is defined on [0, T [×R

n with
T ≤ T ∗ and T ∗ as above, then ω and ∇θ are bounded in L∞(0, T ;B0

∞,1 ∩ Lr).
Now, estimates for the transport equation in Besov spaces (see e.g. [1, Chap. 3])

yield

(1.18) ‖∇θ(t)‖B0
∞,1

≤ ‖∇θ0‖B0
∞,1

e
C

∫ t
0
‖∇u‖

B0
∞,1

dτ
.

Of course, standard Lr estimates for the transport equation imply that
(1.19)

‖ω(t)‖Lr ≤ ‖ω0‖Lr +

∫ t

0

‖∂1θ‖Lr and ‖∇θ(t)‖Lr ≤ ‖∇θ0‖Lre
∫ t
0
‖∇u‖L∞ dτ .

Let us finally notice that putting together embedding, Inequality (1.1) and the
remark that follows Proposition A.1, we have

‖∇u‖L∞ � ‖∇u‖B0
∞,1

� ‖ω‖B0
∞,1∩Lr .

Therefore, denoting

Ω(t) := ‖ω(t)‖B0
∞,1∩Lr and Θ(t) := ‖∇θ(t)‖B0

∞,1∩Lr

and taking advantage of (1.17), (1.18), (1.19), we conclude that

Θ(t) ≤ Θ0e
C

∫ t
0
Ω dτ ,

Ω(t) ≤
(
Ω0 +

∫ t

0

Θ dτ

)(
1 + C

∫ t

0

Ω dτ

)
.
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Now, plugging the inequality for Θ(t) into the inequality for Ω(t), we get

(1.20) Ω(t) ≤
(
Ω0 + tΘ0e

C
∫ t
0
Ω dτ

)(
1 + C

∫ t

0

Ω dτ

)
.

Let us assume for a while that

(1.21) TΘ0e
C

∫ T
0

Ω dτ ≤ Ω0.

Then (1.20) and Gronwall’s lemma imply that

(1.22) Ω(t) ≤ 2Ω0e
2CtΩ0 for all t ∈ [0, T ].

Therefore, for Condition (1.21) to be satisfied, it suffices that

Θ0T exp

(
e2CTΩ0 − 1

)
≤ Ω0;

that is to say,

(1.23) X exp(eX − 1) ≤ Y with X := 2CTΩ0 and Y =
2CΩ2

0

Θ0
·

Let us notice that

X ≤ eX − 1 ≤ exp(eX − 1)− 1 for any X ∈ R
+.

Hence Inequality (1.23) is satisfied provided that

exp
(
2(eX − 1)

)
≤ 1 + Y.

So we easily gather from a bootstrap argument that the lifespan T ∗ satisfies

T ∗ ≥ 1

2CΩ0
log

(
1 +

1

2
log

(
1 +

2CΩ2
0

Θ0

))
,

which is exactly the desired inequality. �

Remark 1.3. In the case where the solution is C1,r for some r ∈ (0, 1) (an as-
sumption which is not satisfied in the critical regularity case), one may first write
estimates for ‖ω‖L∞ and ‖ω‖Cr , and next use the classical logarithmic inequality
for bounding ‖∇u‖L∞ in terms of ‖ω‖L∞ and ‖ω‖Cr . This does not improve the
lower bound for the lifespan, though.

2. The axisymmetric incompressible Euler equations

We now consider the incompressible Euler equations (0.1). As recalled in the
introduction, Euler equations are globally well-posed in dimension 2. In dimension
d ≥ 3, the global well-posedness issue has remained unsolved unless some property
of symmetry is satisfied: it is known that axisymmetric or helicoidal without swirl
data generate global solutions (see e.g. [8] and the references therein for more
details).

In the general case, an easy scaling argument similar to that of the Boussinesq
system yields that for data of size ε, the lifespan is at least of order ε−1.

Here we want to focus on the axisymmetric solutions to Euler equations with
swirl, that is, on solutions u to (0.1) such that, in cylindrical coordinates,

(2.1) u(r, z) = ur(r, z)er + uθ(r, z)eθ + uz(r, z)ez.
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Recall that the corresponding vorticity reads ω(r, z) = ωr(r, z)er + ωθ(r, z)eθ +
ωz(r, z)ez with

ωr(r, z) = −∂zu
θer, ωθ(r, z) = ∂zu

r − ∂ru
z, ωz(r, z) =

1

r
∂r(ru

θ).

With this notation, axisymmetric solutions satisfy (see e.g. [4])

(2.2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D̃tu

r + ∂rΠ = r−1(uθ)2,

D̃tu
θ = −r−1uruθ,

D̃tu
z + ∂zΠ = 0,

∂r(ru
r) + ∂z(ru

z) = 0,

with D̃t := ∂t + ur∂r + uz∂z.

As pointed out in [11], there is a striking similarity between the two-dimensional
Boussinesq system (0.2) satisfied by (θ, ω) in the previous section, and the equations
satisfied by (uθ, ωθ) here. Indeed,{

D̃t(ru
θ) = 0,

D̃tω
θ − 1

ru
rωθ − 1

r∂z(u
θ)2 = 0,

whence, denoting Γ := (ruθ)2 and ζ := r−1ωθ, we have

(2.3) D̃tΓ = 0 and D̃tζ =
1

r4
∂zΓ.

Therefore, up to the singular coefficient 1/r4, the functions Γ = Γ(r, z) and ζ =
ζ(r, z) play the same role as the temperature and the vorticity, respectively, in the
2D Boussinesq system. Keeping in mind that data such that uθ

0 ≡ 0 generate global
solutions, it is natural to study whether having r−1ωθ

0 = O(1) and ruθ
0 = O(ε) gives

rise to a family of solutions with lifespan going to infinity when ε goes to 0.
For technical reasons, however, due to the singularity near the axis, we shall con-

sider the axisymmetric Euler equations in a smooth bounded axisymmetric domain
Ω of R3 such that, for some given 0 < r0 < R0,

(2.4) Ω ⊂
{
(x, y, z) ∈ R

3 : r0 <
√
x2 + y2 < R0

}
·

Let us first give a local well-posedness result for the Euler equation in a domain:

Theorem 2.1. Let (s, p, q) satisfy Condition (0.3). Let u0 be in Bs
p,q(Ω) with

div u0 = 0 and u0 tangent to the boundary of Ω. Then System (0.1) with slip
boundary conditions has a unique local solution u in Cw(] − T, T [;Bs

p,q(Ω)) (or in
C(]− T, T [;Bs

p,q(Ω)) if q < ∞).
If in addition u0 satisfies (2.1), then u satisfies (2.2).

Proof. This statement has been essentially proved by A. Dutrifoy in [10] except in
the critical case s = 1 + 3/p and r = 1. However, the critical case may be handled
by the same method4 as it relies on a priori estimates for transport equations which
are also true in this case.

The last part of the statement is a classical consequence of the uniqueness and
of the symmetry of the data u0. �

One can now state the main result of this part.

4Proving a continuation criterion involving the vorticity was the main purpose of Dutrifoy’s
paper, and this requires that s > 1 + 3/p. This is probably the reason why the statement in the
critical case is not given therein.
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Theorem 2.2. Let u0 be an axisymmetric divergence-free vector field in Bs
p,q(Ω)

with (s, p, q) satisfying (0.3) and Ω a bounded domain satisfying (2.4). Suppose in
addition that u0|∂Ω is tangent to the boundary of Ω. Then the lifespan T ∗ to the
solution of (0.1) satisfies

T ∗ ≥ 1

C‖ωθ
0‖B0

∞,1

log

(
1 +

1

2
log

(
1 +

C‖ωθ
0‖B0

∞,1

‖(uθ
0)

2‖B1
∞,1

))
for some constant C depending only on Ω.

Proof. It suffices to bound the norm of u in B1
∞,1 as it controls high norms (see

[10] and notice that B1
∞,1 embeds in C0,1). Let ũ := urer + uzez. Denote by ψ̃ the

solution given by Proposition A.4 to the elliptic equation{
−Δψ̃ = ωθeθ in Ω,

∂nψ̃ = 0 on ∂Ω,

∫
Ω

ψ̃ dx = 0.

Notice that

div ũ = 0 = div (∇∧ ψ̃) and that ∇∧ ũ = ωθeθ = ∇∧ (∇∧ ψ̃).

As, in addition, both ũ and ∇∧ ψ̃ have null circulation on the components of ∂Ω (a
consequence of the symmetry properties of those two functions and of the domain),
they coincide. Hence, Proposition A.4 ensures that

(2.5) ‖∇ũ‖B0
∞,1

≤ C‖ωθeθ‖B0
∞,1

.

This inequality will enable us to adapt to the axisymmetric Euler equations the
proof of lower bounds for the lifespan of solutions.

We proceed as follows. According to the work by A. Dutrifoy (see in particular
Prop. 6 and Cor. 5 in [10]) for the transport equation in a smooth bounded domain,
estimates in Besov spaces Bs

p,q(Ω) are the same as in the whole space case. From
this, one may deduce by following the method of [13] that in the particular case
s = 0, the estimates improve (as in (1.17)). So we get, bearing (2.3) in mind:

‖ζ(t)‖B0
∞,1

≤
(
‖ζ0‖B0

∞,1
+

∫ t

0

‖r−4∂zΓ‖B0
∞,1

dτ

)(
1 + C

∫ t

0

‖∇ũ‖L∞ dτ

)
.

General Dutrifoy’s estimates for the transport equation also imply that

‖Γ(t)‖B1
∞,1

≤ ‖Γ0‖B1
∞,1

exp

(
C

∫ t

0

‖∇ũ‖B0
∞,1

dτ

)
.

Now, the important observation is that 1/r4 is in C0,1(Ω) (for r ≥ r0 in Ω). Hence

‖r−4∂zΓ‖B0
∞,1

≤ C‖∂zΓ‖B0
∞,1

,

whence

‖ζ(t)‖B0
∞,1

≤
(
‖ζ0‖B0

∞,1
+ C

∫ t

0

‖∂zΓ‖B0
∞,1

dτ

)(
1 + C

∫ t

0

‖∇ũ‖L∞ dτ

)
.

Finally, according to (2.5) and classical embedding properties, we have

‖∇ũ‖L∞ � ‖∇ũ‖B0
∞,1

� ‖ωθeθ‖B0
∞,1

.

As ωθeθ = ζ reθ and, under our assumption on Ω, reθ is in C0,1, one may thus
conclude that

‖∇ũ‖L∞ � ‖ζ‖B0
∞,1

.
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From this point, one may proceed exactly as for the Boussinesq system; we deduce
the following lower bound for the lifespan of the solution:

T ∗ ≥ 1

C‖ζ0‖B0
∞,1

log

(
1 +

1

2
log

(
1 +

C‖ζ0‖B0
∞,1

‖Γ2
0‖B1

∞,1

))
·

Of course, owing to the shape of Ω, up to an irrelevant constant, one may replace
ζ0 with ωθ

0 and ruθ
0 with uθ

0, respectively. �

Remark 2.3. We believe Theorem 2.2 to be true in the case where Ω satisfying (2.4)
is unbounded. However, we refrained from giving the statement as we did not find
in the literature the counterpart of Theorem 2.1 and of Proposition A.4.

Let us emphasize however that unbounded domains have been considered in [2]
(Hölder spaces) and [14, 15] (weighted Sobolev spaces). By following Dutrifoy’s
approach, we do not see any obstruction to obtaining similar results in the Besov
space framework. This is only a matter of having suitable extension operators
available for the domain considered.

We also believe that Proposition A.4 may be extended to unbounded domains
provided we prescribe some condition at infinity: the inequality

(2.6) ‖∇ũ‖B0
∞,1∩Lr ≤ C‖ωθeθ‖B0

∞,1∩Lr

for any r ∈ ]1,+∞[ seems to be reasonable. However, as proving such inequalities
is not the point of this paper, we restricted ourselves to bounded domains.

Appendix A

In this appendix, we recall the definition and a few properties of nonhomogeneous
Besov spaces Bs

p,q, then prove a commutator estimate.
Let us first introduce a dyadic partition of unity with respect to the Fourier

variable (the so-called Littlewood-Paley decomposition): we fix a smooth radial
function χ supported in (say) the ball B(0, 4/3), equal to 1 in a neighborhood of
B(0, 3/4) and such that r �→ χ(r er) is nonincreasing over R+, and set ϕ(ξ) =
χ(ξ/2)− χ(ξ).

The dyadic blocks (Δj)j∈Z are defined by

Δj := 0 if j ≤ −2, Δ−1 := χ(D) and Δj := ϕ(2−jD) if j ≥ 0.

It may be easily checked that the identity u =
∑

j Δju holds true in the sense of
tempered distributions.

One can now define the Besov space Bs
p,q as the set of tempered distributions u

so that ‖u‖Bs
p,q

is finite, where

‖u‖Bs
p,q

:=

(∑
j

2qjs‖Δju‖qLp

) 1
q

if q < ∞ and ‖u‖Bs
p,∞ := sup

j

(
2js‖Δju‖Lp

)
.

Roughly speaking, the elements of Bs
p,q have “s derivatives in Lp”. For in-

stance, the Besov space Bs
2,2 coincides with the nonhomogeneous Sobolev space Hs

(for any s ∈ R), and Bs
∞,∞ coincides with the Hölder space Cs, if s ∈ R+ \ N.
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In this paper, we use freely the following properties for Besov spaces (see e.g. [1,
Chap. 2]):

Proposition A.1. Let (s, p, q) ∈ R× [1,+∞]2.

• The Besov space Bs
p,q is (continuously) embedded in the set C0,1 of Lipschitz

bounded functions if and only if Condition (0.3) is satisfied.
• The gradient operator maps Bs

p,q in Bs−1
p,q .

• More generally, if F : RN → R is a smooth homogeneous function of degree
m away from a neighborhood of the origin, then for all (p, q) ∈ [1,∞]2 and
s ∈ R, operator F (D) maps Bs

p,q in Bs−m
p,q .

Remark A.2. From the last property, given that the Biot-Savart operator B : ω �→
∇u is a homogeneous smooth multiplier of degree 0, we deduce that (Id −Δ−1)B
is a self-map on Bs

p,q for any s ∈ R and 1 ≤ p, q ≤ ∞. This implies Inequality (1.2).

The definition of Besov spaces may be extended by restriction to general domains
Ω of RN :

Definition A.3. Let Ω be a domain of RN , and (s, p, q) ∈ R× [1,+∞]2. We denote
by Bs

p,q(Ω) the set of distributions u over Ω which are the restriction (in the sense

of distributions) to some ũ in Bs
p,q(R

N ). The space Bs
p,q(Ω) is endowed with the

norm

‖u‖Bs
p,q(Ω) := inf ‖ũ‖Bs

p,q(R
N ),

where the infimum is taken over the set of ũ in Bs
p,q(R

N ) such that u coincides with
the restriction of ũ to Ω.

The following result will be needed in the proof of Inequality (2.5).

Proposition A.4. Let Ω be a smooth bounded domain of RN and ω be in B0
∞,1(Ω).

If in addition the mean value of ω on Ω is zero, then the Neumann equation{
−Δψ = ω in Ω,

∂nψ = 0 on ∂Ω,

∫
Ω

ψ dx = 0,

has a unique solution ψ in B2
∞,1(Ω) and we have

‖∇2ψ‖B0
∞,1(Ω) ≤ C‖ω‖B0

∞,1(Ω).

Proof. In [18, Th. 4.4], it has been proved that, for any s > −1, if ω ∈ Cs(Ω) :=
Bs

∞,∞(Ω) (with 0 mean value), then the above system has a unique solution ψ in

Cs+2(Ω) satisfying

‖∇2ψ‖Cs(Ω) ≤ C‖ω‖Cs(Ω).

So denoting T : ω �→ ∇2ψ, the result follows by interpolation : it is only a matter
of using the fact that B0

∞,1(Ω) = (C−1/2(Ω), C1/2(Ω))1/2,1. �

Let us now turn to the proof of Inequality (1.4). Let ũ := u − Δ−1u. We
decompose the commutator as follows:

(A.1) [u,Δj ] · ∇ω =

6∑
i=1

Ri
j
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with, using the summation convention over repeated indices,

R1
j := [Tũk ,Δj ]∂kω, R2

j := T∂kΔjωũ
k,

R3
j := −ΔjT∂kωũ

k, R4
j := ∂kR(ũk,Δjω),

R5
j := −∂kΔjR(ũk, ω), R6

j := [Δ−1ũ
k,Δj ]∂kω.

Above, T and R stand for the paraproduct and remainder operators, respectively,
which are defined as follows (after J.-M. Bony in [5]):

Tfg :=
∑
j

Sj−1fΔjg and R(f, g) :=
∑
j

∑
|j′−j|≤1

Δjf Δj′g with Sj :=
∑
j′<j

Δj .

Decomposition (A.1) is obtained after noticing that

(A.2) fg = Tfg + Tgf +R(f, g).

Let us now go to the proof of Inequality (1.4). In all that follows, (cj)j≥−1 stands
for a sequence such that ‖(cj)‖�q = 1.

From [1, Lemma 2.99], we get, for i ∈ {1, 6},
‖Ri

j‖Lp � cj2
−j(s−1)‖∇u‖L∞‖ω‖Bs−1

p,q
.

As regards R2
j , we write that

R2
j =

∑
j′≥j−1

Sj′−1∂kΔjωΔj′ ũ
k.

Note that F(Δjω) is supported in an annulus of size 2j . Hence Bernstein’s Inequal-
ity ensures that

‖R2
j‖Lp � 2j

∑
j′≥j−1

‖ω‖L∞‖Δj′ ũ‖Lp ,

whence
‖R2

j‖Lp � 2−j(s−1)‖ω‖L∞

∑
j′≥j−1

2(j−j′)s 2j
′s‖Δj′ ũ‖Lp ,

so that we get if s > 0,

‖R2
j‖Lp � cj2

−j(s−1)‖ω‖L∞‖ũ‖Bs
p,q

.

As for R3
j , standard continuity results for the paraproduct operator (see e.g. [1,

Chap. 2]) imply that

‖R3
j‖Lp � cj2

−j(s−1)‖ω‖L∞‖ũ‖Bs
p,q

.

For R4
j , one may write that

R4
j = ∂k

∑
|j′−j|≤2

Δj′ ũ
k Δj(Δj′−1+Δj′+Δj′+1)ω.

Hence, in view of Bernstein’s inequality,

‖R4
j‖Lp � 2j

∑
|j′−j|≤2

‖ω‖L∞‖Δj′ ũ‖Lp .

So we get

‖R4
j‖Lp � cj2

−j(s−1)‖ω‖L∞‖ũ‖Bs
p,q

.

Next, standard continuity results for the remainder operator yield if s > 0,

‖∂kR(ũk, ω)‖Bs−1
p,q

� ‖ω‖L∞‖ũ‖Bs
p,q

.
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Hence
‖R5

j‖Lp � cj2
−j(s−1)‖ω‖L∞‖ũ‖Bs

p,q
.

Finally, let us notice that the operator ω �→ (Id −Δ−1)u satisfies the hypothesis of
the last item of Proposition A.1 with m = −1; hence

‖ũ‖Bs
p,q

� ‖ω‖Bs−1
p,q

.

So putting all the above inequalities together completes the proof of (1.4).
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partielles non linéaires, Ann. Sci. École Norm. Sup., 14(4), pages 209–246 (1981). MR631751
(84h:35177)

6. J.-Y. Chemin: Fluides parfaits incompressibles, Astérisque, 230 (1995). MR1340046
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