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REMARKS ON THE MEAN CONCENTRATION 
FUNCTION OF A RANDOM VARIABLE 

by 

TATsuo KAWATA* and ToMOICHI NAKATA** 

15-1-3-811 Sumiredaira, Hira tuka, Japan 254, 
Faculty of Liberal Arts, Chukyo University, 101 Yagoto, 

Showaku, Nagoya Japan 466 

(Received 4 July 1987) 

1. Introduction. 

Let F(x) and f(x) be respectively the distribution function and the characteristic 
function of a random variable X. The function 

(1.1) C(X, h)=C(h)=h- 1 [[,,{F(x+h)-F(x)} 2dx] 

=2 ;rr- 1 [r{sin2 Cht/2)/Cht2;2)}ltCt)1 2at], h>o 

is called the mean concentration function of X [5] and is a counterpart of Levy 
concentration function 

(1.2) Q(X, h)=Q(h)=max_oo<x«xi[F(x+h+O)-F(x-0)], h>O. 

C(h) is a nondecreasing function of h>O such that O~C(h)~l, as Q(h) is. They 
are related as 

(1.3) 1/2 Q2(h/2)~C(h)~Q(h), 

* Present address is 2-47 Koryocho Kitaku, Kobe, Japan 651-12. 
** Faculty of Liberal Arts, Chukyo University, 101 Yagoto, Showaku, Nagoya Japan 466. 
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or more precisely for the left hand side, 

(1.4) ((2-a)/2) Q2(ah)~C(h) 

for any O<a~l [1]. 
As to behaviors of C(h) as h - o+ and h - oo, it is known that 

(1. 5) limh--.o+C(h) = limr--.ooT-1 [~~ If (t) J 2dt J , 

and 

(1.6) 

As a matter of fact, (1. 5) is a particular case of the well known Wiener 
formula (see [5]) and (1.6) is no more than a property of Fejer integral of l/(t)J 2

• 

Let xs be the symmetrized random variable X-X' of X where X' is a random 
variable independent of X and with the same distribution F(x). Write by F 8(x) 
the distribution function of xs, namely, F(x)*(l-F(-x+O)) and write 

(1. 7) G8(x)=F8(x)-F8(-x), x>O, 

Write 

(1.8) M(<jJ, x)=x- 1 [~: <jJ(t)dt], x>O, 

for any function <jJ(t), t>O. The function 

(1. 9) M(lf(t)J2, x)=x- 1 [~: lf(t)l 2dt l 
2 
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plays some particular role in connection with the concentration function of sums 
of independent random variables [11], [3], [ 4], [10], [12], [13], [9], [2]. Denote also 

(1.10) 

when the limit on the right hand side exists, so that the quantity on the right 
hand side of (1. 5) is written by M(lf(t)l2). 

Define also 

(1.11) M(X, h)=M(h)=h-'E[min(IXI, h)J 

=h- 1 r1i lx/dF(x)+ f dF(x). 
J-h J(IXl<:h) 

(1.12) D 2(X, h)=D2(h)=h- 2E[min(IX/, h)J2 

=h-2 r1i x 2dF(x) + \ dF(x). J-1i J c1x1;;;h) 

These are important quantities as well. 
D(X, h) is a nonincreasing function of h?:;_O, D(h)=O for some h>O, if and 

only if F(x) is degenerate at x=O. 
The aim of this paper is to give basic properties of C(h) particulary in con

nection with M(/f(t)l2, l/h) or M(lf(t)l 2
). Remarks are given on the mean con

centration function of sums of independent random variables. Some known results 
are also included for completeness. 

2. Behavior of C(h) for small h. 

For the behavior of C(h) as h ~ 0+, we begin with the following simple fact. 

Theorem 1. (i) The following five statements are equivalent to each other: 
(a) h-'C(h) is bounded near the origin, 
( b) Iim1i ... o+h- 1C(h) exists, 
( c) f(t)EL2( -oo, oo ), 
( d) F(x) is absolutely continuous and its probability density p(x) belongs to 

£2(-oo, oo) or the same thing as p(x)EU(oo, oo) for any l~r~2, 
( e) G8(x)=O(x), as x ~ 0+. 

(ii) If either of the statments in (i) holds, then 
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(2.1) 

(a) q (c) q (e) has been given by Matsumoto [8]. We shall give the proof 
of Theorem 1 for completeness. The proof is quite simple. But before doing so, 
we shall state lemmas which are known. (2.3) follows from (2.2). They will be used 
later. 

Lemma 1. 

(2.2) 

(2.3) l-C(h)=h-1E(min(IX8 I, h)) 

Lemma 2. For any r~O, [,, lxlrdF(x)<co is equivalent to [,, lxlrdF 8(x)<co. 

(2.2) is known ([5], p. 446). The second equality is immediate from the first 
relation by the integration by parts. The second relation of (2. 3) is also immediate 
from the second relation of (2.2). The authors think that Lemma 2 is also known. 

We now go back to Theorem 1. From (1.1), we have, for any A>O, 

h- 1C(h)~11:- 1 t {sin2 (ht/2)/(ht/2)2}if(t)l2dt 

which implies 

Since A>O is arbitrary, (a)¢ /(t)eL2(0, co) which is no more than /(t)eL2(-co, co). 
Hence (a)¢ (c). Suppose (c) is true. Divide both sides of the second relation of 
(1.1) by h and let h tend to o+. Then by the dominated convergence theorem, 
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we have (b) and (2.1) of (ii) at the same time. Thus (c) ¢ (b) and (c) ¢ (2.1). 
(b) ¢(a) is trivial. (c) ¢ (d) is well known. (e) ¢(a) is easily obtained from the 
first relation of (2.2). (a)¢ (e) is also simple to show, for G8(x) is nondecreasing 
and we see that from (2. 2) 

C(h)=h-1 lh G8(x)dx?;_h- 1 lh G8(x)dx?;_l/2 G8(h/2). 
Jo Jh12 

Thus the proof of Theorem 1 is complete. 
We mentioned in Section 1, (1.5) that C(h) ~ M(l/(t)i 2

) as h ~ 0. Now 
we shall give a result on the order of C(h)-M(l/(t)l 2

) approaching zero when 
h~o. 

We introduce the quantity 

(2.4) R(x)=x-1 ~~ IMCl/(t)l 2
, u)-M(l/(t)i 2)idu 

which obviously converges to zero as x ~ oo. 

We are going to show 

Theorem 2. There exists an absolute constant A such that 

(2.5) IC(h)-M(l/(t)i 2)I ~A[sup.x;;:1 1hR(x)] 112 , h>O. 

Proof. For any a> 0, we have 

C(h)-M(i/(t)l 2)=2 n-
1 r [1/(2 u/h)i2-M(if(t)l 2

)] (sinu/u)2du 

say. We note that 11/(2 u/h)l 2 -M(l/(t)l 2)I ~1, for l/(t)l 2 and M(l/(t)l 2
) are non

negative and not greater than 1. From this, we have 

(2.6) 
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Integration by parts applied to 11 gives us 

11=(2 sin2 a/r:a)a- 1 ~:· [!/(2 v/h)l 2-M(!/(t)l2)] dv 

-2 r:-1 ~~ udu(d(sin2 u/u2 )/du)u- 1 ~:
1 

[!/(2v/h)l 2-M(l/(t)l2)] dv 

~2/(r:a)+2 r:- 1 ~: uld(sin2u/u2)/dul !M(!/(t)l2, 2 u/h)-M(!f(t)l 2)idu. 

Since uld(sin2 u/u2)/dul ~4, for all u>O, the last one is not greater than 

(2. 7) 2/(r:a)+(8a/r:)R(2 ah- 1
). 

Now choose a=[supx;,;1;hR(x)]- 112. Since R(x)~l, a>l. Hence 2ah- 1 >h-1 and 

R(2 ah- 1 )~SUPx;,;2a·h R(x)~SUPx;>;l;h R(x). 

From (2. 7) we have 

This together with (2. 6) by the same selection of a, gives us 

!C(h)-M(!/(t)l2)! ;:::;12 r:- 1 [SUPn1;hR(x)]112. 

This proves the theorem. 
From this theorem, (1. 5) follows. The above proof, however, is an adaptation 

of a classical proof of Wiener formula ([5], p. 182). 

3. Behavor of C(h) for large h. 

As was mentioned in section 1, C(h) ~ 1 as h ~co. We here discuss the 
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behavior of C(h) when h ~ oo a little bit more. 
We shall begin with 

Theorem 3. (i) The following four statements are equivalent to each other: 

(a) l-C(h)=O(h- 1
), as h ~ oo, 

( b) limh_.ooh [1-C(h)] exists, 
( c) EIXI <oo, 

(d) \~ xdG8(x)<oo. 

(ii) If either statement in (i) holds, then 

(3 .1) 

Proof. From Lemma 1 (2.3), (a) c:> (d) is immediate. r xdG8(x)= r
00 

lxldF8(x) which is the right equality of (3.1), is obvious by the 

definition of G8(x) and then (d) is equivalent to roo lxldF8(x)<oo which is, in turn, 

equivalent to (c), because of Lemma 2. Hence (c) ¢::> (d). If (d) holds, then 

which converges to zero as h ~ oo. Therefore from Lemma 1 (2.3), h(l-C(h)) 

converges to r xdG8(x). Thus (d) ¢ (b) is proved. (b) ¢(a) is trivial. The proof 

of (i) is now complete. The proof of (ii) is involved in the above proof of (d) c:> 
(b). 

We here give a proposition, 

Proposition 1. If X is nondegenerate at the origin, then 1-C(h) cannot be 
o(h-1

) as h ~ oo. 

If l-C(h)=o(h-1
), then (b) holds and from (3.1), r lxldF8(x)=O, which implies 

that X is degenerate at the origin. 
We now take the quantity 

(3.2) l-M(lf(t)l 2
, x)=M(l- lf(t)l 2

, x), 

which plays a great deal as well as M(lf(t)j 2
, x). 

We here consider the behavior of (3.2) with x=h-1 when h ~ oo. As a 
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matter of fact there are some inequality relations between 1-M(lf(t)l 2
, h- 1

) and 
1-C(h) as we shall see in Corollary 1 of Theorem 6 in the following section. Let 
X be nondegenerate. As we know (see for instance [16]), there are positive con
stants o and C such that 

(3.3) lf(t)I ~l-Ct2 , for ltl <o. 

Using this, we readily have 

[llh 
M(l-lf(t)l2, h- 1)=h Jo (1-lf(t)l2)dt 

for h>u- 1
• Namely, for some constant C>O, 

(3.4) 

for h>o- 1
• 

On the other hand, we obtain 

Theorem 4. We have 

(3.5) 

for large h, if and only if EX2<00. 
We note that EX2 < oo is equivalent to 

(3.6) 

because of Lemma 2. 

Proof. Since lf(t)l 2 = r cos xtdG8(x), 

(3. 7) 
f 1/h ["" 

M(l- lf(t)l 2
, h-1)=h Jo (1- Jo cos xtdG8(x))dt 

8 



Remarks on the Mean Concentration Function of a Random Variable 

= r [1-(sin (xf h))f(xf h)JdG8(X) 

Noting that 

1-sin u/u-;;;Au2
, O<u~l, 

-;;;A, u>l, 

for an absolute constant A, we see, from (3. 7), that 

(3.8) 

Hence 

if (3. 5) holds. And then EX 2 < CX), 

Conversely suppose EX 2 < CX), Then (3. 6) holds and 

(3.9) 

Since 0<1-sin u/u~Bu2 , for O<u~l, 

~B, for u>l, 

for some absolute constant B, we have, from (3. 7) 

(3.10) 

(3.6) and (3.9) then imply (3.5) which completes the proof. 

4. Inequality relations between M(lfl(t)2
, h- 1

) and C(h) 

We begin with the following theorem. 
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Theorem 5. There exist two absolute constants A and B such that, for any 
h>O, 

(4.1) AC(h)~M(lf(t)J 2 , h- 1)~BC(h). 

Similar inequalites were obtained for the concentration function Q(h) by Esseen, 
from which ( 4 .1) readily follows in view of (1. 3). We give here a direct proof 
of (4.1) although it is no more than an adaptation of Esseen's, for the left inequa
lity of (4.1). 

Proof. Since sin2 (x/2)/(x/2)2 = L (1- ltl) e-itxdt, 

we have 

[X) {sin2 (x/2h)/(x/2h)2
} dF8(x)=h L~h (1-hltl) dt [X) e-tixdF8(x) 

=h r::h (l-hltl)lf(t)J2dt 

(4.2) =2M(Jf(t)J 2
, h- 1

). 

On the other hand 

which is, from (2. 2) and monotoness of G8(h ), not less than (2/ rr )2C(h ). Hence 
looking at (4.2), we have the left inequality of (4.1). 

The right inequality of (4.1) is almost obvious. Since 

(rr/2)2 sin2 (ht/2)/(ht/2)2 ~1, for Jtl ~h- 1 , 

\llh 
M(lf(t)J2, h- 1 )~(rr2/2) Jo [sin2 (ht/2)/(ht2/2)]Jf(t)J 2dt 

10 
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which completes the proof. 
( 4 .1) is of particular interest when h is small. For large h, we will have 

Theorem 6 below. 

Lemma 3. 

(4.3) 2 [1-C(h)]~D2(X8, h)~[l-C(h)]2 • 

Proof. From Lemma 1 (2.3), we have by Schwarz inequality, 

l-C(h)=h-1E(min(jX8 I, h));;;;_h- 1 [E(min(IXsl, h))2
]
12 

=D(X 8
, h), 

which proves the right inequality of (4.3). 
D 2(X 8

, h) is from (1.12), written by 

which becomes, by integration by parts 

=2 [1-C(h)J 

in view of the first equality of Lemma 1 (2. 2). This proves the left inequality 
of (4.3). 

Theorem 6. There exist absolute constants B> A> 0 such that 

(4.4) 

This was already proved in (3.8) and (3.10). (4.4) combines with Lemma 3 
to yield the following Corollary. 
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Corollary 1. There exist absolute constants A, B> 0 such that 

(4. 5) A [l-C(h)]2 ~M(l- lf(t)J 2
, h- 1)~B [1-C(h)J. 

We remark that the left inequality is of a best possible type in the sense that 
the left hand side can not be replaced by A[l-C(h)]", 0<a<2. Because if the left 
inequality in (4. 5) holds with A[l-C(h)]" in place of A[l-C(h)]2

, then by Theorem 
4 we have [l-C(h)]"=O(/z-2

) whenever EX 2 <co, from which l-C(h)=o(h- 1
). This 

contradicts Proposition 1. 

5. Characteristic function and mean concentration function. 

We know (3. 3) for the behavior of the characteristic function near the origin. 
We here give another form of it in connection with mean concentration. What 
we are going to show is the following 

Theorem 7. For all t>O, we have 

(5.1) 

If G8(x) is concave on (0, co), then we have 

(5.2) 

Corollary 2. For all t>O, we have 

\ .... 

(5.3) 1- lf(t)l2 ~rr2[l-C(rr/t)] 

and if G8(x) is concave on (0, co), then we have 

(5.4) l- lf(t)J 2 ~(1/4)[1-C(rr/t)]2 • 

Corollary 2 is immediate from Theorem 7 because of Lemma 3. We remark 
that (5 .1) is sharper than the right inequality of (4.4), for integrating the both 
side of (5.1) over (0, 1/h) and noting that for O<t<l/h, 
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we have the right inequality of (4.4). 

Proof of Theorem 7. The proof of (5 .1) is quite simple. Actually 

1-lf(t)i2= r (1-cos tx)dG8(x) 

=2 r sin2 (tx/2)dG 8(x) 

We shall now show the second statement. As above, 

~2 \"
1

t sin2 (tx/2) dG8(x)+ (1/4) \"' (1-cos tx)dG 8(x) Jo Jrr1t 

(5.5) 

+(1/4) \"
1

t cos txdG8(x)+(l/4)J, 
Jir;(2t) 

say, where 

f = - \'"' cos txdG8(x) 
Jir/(2t) 

= - .L:k'=1 cos xtdG8(x) ~
(2k+l)ir/(2t) 

(2k-l)ir/(2t) 

= - .L:k'=i (-l)k i: sin u dG 8((2k-l)n/(2t)+u/t) 

= L:k=1. a. 5, •• i: sin u d [G8((2k-l)n/(2t)+u/t) 

13 
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-G8((2k+ l)rr/(2t) +u/t)]. 

Since G8(x) is concave, [G8((2k-l)rr/(2t)+u/t)-G8((2k+l)rr/(2t)+u/t)] is for every 
odd integer k, nondecreasing as a function of 0 < u < rr and every term of the last 
series is nonnegative. Thus J is nonnegative. 

Therefore from (5. 5) 

-(1/4) r:
21

> dG
8
(X). 

Now 

(1/4) \rrlt dG8(x)-:?_(t/rr) 2 \rrlt x 2dG8(x) 
J~1c2t> J,,,1C2l> 

Putting this in the above, we have 

which completes the proof of (5. 2). 

6. Remarks on the mean concentration of sums of independent random 

variables 

Let 

(6.1) 

be mutually independent random variables and write Sn= .L:;~=1 Xk. 
For the Levy concentration function Q(Sn, h) of Sn, the following Kolmogorov 

Rogozin inequality is known [7], [14], [15] : 

(6.2) 

14 
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for any O<hk;i_h, k=l, 2, 3, ... , n and for some absolute constant A. (6.2) was 
also proved by Esseen [3], [ 4] by an elegant characteristic function method. Kesten 
[6] gave the essential sharpening of (6. 2) by using some combinatorial argument. 
By adopting the Kesten's idea, Miroshnikov and Rogozin [9] finally obtained the 
following inequality. 

(6.3) 

for O<hk;i_h, k=l, 2, 3, ... , n and for some absolute constant A. 
On the other hand Postnikova and Yudin [13] have shown 

(6.4) 

for 0<hk;i_2h and for some absolute constant A. Their proof depends on the 
following interesting lemma [2, lemma 2]. 

Lemma 4. Let a=miniEc-1i.1iJlf(t)I, <jJ*=arccos (a). 

If O;i_~?;i_<fa*/4 and E1>={tE[-h, h]; lf(t)l~cos9)}, 

Then 

(6.5) mE1>;i_(48 rph/<fa*)M(lf(t)l2, h), 

where mE1> is the Lebesgue measure of the set E1>. 
For C(Sn, h), Matsumoto [13] anounced that 

(6.6) 

for 0<hk;i_2h and for some absolute constant A. 
This inequality when (6.1) are independently and identically distributed, has 

been shown by Ananevskii [2]. The following lemma is included in the proof of 
his result. 

Lemma 5. There exists an absolute constant A such that for all h > 0 and 
any number r~l, 

(6. 7) 

15 
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Ananevskii proved (6. 7) with D(X 8
, rrh) in place of D(X 8

, h). It is, however not 
substantially different. 

We remark that once (6. 7) holds for any positive integer r, it does for any 
r~ 1. Because supposing (6. 7) holds for an positive integer n in place of r, then 
for any r with n<r<n+ 1, 

~AC(X, h)[n112D(X 8
, h)J- 1

• 

~2AC(X, h)[r112D(X8
, h)J- 1

• 

Using Lemma 5, we prove 

Theorem 8. Let O<hk~h, k=l, 2, 3, ... , n. Then there exists an absolute 
constant A such that 

(6.8) 

This is an analogue of (6. 3). Before going to prove this, we give a remark 
that the condition O<hk~h, k=l, 2, 3, ... , n can be replaced by O<hk~ph for 
any p~l, but in this case A must be replaced by pA, because C(Sn, h) is nonde
creasing for h. Another remark is that (6.6) follows from (6.8) because of Lemma 
3. 

Proof. The proof is basically along the idea of Esseen proving (6. 2). For 
k=l, 2, 3, ... , n, write 

We have 

In what follows, Al and A2 are absolute constants. By Theorem 5 we see 
that 
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which is, because of HOlder inequality, not greater than 

Because of Lemma 5, the last one is not greater than 

which proves the theorem. 
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