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Abstract: We revisit the “state-dependence” of the map that we proposed recently between

bulk operators in the interior of a large AdS black hole and operators in the boundary CFT. By

refining recent versions of the information paradox, we show that this feature is necessary for

the CFT to successfully describe local physics behind the horizon — not only for single-sided

black holes but even in the eternal black hole. We show that state-dependence is invisible to an

infalling observer who cannot differentiate these operators from those of ordinary quantum

effective field theory. Therefore the infalling observer does not observe any violations of

quantum mechanics. We successfully resolve a large class of potential ambiguities in our

construction. We analyze states where the CFT is entangled with another system and show

that the ER=EPR conjecture emerges from our construction in a natural and precise form.

We comment on the possible semi-classical origins of state-dependence.
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1 Introduction

Recent work by Mathur [1], Almheiri et al. [2, 3] and then by Marolf and Polchinski [4] has

sharpened the information paradox [5, 6] and highlighted some of the difficulties in analyzing

questions about local bulk physics in the AdS/CFT correspondence. Put briefly, these authors

argued that the CFT does not contain operators with the right properties to play the role of

local field operators behind the black hole horizon. Their arguments were phrased in terms of

various paradoxes, and they interpreted these apparent contradictions to mean that generic

high energy states in the CFT do not have a smooth interior; and even if they do, the CFT

cannot describe it meaningfully.

If correct, this conclusion would be a striking violation of effective field theory. A semi-

classical analysis performed by quantizing fluctuations about the classical black hole solution

would suggest that for a large black hole, quantum effects detectable within effective field

theory are confined to the neighbourhood of the singularity. However, the papers above

– 1 –



suggested that the range of quantum effects, visible to a low energy observer, may spread out

all the way to the horizon.

In previous work [7, 8, 9, 10], we analyzed these arguments in detail. We found that they

made two tacit assumptions. The first, which was important for the strong subadditivity

paradox of Mathur [1] and the first paper of Almheiri et al.[2], was that locality holds exactly

in quantum gravity. We showed how a precise version of black hole complementarity, where

the commutator of operators outside and inside the black hole vanishes within low point

correlators but is not exactly zero as an operator, allowed one to resolve this paradox. We

will review this resolution briefly below.

However, in [3] Almheiri et al. argued that even large black holes in AdS should contain

firewalls. To make this argument they had to make a second tacit assumption, which was

that local bulk observables like the metric are represented by fixed linear operators in the

CFT. More precisely, this is the idea that even in two different states one may use the same

CFT operator to represent the metric at a “given point”.

By identifying and discarding this assumption in [8, 9], we were able to resolve all the

paradoxes alluded to above. Furthermore, we were able to explicitly identify CFT observables

that were dual to local correlation functions in the black hole interior. This construction

allowed us to probe the geometry of the horizon and show that the horizon was smooth

— as predicted by effective field theory, and in contradiction with the firewall and fuzzball

proposals.

The operators in our construction are state-dependent. This means that they act correctly

about a given state, and in excitations produced on that state by performing low energy

experiments. If one moves far in the Hilbert space — even just by changing the microscopic

and not the macroscopic degrees of freedom — then one has to use a different operator to

represent the “same” local degrees of freedom.

Our resolution to the firewall paradox has encountered two kinds of objections. A tech-

nical point is that our construction relies on a notion of equilibrium. It was first noticed by

van Raamsdonk [11] that our equilibrium conditions were necessary but not sufficient; Harlow

[12] later elaborated on this point. This leads to a potential “ambiguity” in our construction

where, at times, we cannot definitively identify the right operators in the black hole interior.

The second is more fundamental. Is it acceptable at all, within quantum mechanics, to

use state-dependent bulk to boundary maps so that the metric at a “given point” in space

may be represented by different operators in different microstates and backgrounds?

This is the context for our paper. In this work we make the following advances.

1. In section 5, we revisit and sharpen the arguments of Almheiri et al. [3]. We believe

that this strongly suggests that there is no alternative to firewalls except for a state-

dependent construction of the black hole interior. In fact, we show in section 6 that

the paradoxes of [3] also arise for the eternal black hole. We show that it is necessary

to use state-dependent operators, which we construct explicitly, to rule out a scenario

where even the eternal black hole does not have a smooth interior.
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2. In section 8, we resolve a large class of ambiguities in our construction by refining our

notion of an equilibrium state, including all of those pointed out by van Raamsdonk

[11]. We point out difficulties with Harlow’s analysis that invalidate the attempt made

in [12] to accentuate these ambiguities.

3. We show how our analysis extends naturally to superpositions of states in section 7.

We reiterate and expand on the point, already made in [9, 8] that the infalling observer

does not observe any violations of quantum mechanics or the “Born rule”.

4. In section 9, we show how our construction extends naturally to entangled systems. This

leads to a new and interesting outcome: a precise version of the ER=EPR conjecture

[13] emerges automatically from our analysis. In particular our construction shows —

without any additional assumptions — why one should expect a geometric wormhole

in the thermofield double state, and a somewhat “elongated” wormhole in states with

less entanglement. Our analysis also shows why there is no geometric wormhole in a

generic entangled state of two CFTs, or when the CFT is entangled with a system of a

few qubits.1

We also initiate an investigation into the semi-classical origins of state-dependence in Ap-

pendix A. We show that local observables like the metric are well defined classical functions on

the phase space of canonical gravity. Ordinarily such functions would lift to state-independent

operators in the quantum theory. However, our analysis of state-dependence in the eternal

black hole suggests an interesting obstacle to this map: the inner product between states

in the CFT representing different geometries does not die off as fast as a naive analysis of

coherent states in canonical gravity would suggest. Instead it saturates at a nonperturba-

tively small but finite value. We present some evidence that it is this overcompleteness that

prevents the existence of state-independent operators behind the horizon.2

Apart from the new results mentioned above, we also present some material that we

hope will help to clarify some conceptual issues and be of pedagogical utility. For example,

in section 3 we present a discussion of relational observables in AdS quantum gravity. This

concept is important throughout this paper to understand the geometric properties of oper-

ators behind the horizon, but we believe that it may be of broader significance. This idea

has often been used in discussions of the subject (and was first described to us by Donald

Marolf) but we attempt to present a pedagogical and precise definition here.

We also present a derivation of the properties of operators behind the horizon from a

pedagogically new perspective in section 4. We consider the two point function of a massless

scalar field propagating in the geometry. By using the properties of this two point function,

when the two points are almost null to each other, we are able to derive the correct formula

1We limit our assertions to wormholes that can be probed geometrically using effective field theory. There-

fore we do not have any comment on the strong form of the ER=EPR conjecture, which posits that any

entanglement should be accompanied by a wormhole.
2A similar idea was earlier suggested by Motl [14].
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for the entanglement of modes behind and in front of the horizon. One concern about our

previous analysis [7] was that even though a black hole in a single CFT does not have a second

asymptotic region, we had to appeal to the analogy with the thermofield double, to derive

the properties of our operators behind the horizon. We now perform this derivation from a

purely local calculation.

We believe that the results of this paper present compelling evidence in favour of the

claim that there are no firewalls in generic states, and also that the map between bulk and

boundary operators is state-dependent behind the horizon.

The recent literature on the information paradox is extensive [15]. In particular, Erik

Verlinde and Herman Verlinde also reached the conclusion that state-dependence is required

to construct the black hole interior from a different perspective [16, 17]. We direct the reader

to [18] for a discussion of the relation between our approach and theirs. The effects of the

back-reaction of Hawking radiation were discussed in [19], and Nomura et al. also presented

another perspective in [20]. For a precursor of the firewall paradox, see [21] and for approaches

using complexity see [22].

2 Summary

In this section, we briefly summarize the contents of various sections and suggest different

paths that could be taken through the paper.

Reconstructing the bulk and state-dependence

Section 3 is partly devoted to clarifying some conceptual issues related to bulk to boundary

maps. We quickly review what it means for such a map to be state-independent or state-

dependent. We also point out that all existing methods of extracting bulk physics from the

boundary are state-dependent. Experts in the subject may wish to look only at 3.1.1 where

we define the relational observables that we use in the rest of the paper and at 3.2.1 where we

describe the state-dependence of prescriptions to relate geometric quantities to entanglement.

Need for operators behind the horizon

Section 4 is largely devoted to a detailed derivation of the fact that we require new modes

that can play the role of “right moving” excitations behind the horizon to describe the in-

terior of a black hole. We derive the two point function of these modes with modes outside

the horizon from a local calculation, thereby removing the need to make an analogy to the

thermofield double state and also sidestepping the trans-Planckian issues in Hawking’s origi-

nal computation. In this section, we also review the standard construction of local operators

outside the horizon. Experts may be interested in 4.2.2 where we describe a state-independent

construction of local operators outside the horizon in the mini-superspace approximation.

Either state-dependence or firewalls

The objective of section 5 is to try and show that we must accept one of two possibilities:
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either the black hole interior is mapped to the CFT by a state-dependent map, or generic mi-

crostates have firewalls. Our arguments here are extensions and refinements of the arguments

presented in [3, 4]. In particular, we strengthen the argument of [4] by bounding potential

errors in that calculation. We also rephrase the “counting argument” of [3] entirely within

the context of two-point correlation functions to remove potential loopholes. This section can

be skipped, at a first reading, by a reader who already accepts the validity of the arguments

of [3, 4].

State-dependence for the eternal black hole

In section 6 we show that these versions of the information paradox also appear in the

eternal black hole. Therefore it is inconsistent to adopt the position that the eternal black

hole in AdS has a smooth interior whereas the large single sided black hole does not. We

would urge the reader to consult [23] — where a concise version of these arguments has

already appeared — in conjunction with this section, which contains some additional details.

Since there is substantial evidence that the interior of the eternal black hole is smooth, this

provides strong support for state-dependence behind the black hole horizon.

Definition of mirror operators; consistency with superposition principle

In section 7, we review the state-dependent construction of the black hole interior that was

first presented in [9, 8]. Experts may be interested in 7.5 where we check the linearity of this

map for superpositions of a small number of states. In 7.6 we construct the interior of the

eternal black hole. This construction is of interest since it provides some insight into state-

dependence as arising from the “fat tail” of the inner product between different microstates

of a black hole.

Detecting unitaries behind the horizon

In section 8, we show how to remove some of the ambiguities in our definition of equilibrium.

This section will be of interest to experts. We point out that by using the CFT Hamiltonian,

we can detect excitations behind the horizon in states that we might otherwise have classified

as being in equilibrium. We also point out, in some detail, that the effort made in [12] to

sharpen this ambiguity by considering a new class of excitations is based on an erroneous

analysis of local operators in the eternal black hole. While, for this reason, the analysis of

[12] does not have direct physical significance, it does point to an interesting new class of

excited states that we discuss in some detail.

Entangled systems and relation to ER=EPR

In section 9, we extend our construction to account for cases where the CFT is entangled

with another system. The equations that describe modes in the interior do not change at all.

The only new element that need to introduce is that the “little Hilbert space” of excitations

about a base state may get enlarged since we can also act with operators in the other system.

Surprisingly we show that a precise version of the ER=EPR conjecture emerges automatically

from our analysis. We are able to show that when two entangled CFTs are in the thermofield
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state the modes observed by the right infalling observer inside the black hole are the same

as those observed by the left observer outside. However, when the CFTs are entangled in a

generic manner this is no longer true.

We also consider cases where the CFT is entangled with a small system — say a collection

of qubits. Our analysis of this setup, together with our verification of linearity in section 7

establishes that the infalling observer cannot detect any departures from ordinary linear

quantum mechanics.

3 Generalities: State-dependent vs state-independent operators

Since this paper focuses on state-dependent bulk-boundary maps, it is useful to first clarify

the meaning of state-dependence and, conversely, what we would require of a putative “state-

independent” operator. Since this issue has been the cause of significant confusion — some

of which has arisen because of the use of imprecise terminology — we have tried to make this

section as precise and detailed as possible.

A brief summary of this section is as follows. We define state-dependence. We point out

that state-dependent bulk-boundary maps are already common in the AdS/CFT literature.

Finally we explain the origin of the naive expectation that the bulk and boundary are related

in a state-independent manner, and also indicate why this intuition fails.

Apart from the pedagogical definitions, we also pay some attention to the techniques of

extracting bulk physics using entanglement entropy. These are all state-dependent since en-

tanglement entropy does not correspond to a linear operator on the boundary. This includes,

for example, the well known Ryu-Takayanagi relation [24] between the entanglement entropy

of a region on the boundary and the corresponding area of an extremal surface in the bulk.

As we will emphasize repeatedly in this paper, as a result of very robust statistical properties

of the Hilbert space of the CFT at large N ,3 it is perfectly natural for such a state-dependent

formula to emerge within effective field theory, and its use does not lead to any violation of

quantum mechanics.

While the use of state-dependent operators may be common in AdS/CFT, from a broader

viewpoint it is true that this is a rather special situation in physics. So it would be incorrect

to go to the other extreme and dismiss state-dependence as mundane or unremarkable.

In this section, we point out that based on intuition from canonical gravity, one may have

naively expected that the is some overarching linear operator in the CFT that includes, in

various limits, all these state-dependent prescriptions. If one were to obtain gravity through

phase space quantization, then one may naively expect that many reasonable functions on the

phase space of gravity — such as the metric at a point — would lift to operators. We show

why this naive intuition runs into difficulty in the context of AdS/CFT. We complete this

analysis in greater detail in Appendix A. The semi-classical origins of state-dependence that

3In this paper we adopt notation that is consistent with [8, 9]. So N is proportional to the central charge

of the CFT. In the commonly considered case of the maximally supersymmetric SU(N) Yang Mills theory, we

would have N ∝ N2.
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we outline in this section and in the Appendix are, we believe, an important and interesting

subject of study.

In this section, and later in the paper we will often speak of CFT operators that also

have a dual geometric interpretation. To avoid confusion, we adopt the following notational

convention.

Notation: A CFT operator is denoted with a bold-symbol; for example an operator in the

CFT corresponding to the bulk metric would be denoted by gµν , as opposed to the value of

the semi-classical metric for a geometry gµν , which is written in ordinary font.

3.1 State-independent operators

We consider an AdS/CFT duality, where we expect a number of “effective fields” to propagate

in the bulk. One of these is the metric gµν but in general there will be other fields, which

can include scalars but also fields of higher spin. We will collectively denote these fields by

φ. We then have the following definition.

Definition of a state-independent bulk-boundary map

We will say that there is a state-independent map between the bulk and the boundary

if there exist CFT operators gµν(~x) and φ(~x) parameterized by d + 1 real numbers, which

we denote by ~x, so that in all CFT states that are expected to be dual to a semi-classical

geometry, which we denote by |Ψ〉, the CFT correlators involving both the metric and other

light fields

C(~x1, . . . ~xm+p) = 〈Ψ|gµ1ν1(~x1) . . . gµmνm(~xm)φ(~xm+1) . . .φ(~xm+p)|Ψ〉, (3.1)

have the right properties to be interpreted as “effective field theory correlators”.

This definition has many parts that we unpack below, where we explain what it means

for a state to be dual to a semi-classical geometry, and what one expects from effective field

theory.

An immediate issue — but one that does not have significant physical ramifications — is

that the bulk theory has diffeomorphism invariance. The d+ 1 real numbers above play the

role of coordinates in the bulk. Given any valid diffeomorphism, ~x→ ξ(~x), the distinct CFT

operators φ(ξ−1(~x)) give an equally valid bulk to boundary map. So we must always discuss

equivalence classes of bulk-boundary maps. Maps that are related by diffeomorphisms belong

to the same equivalence class. Later in this section, we also describe various physical choices

of gauge that help to remove this redundancy, and pick a preferred element of the equivalence

class. We now turn to other aspects of the definition above.

Semi-classical States

We now explain what we mean by semi-classical states in the definition above. In the

AdS/CFT duality, we often identify certain states with dual bulk geometries. These maps
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have been developed as a result of various calculations. Schematically, we may represent this

process of identifying a metric dual to a state by

|Ψg〉 ↔ gµν(~x). (3.2)

Two examples may help in elucidating this concept. Consider the vacuum of the CFT,

|0〉. In this case, the expectation is that

|0〉 ↔ gadsµν ,

where the metric on the right hand side is the metric of empty global AdS.

In this paper, we will be particularly interested in a second example of such maps: a

generic state at high energies in the CFT is believed to be dual to a large black hole in the

bulk.

Consider a set of energy eigenstates centered around a high energy E0 ≫ N , and with a

width ∆ ≪ N . The set of all energy eigenstates in this range is called

RE0 ≡ {|Ei〉 : E0 −∆ ≤ Ei ≤ E0 +∆}.

We denote the dimension of this space by DE0 . By taking all linear combinations of these

states, we get a subspace of the Hilbert space of the CFT

|Ψ〉 =
∑

αi|Ei〉, |Ei〉 ∈ RE0 . (3.3)

We assume above (and whenever we use αi to take superpositions of states) that they are

chosen so that the state is correctly normalized. We can place an additional restriction on

|Ψ〉 above that it has vanishing SO(d) and R-charges.

Next, we consider the set of unitary matrices that act entirely within this subspace. This

is a very large unitary group U(DE0). For ∆ = O(1), we expect that DE0 = O
(
eN
)
. The

Haar measure on this unitary group now defines a measure for the coefficients αi in (3.3), and

we can pick a “typical” state in the microcanonical ensemble by using this measure. Then

the expectation is that almost all states chosen in this manner, except for an exponentially

small fraction of states, correspond to a dual Schwarzschild black hole geometry in the bulk:

|Ψ〉 ↔ gbhµν .

We can get other kinds of black holes by varying the other charges. This is the central class

of “semi-classical states” that we will be interested in, in this paper.

The example above also points to an additional important fact, which the reader should

keep in mind. While we write |Ψg〉 to prevent the notation from becoming unwieldy the state

dual to a geometry is far from unique. There are several microstates that represent the same

geometry.

Two additional classes of states will be of some interest to us, and are entirely derivative

from the class above.
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1. Superpositions of semi-classical states

First, given states corresponding to different metrics |Ψg1〉 ↔ g1,µν , . . . , |Ψgm〉 ↔ gm,µν
we may consider a superposition of such states

|Ψs〉 ≡
(

m∑

i=1

αi|Ψgi〉
)
, (3.4)

If the geometries above are reasonably distinct, then the states are almost orthogonal.

This is also the case if we pick two generic microstates corresponding to the same

geometry. As we will see below we expect that

〈Ψg1 |Ψg2〉 = O
(
e−N ) ,

〈Ψg1 |gµ1ν1(~x1) . . . gµmνm(~xm)φ(~xm+1) . . .φ(~xm+p)|Ψg2〉 = O
(
e−N ) ,

(3.5)

both for states corresponding to distinct geometries, and for generic microstates corre-

sponding to the same geometry. Therefore, we require
∑

i |αi|2 = 1 + O
(
e−N ) in this

situation. The important point is as follows. The smallness of the off-diagonal matrix

elements above implies that a quantum superposition of a small number of geometries,

or a small number of microstates corresponding to the same geometry, corresponds in

effect to a classical probability distribution over these states. On the other hand, it is

clear that if we take m = O
(
eN
)
in the superposition above, then this intuition breaks

down, and the cross terms become important.

2. Excitations of semi-classical States

Furthermore, given a state |Ψg〉, which we have identified with a metric gµν , one can

consider “excitations” of this state. For example, one may “act” on this state using

some of the operators corresponding to the metric or other light fields. These new

states correspond to excitations of the original state

|Ψex
g 〉 = gµ1ν1(~x1) . . . gµmνm(~xm) . . .φ(~xm+1) . . .φ(~xm+n)|Ψg〉. (3.6)

In the large N limit, after subtracting off the contribution of the background metric,

this state should be interpreted as an excitation with n +m ≪ N quanta on a back-

ground with metric g. Although these excited states occupy a very small fraction of the

volume of the Hilbert space at any energy, they are important because there are several

interesting physical questions about the response of equilibrium states to excitations.

Coherent states vs metric eigenstates

Although we have taken a CFT perspective on the states above in principle, we could also

have viewed these states as solutions of the Wheeler de Witt equation that live in a Hilbert

space obtained by quantizing gravity and the other light fields. From this perspective we

should emphasize, to avoid any confusion, that the semi-classical states |Ψg〉 that we refer

to here are “coherent states”, which correspond to an entire semi-classical spacetime; these
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states are distinct from “metric eigenstates” that are sometimes considered in conventional

analyses of canonical gravity.4

Let us make this more precise. We start by performing a d+ 1 split of the geometry

ds2 = −N2dt2 + γij(dx
i +N idt)(dxj +N jdt),

and promote the d-metric γij to an operator. The canonically conjugate momentum is

πij = −γ 1
2
(
Kij − γijK

)
,

where Kij is the extrinsic curvature [25]. (See (A.6) for an explicit expression.) Given a CFT

operator gµν we can therefore define two related CFT operators γij and πij . Now the key

point is that the semi-classical/coherent states that we are discussing satisfy

〈Ψg|γi1j1(~x1)γi2j2(~x2)|Ψg〉 − 〈Ψg|γi1j1(~x1)|Ψg〉〈Ψg|γi2j2(~x2)|Ψg〉 = O

(
1

N

)
,

〈Ψg|πi1j1(~x1)πi2j2(~x2)|Ψg〉 − 〈Ψg|πi1j1(~x1)|Ψg〉〈Ψg|πi2j2(~x2)|Ψg〉 = O

(
1

N

)
.

(3.7)

We can specify the O
(

1
N
)
terms precisely, as we do in the next section. But for now we

emphasize that these states have a small but finite uncertainty for both the three-metric

and its canonically conjugate variable. Therefore they are distinct from “metric eigenstates”

which would have satisfied

γij(~x)|γ〉 = γij(~x)|γ〉, metric eigenstate.

Such metric eigenstates would, on the other hand, have a large variance for πij .

It is these coherent states that have a natural semi-classical interpretation. Metric eigen-

states, on the other hand have maximum uncertainty in the value of πij and therefore, under

time evolution, they quickly disperse into a superposition of several different eigenstates.

Expectations from effective field theory

We now turn to the other term used in the definition above: the expectations from effective

field theory for correlators of these operators.

Let us assume that we are given a state |Ψg〉 which is believed to be dual to a geometry

by the relation (3.2). Then, the most basic expectation from a putative CFT operator that

could yield the metric in the bulk is that

〈Ψg|gµν(~x)|Ψg〉 = gµν(~x). (3.8)

4Strictly speaking, if we think of the degrees of freedom in gravity as being obtained from tracing out stringy

and other heavy degrees of freedom, then we would expect a generic CFT state to correspond to a density

matrix for the gravitational degrees of freedom, and not a pure state at all. However, because off-diagonal

matrix elements of light operators between different coherent states are very small, a sum of coherent states

effectively behaves like a classical superposition. Therefore we can neglect this complication here. Indeed, it

is because of this fact that canonical gravity — where the entanglement with these heavier degrees of freedom

is ignored even in excited background geometries like the black hole —- makes sense at all.
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Further, we demand that the n-point correlators of these operators have the property that

〈Ψg|gµ1ν1(~x1) . . . gµnνn(~xn)|Ψg〉 = gµ1ν1(~x1)gµ2ν2(~x2) . . . gµnνn(~xn)

+Gµ1ν1µ2ν2(~x1, ~x2)gµ3ν3(~x3) . . . gµnνn(~xn) + perm.

+Gµ1ν1µ2ν2µ3ν3(~x1, ~x2, ~x3)gµ4ν4(~x4) . . . gµnνn(~xn) + perm.

+ . . . .

(3.9)

where Gµ1ν1...µjνj (~x1, . . . ~xj) are the connected j-point correlators as calculated by perturba-

tively quantizing metric fluctuations on the background of the metric gµν and . . . are the

higher point functions which we have not shown explicitly. Note that this also fixes the 1
N

corrections that appeared in (3.7), because the connected correlators are subleading in 1
N .

Similarly, we will declare that other bulk excitations are realized by state-independent

operators, if there exist operators φ(~x) in the CFT, with the property that n-point correlators

of these operators have an expansion

〈Ψg|φ(~x1)φ(~x2) . . .φ(~xn)|Ψg〉 = G(~x1, ~x2)G(~x3, ~x4) . . . G(~xn−1, ~xn) + perm.

+G(~x1, ~x2, ~x3)G(~x4, ~x5, ~x6)G(~x7, ~x8) . . . G(~xn−1, ~xn) + perm.

+ . . . ,

(3.10)

where the functionsG are the perturbative j-point connected correlation functions as obtained

by quantizing the field φ about the metric g.

In this expansion, we emphasize that we are not interested in gravitational loop correc-

tions at the moment, but would be satisfied if the n-point correlators of the CFT operators

have an expansion that agrees with that obtained from perturbative quantum field theory

carried out at tree-level. This tree-level contribution is already enough to fix the leading 1
N

terms. It is also important to note that even the two-point function already knows about

the background metric. This is simply because the graviton and matter propagators depend

on the metric background. Therefore, in a sense, in the expansions (3.9) and (3.10) we have

already re-summed the 1
N series. It is in this re-summed series that we are only interested in

tree-level correlators.

Second, let us make a comment about superpositions of distinct geometries as in (3.4).

Then we expect that

〈Ψs|gµν(~x)|Ψs〉 =
m∑

i=1

|αi|2〈Ψgi |gµν(~x)|Ψgi〉+O
(
e−N ) .

A similar relation holds for n-point correlators, provided that n ≪ N . This is the state-

ment that cross-terms between macroscopically distinct geometries are very small. So, a

superposition of the form above essentially behaves like a classical mixture for our purposes.

This is an important point since there is no canonical way to speak of the “same point”

in different macroscopic geometries. Stated precisely, this is the statement that quantum field
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theory in curved spacetime does not lead to any prediction for cross-correlators

〈Ψg|gµν(~x1)gµν(~x2)|Ψg′〉,

where gµν(~x) and g
′
µν(~x) are metrics corresponding to macroscopically different geometries.5

However, (3.4) tells us that we never need to consider such cross-terms in correlators of the

metric, which are exponentially suppressed and do not have any semi-classical interpretation.

Finally, let us point out that if we declare that we do have a construction of state-

independent local operators, then we should take it seriously. Therefore, if we find a state

|Ψ〉, in which n-point correlators of the operator φ(~x) cannot be reorganized as perturbative

correlators about any metric, then we must declare that the state |Ψ〉 does not correspond to

a semi-classical geometry.

Gauge invariance and coordinates

We now turn to the last remaining point in our definition of state-independent operators.

The d + 1 real parameters that parameterize CFT operators and are to be interpreted as

coordinates in AdS. This is a tractable issue but two points sometimes lead to confusion: the

fact that the metric and other local observables are not gauge invariant, and the fact that we

are using a uniform coordinate system to represent all metrics. Both of these issues can be

resolved simultaneously by an appropriate gauge fixing, as we now describe.

First, as we have already noted, given a family of CFT operators labelled by coordinates

~x, so that the family of operators satisfies (3.8) and (3.9) we can clearly simply consider

another family of CFT operators, which is related to the previous one by diffeomorphisms.

ḡµν(~x) =
∂ξµ

∂xρ
∂ξν

∂xσ
gρσ(~ξ−1(~x)),

φ̄(~x) = φ(ξ−1(~x)).
(3.11)

The operators on the left hand side of (3.11) are distinct CFT operators, but they obviously

encode the same bulk physics. We can choose to simply live with this lack of uniqueness,

while keeping in mind that to extract any physics from the operator (3.8) we need to form

gauge-invariant quantities. But from a physical point of view, it is more convenient to pick a

gauge so that the CFT operators that we are discussing become unambiguous.

A related problem has to do with the the “range” of the real numbers in ~x. Usually, we

tailor the coordinate system to the metric. So it is often the case that the AdS Schwarzschild

metric and the empty AdS metric are written in terms of coordinates that have different

ranges.

In addressing these two issues, it is useful to recognize that they also arises in numerical

general relativity. There we are given a grid of points, drawn from Rd,1, with a fixed range and

we would like to place different metrics on this grid so that the resultant spacetime describes

an entire range of physics, from empty AdS to black holes.

5For the case where these metrics are so close that one can be considered to be a coherent excitation of

gravitons on the other, we refer the reader to Appendix A.
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To make this more precise, note that the empty AdS metric is given by

ds2ads = −(1 + r2)dt2 +
dr2

1 + r2
+ r2dΩ2

d−1.

By a coordinate transformation, r = ρ
1−ρ , we can bring the boundary to a finite coordinate

distance

ds2ads =
1

(1− ρ)2

(
−f̂(ρ)dt2 + 1

f̂(ρ)
dρ2 + ρ2dΩ2

d−1

)
, (3.12)

with f̂(ρ) = (1−ρ)2+ρ2. The boundary is at ρ = 1, and manifold in (3.12) is [0, 1)×R×Sd−1.

In this paper we will only be interested in different metrics placed on this manifold that

asymptotically tend to the metric in (3.12), although they may differ in the bulk. Even if black

holes are present, we simply consider nice slices that are parameterized by the coordinates

[0, 1) × Sd−1 and then consider their evolution in time for a finite range of time. Note that

by this finite-time restriction, we also avoid questions of “topology changes.”

ρ = 0
ρ = 1 ∆T

Figure 1: Even in the presence of a black hole, nice slices can be parameterized by coordinates on

[0, 1)× Sd−1. We examine physics for a finite interval ∆T so that the future singularity is irrelevant.

Having chosen a uniform coordinate system to describe the metrics that we are interested

in, we can further choose a gauge, to unambiguously specify the CFT operators we are

interested in. A convenient choice of gauge is given by the “generalized harmonic gauges.”

In these gauges, we set

�~xµ = Hµ(~x). (3.13)

A choice of the “source functions” Hµ(~x) gives a choice of gauge.

Note that once (3.13) is imposed as an additional operator equation that must be satisfied

by the CFT operators that appear in (3.8) and (3.9), then this removes the redundancy (3.11)
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in the identification of these operators in the CFT. So, if such operators exist then (3.13) picks

out a specific family of them.

For the specific case of AdS, an appropriate choice of source functions is discussed in

detail in [26]. These details are not important here. The point that we can take away from

the numerical analysis of [26] is that it is possible to describe a very broad range of metrics in

AdS, including empty AdS and excited black holes that are dual to fluid dynamical situations

on the boundary with a uniform choice of coordinate system and gauge.

3.1.1 Relational observables

There is another class of coordinate systems, which is particularly convenient in AdS. This

is the class of coordinate systems that is defined relationally with respect to the boundary.

Here, we assume that we are already given the metric in some coordinate system, such as the

ones above. We then describe a coordinate transformation to a more convenient relational

coordinate system.

Intuitively, we would like to consider an experiment where an observer jumps from the

boundary, with no initial velocity along the Sd−1, falls for a given amount of proper time, and

then makes a measurement. In fact this notion is a little hard to make concrete in this form

because if we drop the observer from a point that is infinitesimally close to the boundary, he

very rapidly approaches the speed of light. This problem cannot be solved by using an affine

parameterization of null geodesics either, since any affine parameter that is finite in the bulk

goes to infinity as we reach the boundary.

So, it is convenient to use the following slightly more complicated construction. We start

from a given point on the boundary, which we label by (t1,Ω1). We know that the metric is of

the asymptotically AdS form given by (3.12). We now consider a null geodesic, parameterized

by ordinary asymptotic AdS time, that extends into the bulk, with no velocity along the Sd−1.

More precisely, let us consider a null geodesic trajectory given by

~x1(t) ≡ (t, ρ1(t),Ω1(t)), ρ1(t1) = 1, Ω1(t1) = Ω1, Ω̇1(t1) = 0, ρ̇(t1) = −1, (3.14)

where by a slight abuse of notation we have used Ω1 both for the solution to the geodesic

equation, and for the initial value of the solution. Note that initial “velocity” in the radial

direction is fixed since the geodesic is null and the sign indicates that the geodesic is ingoing

and moves into the bulk as time advances. This geodesic reaches a finite coordinate distance

in the bulk in finite time. Second, note that while we are starting with no angular momentum,

intrinsic properties of the geometry may cause the geodesic to start moving on the sphere as

well after it departs from the boundary.

We now consider a second null geodesic that intersects the boundary at a later point

(t1 + τ,Ω2) and also has Ω̇2 = 0 at its final point. This is the geodesic trajectory

~x2(t) = (t,Ω2(t), ρ2(t)), ρ2(t1+ τ) = 1, Ω2(t1+ τ) = Ω2, Ω̇2(t1+ τ) = 0 ρ̇2(t1+ τ) = 1,

(3.15)
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and the sign of the radial derivative indicates that the geodesic is outgoing at the time t1+ τ .

Now given a particular value of t1,Ω1(t1), we vary Ω2(t1 + τ) so that the geodesics intersect.

We expect that

∃ Ω2 and ∃ ti, t1 < ti < t1 + τ such that ρ2(ti) = ρ1(ti); Ω2(ti) = Ω1(ti).

Intuitively, the existence of a such a solution seems clear. For example, in the case where the

geometry has no angular momentum at all, we can solve the equation above simply by setting

Ω2 = Ω1. If we start deforming the geometry so that it is rotating, we should still be able

to tune Ω2 so that the two geodesics intersect. Even for other, more complicated geometries,

we expect that the intersection point should be well defined at least as long as we are close

enough to the boundary and we will see below that this is all that we need.

We will denote the point of intersection by

Pi(t1,Ω1, τ) ≡ (ti,Ω1(ti), ρ1(ti)). (3.16)

This is a bulk point that is parameterized by the starting point of the first geodesic and the

time difference to the ending point of the second geodesic.

Note that by means of such a process we cannot reach behind the black hole horizon.

However, once we have a parameterization of points in the exterior, it is simple to extend

them behind the horizon. We once again consider geodesics that start from a point (t1, ~Ω1)

on the boundary but this time we parameterize them using an affine parameter so that the

geodesic satisfies the equation

d2xµ1 (λ)

dλ2
+ Γµνσ

dxν1(λ)

dλ

dxσ1 (λ)

dλ
= 0.

This is just a reparameterization of the geodesic in (3.14), and so we have denoted it with

the same symbol ~x1(λ).

The key point is that we can use our previous parameterization (3.16) to normalize the

affine parameter. We set

~x1(0) = Pi(t1,Ω1, τ1), ~x1(1) = Pi(t1,Ω1, τ2).

A choice of the intervals τ1, τ2 gives a specific normalization of the affine parameter. The

reader can, for her convenience, think of any concrete value: say τ1 = ℓads, τ2 = 2ℓads.

Once this normalization has been fixed we now obtain the set of points

Pλ(t1,Ω1, λ) = (t1(λ),Ω1(λ), ρ1(λ)). (3.17)

The difference between (3.17) and (3.16) is that the points in (3.17) can also reach inside the

horizon. The entire process above is summarized in Fig 2.

The advantage of this prescription is that classically, measurements of a scalar field

defined in such a relational manner are gauge-invariant. We recall that when we define
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(t1,Ω1)

(t1 + τ2,Ω3)

(t1 + τ1,Ω2)

λ = 0

λ = 1

Pλ(t1, λ,Ω1)

Figure 2: The relational gauge fixing proceeds in two steps: first we use intersecting geodesics to pa-

rameterize points outside the horizon. Then we use this set of points to normalize the affine parameter

and follow null geodesics into the horizon.

quantum gravity in anti-de Sitter space, we have to consider the set of all field configurations

modulo trivial diffeomorphisms. The trivial diffeomorphisms are those that vanish at the

boundary of anti-de Sitter space. Large gauge transformations — which leave the boundary in

asymptotically AdS form, but yet move points on the boundary — correspond to symmetries

in the boundary theory, and induce a change of the physical state.

So, gauge invariant observables are those that are invariant under trivial diffeomorphisms.

In the relational observables described above, we start with a point on the boundary — which

is left fixed because the diffeomorphism vanishes there — and then follow a gauge-invariant

prescription to reach a point in the interior. Evidently, scalar fields evaluated at this point

are themselves gauge invariant.

There is an important stronger statement that we can make. Consider a large diffeomor-

phism that induces a conformal transformation on the boundary (t,Ω) → C−1(t,Ω), where

C denotes an element of the conformal group. Geometrically, under the diffeomorphism the

geodesic trajectories in (3.14) and (3.15) get mapped to new geodesic trajectories. Therefore

we expect that the relationally define points in (3.17) will transform under the diffeomorphism

as

Pλ(t,Ω, λ) → Pλ(C−1(t,Ω), λ).

The important point is that this transformation of the relational points does not depend on

the details of the diffeomorphism in the bulk, but merely on how it acts on the boundary.
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Now consider a scalar field operator φ(Pλ(t,Ω), λ) with the bulk point defined as in

(3.17). Corresponding to the conformal transformation C, there is a unitary operator UC on

the boundary. Then, in order to be consistent with the geometric intuition, we expect that

the CFT operator φ will satisfy

U †
Cφ

i(Pλ(t,Ω, λ))UC = φi(Pλ(C(t,Ω), λ).

We will use this relation several times to obtain the commutator of bulk operators with the

Hamiltonian which arises from the special case where C is just taken to be time-translation

above. In section 6, we will apply this analysis in a more general setting where there are two

boundaries.

The disadvantage of the relational prescription is that it is harder to make this precise at

subleading order in 1
N . Clearly, the affine parameter along a geodesic from the boundary to

another point may itself be expected to fluctuate at order 1
N . In this paper, these subtleties

will not be important.

3.2 The alternative: state-dependent bulk-boundary maps

An alternative to the state-independent possibility above is that geometric quantities like the

metric do not arise by evaluating a Hermitian operator, but is a more general “measurable.”

More precisely, we would be led to state-dependence if there are no globally defined Hermitian

operators gµν(~x) and φ(~x). Rather, about a given state |Ψg〉 we would have operators g
{Ψ}
µν (~x)

and φ{Ψ}(~x) so that the correlators

CΨ(~x1, . . . ~xm+p) = 〈Ψ|g{Ψ}
µ1ν1(~x1) . . . g

{Ψ}
µmνm(~xm)φ

{Ψ}(~xm+1) . . .φ
{Ψ}(~xm+p)|Ψ〉, (3.18)

reproduce the predictions of effective field theory that we outlined above. This definition is

identical to the definition (3.1) in terms of the semi-classical states |Ψ〉 that appear here and

the expectations we have for the values of the correlators. The difference is in the nature of

the operators g
{ψ}
µν which now depend on the state.

One possible way to think about (3.18) is that the geometry emerges as a “function

of correlation functions”6 and not by measuring linear operators. However, we have some

additional structure in (3.18). Since the bulk observer must see quantum effective field theory,

it must be the case that to an excellent approximation the operators g
{Ψ}
µν (~x) and φΨ(~x) act

as linear operators. In terms of the classes of states that we have defined above, this can

be turned into a sharp restriction: the same operators that represent the metric and other

excitations in a state |Ψg〉 must also represent these excitations in superpositions (3.4) and

(3.6). We will show below that, in our construction, this is indeed the case.

To lighten the notation we will no usually omit the superscript Ψ in g
{Ψ}
µν even when we are

considering state-dependent operators. Although, in several cases we will discuss explicitly

whether a given operator is state-dependent or state-independent, in others it should be clear

from the context.
6We thank Nima Lashkari for this phrase.
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We now point out that many of the existing methods of associating a geometry to a state

as in (3.2) are state-dependent in practice.7 We hasten to add that this, by itself, does not

mean that the map (3.2) can only be realized in a state-dependent manner. Our discussion

in this subsection does not rule out the possibility that there may be an overarching state-

independent prescription which encapsulates all of these state-dependent approaches in some

approximation. Our purpose in this subsection is only to use these examples to explain the

distinction between state-dependent and state-independent realizations of the maps.

We now proceed to discuss the Ryu-Takayanagi formula, the procedure for extracting the

Einstein equations from the first law of entanglement, and the smearing function construction

of operators outside the black hole.

3.2.1 State-dependence in geometry from entanglement

The Ryu-Takayanagi (RT) formula [24] and its generalization [27] by Hubeny, Rangamani and

Takayanagi provides a method of reading off geometric quantities from a state. We review

the formula, and show how it is state-dependent. We also show how to interpret it correctly

and that this state-dependence does not imply any contradiction with quantum mechanics.

In particular these formulas provide a relation between the entanglement entropy of a

region on the boundary, and the area of an extremal surface in the bulk which is homologous

to the boundary region. So, given a region R on the boundary and a semi-classical metric

gµν , we can calculate the area of this extremal area surface A(g,R). The Ryu-Takayanagi

formula now states
1

4GN
A(g,R) = SR, Ryu-Takayanagi (3.19)

where SR is the entanglement entropy of the region R.

We will now show the following

1. The formula (3.19) cannot be interpreted as an operator relation for the area, because

there is no “entanglement entropy” operator.

2. However, even though the entanglement entropy cannot, in general, be interpreted as

the expectation value of a Hermitian operator, because of properties of the large-N
CFT Hilbert space, we expect to find a state-dependent operator AR in the CFT which

has the property that

〈Ψ|AR|Ψ〉 = SR(|Ψ〉),

both in states (3.2) and in superpositions of a small number of such states (3.4)

We start by noting that if the metric is a state-independent operator, then the area of

the minimal area surface, which is a functional of the metric, is also a state-independent

operator. In fact, as we will see below, from the point of view of a semi-classical quantization

of gravity — which is what yields the justification for expecting the metric to be an ordinary

7We cannot help making the curious observation that, within the string theory literature, this fact hardly

attracted any attention or controversy until the recent discussions on the black hole interior.
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operator — the area of the minimal area surface should be as good an operator as the metric.

Therefore, we might expect the existence of some operator AR, so that in the state dual to

the geometry with metric gµν , we have

AR|Ψg〉 = A(g,R)|Ψg〉+O

(
1

N

)
.

However, on the other hand, the entanglement entropy is not a linear operator. The

standard proof is as follows. Consider the division of the CFT Hilbert space into that of

the region and its complement: H = HR ⊗ HR̃. Say that we want an operator SR so

that ∀|Ψ〉 ∈ H, we have 〈ψ|SR|Ψ〉 = S(|Ψ〉), where S is the entanglement entropy between

R and its complement in that state. Now, we note the following facts. Since S(|Ψ〉) is

always non-negative, the expectation value of the putative SR operator is non-negative in all

states; therefore it can have no negative eigenvalues. Second, we can find a complete basis of

unentangled states

|Ψij〉 = |Ri〉 ⊗ |R̃j〉, (3.20)

where i ∈ [1, . . . dim(HR)], j ∈ [1, . . . dim(HR̃)]. Clearly we expect 〈Ψij |SR|Ψij〉 = 0. More-

over, since |Ψij〉 is a basis, we also have Tr(SR) = 0. Since SR has no negative eigenvalues,

and its trace is zero, it must be the case that SR = 0 identically. This is absurd. Therefore,

this is no operator SR whose expectation value equals the entanglement entropy in general.

A simple extension of this argument shows that this also true for the Renyi entropies Tr(ρnR),

where ρR is the reduced density matrix of the region.

The fact that the entanglement entropy does not correspond to an ordinary linear oper-

ator may appear to be a formal statement, but it becomes acute in the following situation in

the AdS/CFT correspondence. Consider a superposition of two different classical geometries,

as in (3.4). For simplicity, we can consider a pure state which is a superposition of a pure

state corresponding to a black hole at temperature β, with a corresponding metric gβ , and

another pure state corresponding to a black hole at a temperature β′, with a corresponding

metric gβ′ . Provided that β − β′ ≫ 1
N , we see that the corresponding pure states are almost

orthogonal. We write the superposed state as

|Ψs〉 = α1|Ψgβ 〉+ α2|Ψgβ′ 〉,

and normalizability requires |α1|2 + |α2|2 = 1+O
(
e−N ). This is not a state that we usually

consider, but it is certainly possible to consider such superpositions in the CFT since distinct

geometries do not belong to strict superselection sectors.

From the bulk point of view, quantum mechanics provides the following prediction. If one

measures the “area” in this state, one expects to find the answer A(gβ , R) with probability

|α1|2 and A(gβ′ , R) with probability |α2|2.
While the entanglement entropy cannot reproduce this probability distribution, with some

work we can show that the entanglement entropy does correctly reproduce the expectation
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value of the area. The argument is as follows. Consider the reduced density matrix of the

region R in all three states

ρR(β) = TrR̃(|Ψgβ 〉〈Ψgβ |),
ρR(β

′) = TrR̃(|Ψgβ′ 〉〈Ψgβ′ |),
ρR(Ψs) = TrR̃(|Ψs〉〈Ψs|),

where R̃ is the complement of R.

We can write both the states in terms of a Schmidt basis

|Ψgβ 〉 =
∑

i

γβi |R
β
i 〉 ⊗ |R̃βi 〉,

|Ψgβ′ 〉 =
∑

i

γβ
′

i |Rβ′

i 〉 ⊗ |R̃β′

i 〉,
(3.21)

where, by the definition of the Schmidt basis, we have

〈Rβi |R
β
j 〉 = δij ; 〈R̃βi |R̃

β
j 〉 = δij ;

〈Rβ′

i |Rβ′

j 〉 = δij ; 〈R̃β′

i |R̃β′

j 〉 = δij
∑

i

|γβi |2 = 1;
∑

i

|γβ′

i |2 = 1.

To simplify the analysis, without sacrificing anything of importance, let us truncate the range

of i in (3.21) so that it runs over O
(
eN
)
states. In almost any state, where the energy scales

like N , it is in fact true that even if the exact expansion of the state involves an infinite

number of eigenvectors, all but an O
(
eN
)
number of them are exponentially unimportant.

Now, the key point is that in a very large Hilbert space we expect that the Schmidt basis

decomposition for the state |Ψgβ 〉 and the state |Ψgβ′ 〉 is typically uncorrelated. This implies

that

|〈Rβi |R
β′

j 〉|2 = O
(
e−N ) ; |〈R̃βi |R̃

β′

j 〉|2 = O
(
e−N ) . (3.22)

Strictly speaking (3.22) is valid if one takes a large Hilbert space and divides it into two parts.

In a local quantum field theory, it is possible that the very short distance modes in the two

regions are entangled in a universal manner. This will not affect any of our results since in

considering the entanglement entropy we, in any case, must subtract off this universal part.

Now the first two reduced density matrices are given by

ρR(β) =
∑

i

|γβi |2|R
β
i 〉〈R

β
i |,

ρR(β
′) =

∑

i

|γβ′

i |2|Rβ′

i 〉〈Rβ′

i |.

The corresponding entanglement entropies are given by

Sβ = −Tr(ρR(β) lnρR(β)) = −2
∑

i

|γβi |2 ln |γ
β
i |,

Sβ′ = −Tr(ρR(β
′) lnρR(β

′)) = −2
∑

i

|γβ′

i |2 ln |γβ′

i |.
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Moreover, we see that

ρR(Ψs) = |α1|2ρR(β) + |α2|2ρR(β′) + ρcross.

where, we see that the matrix involving the cross-terms is

ρcross =
∑

i,j

[
α1α

∗
2γ
β
i (γ

β′

j )∗〈R̃β′

j |R̃β′

i 〉
]
|Rβi 〉〈R

β′

j |+ h.c.

Now even though this is an eN × eN sized matrix, we can check using (3.22) that Tr(ρcross) =

O
(
e−N ) and also that Tr(ρ2

cross) = O
(
e−N ). Therefore the from the cross terms will have

an exponentially small effect in the computations below, and we will neglect it.

Now consider two positive integers m1,m2. We see that

Tr(ρm1
R (β)ρm2

R (β′)) =
∑

i,j

|γβi |2m1 |γβ′

j |2m2 |〈Rβi |R
β′

j 〉|2.

Therefore, from (3.22), we see that

Tr(ρm1
R (β)ρm2

R (β′)) = O
(
e−N ) , if m1,m2 > 0.

This allows us to evaluate the entanglement entropy of the superposed state. In particular,

using the result above, we see that mth Renyi entropy for the superposed state is given by

Tr(ρR(Ψs)
m) = |α1|2mTr(ρR(β)m) + |α2|2mTr(ρR(β′)m) + O

(
e−N ) .

Therefore the entanglement entropy is given by

SR(Ψs) =− lim
m→1

d

dm
Tr(ρR(Ψs)

m)

=− |α1|2 ln(|α1|2)Tr
[
ρR(β)

]
− |α2|2 ln(|α2|2)Tr

[
ρR(β

′)
]

− |α1|2Tr
[
ρR(β) ln(ρR(β))

]
− |α2|2Tr

[
ρR(β

′) ln(ρR(β
′))
]

=− |α1|2 ln(|α1|2)− |α2|2 ln(|α2|2) + |α1|2SR(β) + |α2|2SR(β′).

Therefore we see that

SR(Ψs) =
1

4GN
〈A(R)〉 − |α1|2 ln(|α1|2)− |α2|2 ln(|α2|2).

where 〈A(R)〉 = |α1|2A(gβ , R) + |α2|2A(gβ′ , R) is the expectation value of the area obtained

from a naive analysis.

In fact the additional term that we have obtained is always subleading even if we take a

superposition of a large number of states. This is because the the leading term is O (N ) as

we can see from the explicit factor of GN in the formula above. Now, even if we superpose m-

states in the form (3.4) with coefficients
∑m

i=1 |αi|2 = 1, then the additional term is bounded

by

−
m∑

i=1

|αi|2 ln(|αi|2) ≤ ln(m).
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Therefore, unless we take a superposition of an eN number of states, we see that we can still

consistently interpret the entanglement entropy as the expectation value of the operator, that

classically, would correspond to the area.

SR =
1

4GN
〈AR〉, (3.23)

If we do take a superposition of an exponentially large number of states, then the cross terms

become important even for the area operator, and we must re-evaluate the entire expression.

To summarize, we have concluded that once the original Ryu-Takayanagi formula is

interpreted as a relation between an expectation value and the entanglement entropy as in

(3.23), then it holds consistently even in states that are superpositions of classical geometries

as advertised. Our analysis here does not rule out the existence of a state-independent “area”

operator AR but such a state-independent operator cannot be dual to the entanglement

entropy in general.

Before concluding, we should mention that there are several approaches that attempt

to construct other bulk geometric quantities by massaging or refining the Ryu-Takayanagi

formula. For example, the authors of [28] related the differential entropy — obtained by

considering the variation of the entanglement entropy as the interval on the boundary is

altered — to the area of a hole in the bulk. This can be used to read off the bulk metric

more directly than the minimal area prescription. Of course, all of these approaches are also

explicitly state-dependent. However, just as in our discussion above, we expect that when we

interpret them appropriately they do not present any observable contradiction with quantum

mechanics in the bulk.

3.2.2 Equations of motion from the first law of entanglement

Another approach of deriving the bulk from the boundary, which has attracted attention, is

the program of deriving the bulk equations of motion from the “first law of entanglement”

[29, 30, 31]. Consider, once again, a region R on the boundary, and a CFT in the vacuum

state. Then we may define the modular Hamiltonian of the region by demanding that the

reduced density matrix of R have the form

ρR =
e−H

R
mod

TrHR
(e−H

R
mod)

,

where the reader should note that the trace is in HR only.

In this case, if we consider the vacuum of the CFT and take the region R to be a ball of

radius a centered around a point ~y0, then the modular Hamiltonian is given by [32]

HR
mod = 2π

∫

R
dd−1~y

a2 − |~y − ~y0|2
2a

T tt, (3.24)

where T tt is the time-time component of the stress-tensor. But this is a state-dependent

formula that is obtained by defining the modular Hamiltonian about the vacuum.
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Using this formula it was shown [33, 29] that one can relate the linearized Einstein

equations in the bulk to the “1st law” of entanglement entropy under small changes of the

state. By considering a generalization of the Ryu-Takayanagi conjecture, where the area is

replaced by a Wald functional, this was extended to higher derivative theories in [30] and

1/N interactions were included in [34].

However, although (3.24) looks like an operator equation, the modular Hamiltonian is

also a state-dependent operator. There is no globally defined operator HR
glob in the theory so

that its action equals that of the modular Hamiltonian on every possible state. The proof is

similar to the one above. Let us say that we had an operator

HR
glob|Ψ〉 = HR

mod|Ψ〉, (3.25)

so that its action on HR was that of the modular Hamiltonian and it acted as the identity

on HR̃. Considering again, the unentangled states in (3.20). The density matrix of R in this

state is pure: ρR(|Ψij〉) = |Ri〉〈Ri|. We can see that this implies that the putative modular

Hamiltonian operator must have the action HR
glob|Ψij〉 = 0. However, if HR

glob is a linear

operator, then on any state HR
glob

∑
ij αij |Ψij〉 = 0. This suggests that HR

glob = 0 as an

operator, which is absurd. Therefore (3.25) cannot hold for any state-independent operator

HR
glob.

Therefore, (3.24) must be interpreted as a relation that is true within expectation values

taken in the vacuum or small fluctuations about the CFT vacuum. No operator generalization

of this equation exists as we have shown above. Nevertheless, it should be possible to obtain

similar formulae about different states by defining the action of the modular Hamiltonian

relative to that state. Such formulae also work for superpositions of a small number of

states, as we showed above in the case of the entanglement entropy, but this entire process is

fundamentally state-dependent.

The authors of [35] proposed that HR
mod|Ψ〉 = AR|Ψ〉 should hold as an operator equa-

tion. However, as they noted explicitly this is a state-dependent relation which works in the

neighbourhood of a given state. As we discussed above we would also expect it to work in

superpositions of a small number of semi-classical states.

3.2.3 Smearing function construction of local operators

Another commonly used method — and one that we use in this paper — of extracting local

physics from a state uses a smearing function to represent bulk operators as smeared versions

of boundary operators [36]. We review this approach in greater detail in section 4.2, where

we will also derive the expressions below for some states. In this approach, given a state |Ψg〉,
we guess a smearing function and conjecture that local fields in the bulk have the form

φ(~x) =

∫
O(~yb)Kg(~y

b, ~x)dd~yb, (3.26)

where ~x is a bulk point, ~yb is a boundary point, O is a single-trace operator on the boundary,

and and Kg is an appropriately chosen smearing function. Strictly speaking, there are some
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difficulties in interpreting (3.26) in position space, having to do with the convergence of the

integral, which has led to some confusion in the literature [37, 38]. However, as we showed

in [7], these difficulties go away if we work in momentum space and this subtlety is irrelevant

for our present discussion.

One may object that one is putting in the answer by hand in (3.26) in the Kernel Kg.

However, it is a non-trivial fact that the operators φ(~x) do obey (3.10), and also have the right

boundary values (as one approaches the boundary of AdS) as CFT correlators. In particular

for an operator O of dimension ∆, we require that

〈O(~xb1) . . .O(~xbn)〉 = Zn lim
r→∞

r∆1 . . . r
∆
n 〈φ(~xb1, r1) . . .φ(~xbn, rn)〉, (3.27)

where Z is a numerical wave-function renormalization factor, and we have written the bulk

points as a boundary point combined with a radial coordinate r which can be identified with

the coordinate r in (4.1). The fact that both (3.26) and (3.27) hold simultaneously involves a

delicate interplay between the kernel and the correlators of O in the state |Ψg〉.
As written, the expression (3.26) is explicitly state-dependent because the kernel Kg

depends on the metric, and is therefore different in different states |Ψg〉. So, for a given kernel

Kg, this expression works only in a state that corresponds to this semi-classical geometry.

In section 4, we discuss whether it may be possible to lift (3.26) to a state-independent

prescription, at least, outside the horizon. While this is possible in a mini-superspace approx-

imation as we show around (4.21), we are agnostic about whether this works in general, even

outside the horizon. We will comment more on this issue in [39].

3.3 A semi-classical obstruction to state-independence

Given that all existing examples of extracting local physics from the boundary involve various

measurables, which are nevertheless not linear operators, why should we expect that the

metric is given by an ordinary operator in the CFT? More precisely, what is the basis for the

the naive expectation that operators satisfying (3.8) and (3.10) should exist in the CFT? In

this subsection, we try and explain the basis for this naive expectation, although, as we will

point out immediately, we believe that this intuition is flawed.

For simplicity, we will consider whether one should expect a state-independent metric

operator gµν(~x) to exist. A similar argument applies to other light fields in the theory.

The key point is that the classical metric gµν(~x) is a well defined functions on the classical

phase space of the theory. Recall that the classical phase space can be put in 1–1 correspon-

dence with the set of all classical solutions of the theory. Given initial data for the canonical

variables, and their conjugate momenta, we can evolve it forward to generate the entire clas-

sical solution. Conversely, given a classical solution, we can take a “section” by evaluating

the variables and their momenta at some point of time to obtain a point on the phase space.

As we have explained above, once we go to a well defined gauge, the value of the metric

gµν(~x) is well defined in any classical geometry. Therefore the metric is a well defined function

on the phase space of the the theory. Now, one usually expects that quantization takes
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functions on the phase space to well defined operators in the Hilbert space. Therefore one

might expect the metric gµν(~x) in relational gauge to lift to a state-independent operator in

the theory.

As we review in Appendix A, this is usually done as follows. In the quantum theory, we

obtain coherent states, |g〉 corresponding to each semi-classical geometry. We then lift the

classical function to an operator through

gµν(~x) ∼
∑

g

gµν(~x)|g〉〈g|, (3.28)

where the sum is over all metrics, discretized in some fashion.8

Now, the analysis of Appendix A and section 6 shows that for such a construction to

work, it is very important that if we consider the inner product of two distinct geometries, it

dies off to arbitrarily small values

〈g1|g2〉 = e−Nυ(g1,g2).

We can compute the function υ on the right hand side in linearized gravity but in order for

(3.28) to converge we require that for sufficiently “distinct” g1, g2, we can have v ≫ 1.

On the other hand, in the CFT, as we have discussed coherent states of the metric |g〉
correspond to CFT states |Ψg〉. However, for generic states at the same energy E ∝ N , we

have

〈Ψg1 |Ψg2〉 = O
(
e−

S
2

)
,

where S ∝ N is the thermodynamic entropy of the CFT at the energy E.

This “fat tail” in the inner product of coherent states in the CFT subtly violates the

expectation from a semi-classical quantization of gravity.9 As a result of this tail, we cannot

write down an expression of the form (3.28) with the putative coherent states replaced by

|Ψg〉 because interference from “distant” microstates implies that the operator gµν(~x) on the

left of (3.28) does not behave like the classical function gµν(~x).

We direct the reader to section 6 for an example where this can be seen very clearly. In

Appendix A we discuss the single-sided case in more detail and describe why we believe that

the same obstruction prevents one from writing down state-independent operators for well

defined classical geometric quantities.

4 Local bulk operators in AdS/CFT: Conditions for a smooth interior

In this section, we review the conditions that are required to obtain a smooth exterior and

interior geometry for a black hole in AdS/CFT. The central point that we would like to

8For a concrete example of a formula of this sort, the reader may wish to look at (4.21) although we caution

the reader that (4.21) sums only over spherically symmetric metrics and works only outside the horizon. In

contrast, we would like (3.28) to work for all kinds of metrics, and both inside and outside the horizon.
9This is reminiscent of the fact [40] that thermal correlators in the CFT decay down to O

(

e−S
)

, in contrast

to the naive expectation from semi-classical gravity that the exponential decay in time should continue forever.
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(a) Hawking’s

derivation

(b) The analogy to the Eter-

nal Black hole

Figure 3: Two ways of arguing that new right movers are necessary behind a black hole horizon.

Hawking’s original derivation on the left, where the right movers are modes that have “bounced” off

r = 0 and propagated through the infalling matter. The analogy to the eternal black hole on the right,

where the right movers come from a left asymptotic region. Both of these suffer from difficulties, and

so we perform a purely local derivation leading to the same result.

emphasize in this section is that a smooth interior requires the existence of operators in the

CFT, with specific properties that we enumerate below. We have dealt with this question in

our previous papers [7, 9, 8], but we present a slightly new perspective here to buttress the

same conclusion.

Before we proceed to the analysis, we briefly state our result and emphasize the difference

with previous derivations. Consider a black hole horizon, which may have been formed due

to gravitational collapse or may be part of an eternal black hole. If we quantize a field on

both sides of the horizon, we find that while the Schwarzschild left movers cross the horizon

smoothly, the Schwarzschild right movers do not. The claim is that to obtain a smooth

horizon, we must find new operators, which play the role of right movers behind the horizon,

and are appropriately entangled with the right movers in front of the horizon.

There are various ways to reach this conclusion. These right movers were identified

in Hawking’s original analysis of this question as modes from past null infinity that are

concentrated in the time, just after the last null ray to escape the horizon. In Hawking’s

geometric analysis, these modes “bounce” from r = 0 to play the role of right movers behind

the horizon. One can also argue for the existence of these right movers and the appropriate

entanglement — as we did in [7] — by using the semi-classical intuition that, at late times,

the collapsing geometry approaches the eternal black hole where these right movers originate

from a left asymptotic region, which we call “region III”.
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These derivations suffer from certain difficulties. Hawking’s original work has a trans-

Planckian problem because tracing these modes back to past null infinity boosts them to very

high energies. Similarly, the intuition that these modes come from an effective “region III”

is somewhat confusing because we do not expect any such region to exist for a collapsing

geometry.

To solve these problems, in this section, we will perform a purely local derivation that

reveals the necessity of the existence of appropriate entangled right-moving modes behind the

horizon. Our picture in this paper is shown in Figure 4. We start with the sole assumption that

the field in the near-horizon region outside and inside the horizon has an effective perturbative

description. This assumption implies the universality of a certain two point function. By

P1

P2

Figure 4: We derive the necessity of new modes just by demanding a regular two point function for

points P1, P2 across the horizon without invoking another asymptotic region or tracing these modes

back into the past.

Fourier transforming this universal two point function, we infer that the right movers behind

the horizon must exist, and also infer their two point functions with modes in front of the

horizon. We start by performing this analysis in the bulk, and then discuss the implications

in the CFT.

4.1 Bulk analysis of the mirror operators

Let us start from the bulk perspective. We will then examine how this must be translated to

the boundary. For simplicity, let us consider a massless scalar field in the bulk. This analysis

carries over, almost entirely unchanged to the case of the graviton and other fields.

Consider a big black hole in AdS. In the past this black hole could have been formed

from the collapse of a star or some other physical process. However, we are interested in

the late time region shown schematically as the rectangular patch P in Figure 5. This patch

of spacetime overlaps with the region both in front of, and behind, the horizon. Classically,

we expect that the initial collapsing matter, and any perturbations have died away and are
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irrelevant for physics in this region. In the analysis below, we will assume the validity of this

classical expectation and derive various results for correlators of fields. Later we will need to

check the consistency of these results by ensuring that it is possible to construct a bulk to

boundary map that reproduces these correlators.
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P

Figure 5: We are interested in the late-time physics of the black hole geometry, schematically denoted

by the rectangular patch P above.

Geometry

The metric, at late times, outside the horizon is given by

ds2 = −f(r)dt2 + 1

f(r)
dr2 + r2dΩ2

d−1, (4.1)

where

f(r) = r2 + 1− cd
GM

rd−2
,

cd =
8π

2−d
2 Γ(d/2)

d− 1
.

The numerical constant, cd, arises from the volume of the d− 1 dimensional sphere. and we

have set the radius of AdS to 1.

The horizon is defined implicitly, by the equation f(r0) = 0. As usual, it is convenient to

introduce tortoise coordinates by dr∗
dr = f−1(r). Unlike in the case of the Schwarzschild black

hole in flat space, we cannot usually express the tortoise coordinates in terms of the original

coordinates using elementary functions. But we can choose the differential equation to satisfy

r∗ = 0, at r = ∞.
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As r → r0, we see that f−1(r) diverges and r∗ → −∞. In order to approach the future

horizon we have to take the limit r∗ → −∞ and at the same time t→ +∞.

We introduce the following coordinates

U = −e
2π
β
(r∗−t); V = e

2π
β
(r∗+t).

The horizon is given by U = 0, but with V finite. We can check that with the factors of 2π
β ,

the horizon is smooth in the U, V coordinate system. Near the horizon, with (r− r0) ≪ 1, we

have f(r) = κ(r−r0). The constant κ is related to the temperature. A shortcut to determine

the relation is to continue to Euclidean time, t→ iτ , identify τ ∼ τ +β and make the change

of variables x = 2
√

r−r0
κ . Near the horizon, the analytically continued metric then takes the

form

ds2E −→
x→0

dx2 +
κ2

4
x2dτ2 + r20dΩ

2
d−1.

For the Euclidean circle τ to smoothly cap off at x = 0, we require κ2β2

4 = (2π)2 or κ = 4π
β .

In the near horizon region, we now have the following relations

f(r) =
4π

β
(r − r0), ⇒ r∗ =

β

4π
ln(

r − r0
r0

) + const.

From here, it follows that f(r) −→
r∗→∞

κ′
(
2π
β

)2
e

4πr∗
β , where κ′ is another (irrelevant) constant.

In Kruskal coordinates the metric takes the form

ds2 =

(
β

2π

)2 f(r)

UV
dUdV + r2dΩ2

d−1,

and we see that the factor of 1
UV precisely cancels off the growing exponential in f(r) near

the horizon to ensure that the metric is regular.

gµν −→
U→0

−κ′dUdV + r20dΩ
2
d−1.

After we cross the horizon, we can introduce a second Schwarzschild patch. Since U > 0

in the region inside the black hole (which we sometimes also call region II), we write

U = e
2π
β
(r∗−t); V = e

2π
β
(r∗+t), in region II.

Inside the horizon, the tortoise coordinate, r∗, rises from its value of −∞ at the horizon, while

the Schwarzschild time decreases from its values of ∞ as one goes from right to left.

Two-point scalar correlators

Now, we will consider a massless scalar field propagating in this background. We will define

this field using the relational prescription of section 3.1.1. We derive various consequences of

the fact that the horizon is smooth, simply by demanding that the two point function both

outside and inside the horizon be smooth.
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We expect that the two-point scalar function has the form

〈φ(~x1)φ(~x2)〉 = G(~x1, ~x2) + O

(
1

N

)
.

We will be interested in the regime where ~x1 and ~x2 approach the light cone, but always

remain spacelike with respect to each other. In this regime the Wightman and the time-

ordered Green functions coincide and so we will not have to keep track of factors of iǫ. In the

expression above, we have also used the fact that corrections to this expression come from

interactions that are suppressed by 1/N . However, we will not need need the full form of the

propagator. For a large black hole, provided that the geodesic distance ℓ12 between ~x1 and

~x2 is small in comparison to the scale of curvature ℓ12 ≪ 1
β , we expect that

〈φ( ~x1)φ( ~x2)〉 ≈
1

[
gµν(x1 − x2)µ(x1 − x2)ν

] d−1
2

, |ℓ12| ≪ β−1. (4.2)

Recall that the dimension of the bulk theory is d+1. The exponent above is the engineering

dimension of the field, which is (d+1)−2
2 . The relation (4.2) above is a powerful constraint,

which holds in the short distance limit for any field theory in the bulk that is controlled by

a free ultra-violet fixed point10.

Now we consider the correlation function as one point approaches the light cone of the

other in the U-V plane.11 We will work in the regime where the two points are separated on

this plane so that −(U1 − U2)(V1 − V2) > 0.

〈∂V1φ(U1, V1,Ω1)∂V2φ(U2, V2,Ω2)〉 = ∂V1∂V2
1

(
−κ′(U1 − U2)(V1 − V2) + Ω2

12

) d−1
2

=
(d+ 1)(d− 1)

4
(κ′)2

(U1 − U2)
2

(
−κ′(U1 − U2)(V1 − V2) + Ω2

12

) d+3
2

,

where Ω2
12 is defined as the distance between the points Ω1 and Ω2 on the sphere of radius r0.

We will argue that this two-point function is actually proportional to a delta function in the

coordinates on the sphere, as we take U1, U2 → 0. If the transverse space had been planar,

this would have been a planar delta function.

First note that we clearly have that

lim
U1,U2→0

(U1 − U2)
2

(
−(U1 − U2)(V1 − V2) + Ω2

12

) d+3
2

= 0, for Ω1 6= Ω2.

10Of course here we are talking about the intermediate regime, where ℓ12 ≪ β−1 but at the same time

ℓ12 ≫ lp, ls where the latter are the Planck and string scales in the bulk.
11As we see below, to take this limit for correlators of the scalar itself is delicate, as a result of the usual

complications of dealing with a massless scalar in two dimensions. This is the reason for taking correlators of

its derivatives instead.
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But on the other hand, let us consider

I(U1 − U2, V1 − V2) =

∫
dd−1Ω2

(U1 − U2)
2

(
−κ′(U1 − U2)(V1 − V2) + Ω2

12

) d+3
2

.

The integral above is on a sphere of radius r0, but we can rescale the sphere by introducing

a new variable Ω′
2 =

Ω2

(κ′δ)
1
2
with δ ≡ −(U1 − U2)(V1 − V2).

I(U1 − U2, V1 − V2) =

∫



(κ′δ)
d−1
2 (U1 − U2)

2

(κ′δ)
d+3
2

(
1 +

Ω2
12
κ′δ

) d+3
2

dd−1Ω′
2




=
1

(κ′)2(V1 − V2)2

∫
dd−1Ω′

2

(1 + (Ω′
12)

2)
d+3
2

.

The final integral is clearly a constant independent of Ω1. This leads to the conclusion that

lim
U1−U2→0

〈∂V1φ(U1, V1,Ω1)∂V2φ(U2, V2,Ω2) = κN
1

(V1 − V2)2
δd−1(Ω1 − Ω2),

where κN is a normalization constant that we will not fix here. In the same way, we also have

lim
V1−V2→0

〈∂U1φ(U1, V1,Ω1)∂U2φ(U2, V2,Ω2) = κN
1

(U1 − U2)2
δd−1(Ω1 − Ω2). (4.3)

This is a powerful and broadly applicable result. The ultra-locality that we see in the trans-

verse directions was also noted and used in the papers [41].

Now, let us see what this result implies for the correlation functions of the Schwarzschild

creation and annihilation operators. Consider again the region near the horizon of a black

hole, but this time in the original time and tortoise coordinates. Outside the horizon, we

have the expansion

φ(t, r∗,Ω) −→
U→0−

∑

m

∫ ∞

0

dω√
ω
aω,me

−iωtYm(Ω)
(
eiδeiωr∗ + e−iδe−iωr∗

)
+ h.c, (4.4)

where Ym(Ω) are spherical harmonics that we normalize below. The left and right movers

get related to each other, and the phases δ depend on scattering in the black hole geometry

[7]. As we noted above, and will see again below, we can only use (4.4) for correlators of

derivatives of the field.

Note that the canonical conjugate to the field outside the horizon is

π(t, r∗,Ω) = gtt
√−g ∂

∂t
φ(t, r∗,Ω) = rd−1 ∂

∂t
φ(t, r∗,Ω).

We must impose the canonical commutation relations

[φ(t, r∗1,Ω1),
∂

∂t
φ(t, r∗2,Ω2)] =

i

rd−1
δ(r∗1 − r∗2)δd−1(Ω1 − Ω2).
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Since the modes take this plane wave form in the near horizon region, as r → r0, by imposing

these commutation relation we find that they are satisfied only if

[aω,m, a
†
ω′,m′ ] = δ(ω − ω′)δmm′ ,

provided that we normalize the spherical harmonics by

∑

m

Ym(Ω)Y
∗
m(Ω

′) =
1

4πrd−1
0

δd−1(Ω− Ω′).

Now the two point function, with both points outside the horizon but close to it, is given by

〈∂U1φ(U1, V1,Ω1)∂U2φ(U2, V2,Ω2)〉 =
β2

4π2U1U2

×
∑

m

∫ ∞

0
ωdω

[
(Nω,m + 1)Ym(Ω1)Y

∗
m(Ω2)

(
U1

U2

) iβω
2π

+Nω,mYm(Ω1)
∗Ym(Ω2)

(
U2

U1

) iβω
2π

]
.

(4.5)

Here we have defined the two point expectation value

〈a†ω,maω′m′〉 = Nω,mδ(ω − ω′)δm,m′ ,

in the black hole state and assumed that it is proportional to a delta function which is

reasonable at late times when nothing depends on the time or the angular position.

Note that the expansion in two point function (4.5) would not have converged without

the derivatives on U1, U2. These derivatives pull down two factors of ω and ensure that the

integrand is well behaved at ω = 0. Now we will show that we must have

Nω,m =
e−βω

1− e−βω
.

To see this, note that

∫ ∞

0
ωdω

(
e−βω

1− e−βω

(
U2

U1

) iβω
2π

+
1

1− e−βω

(
U1

U2

) iβω
2π

)
=

∫ ∞

−∞
ωdω

e−βω

1− e−βω

(
U2

U1

) iβω
2π

.

This integral can be completed in the lower half plane if |U1| > |U2| and in the upper half

plane otherwise. Picking up the poles at ω = 2πin
β , we find that this integral evaluates to

∫ ∞

−∞
ωdω

e−βω

1− e−βω

(
U2

U1

) iβω
2π

= − 1

β

∑

n

n

(
U2

U1

)n
= − U1U2

β(U1 − U2)2
.

Second note that the sum over m in (4.5) automatically leads to a delta function proportional

to δd−1(Ω1 − Ω2). From the results above, we therefore find that (4.5) and (4.3) coincide

provided that

〈aω,ma†ω′,m′〉 =
1

1− e−βω
δ(ω − ω′)δmm′ ,

〈a†ω,maω′,m′〉 = e−βω

1− e−βω
δ(ω − ω′)δmm′ .

(4.6)
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Two caveats are in order. Note that (4.3) was derived in the near-horizon limit where U1, U2 →
0 and therefore our derivation above for the value of Nω,m is not valid for low frequencies

ω ≪ 1
β . It is also not valid for Planckian frequencies ω = O(N ), where we do not expect

effective field theory to give reliable results.

We now turn to the expansion behind the horizon. Here, as we quantize the field in

region II, and approach the horizon from inside, we find an expansion.

φ(t, r∗,Ω) −→
U→0+

∑

m

∫ ∞

0

dω√
ω

(
aω,me

−iδe−iω(t+r∗)Ym(Ω) + ãω,me
−iδeiω(t−r∗)Y ∗

m(Ω)
)
+ h.c.

(4.7)

Several points are worth noting in (4.7).

1. By continuity of the mode eiω(t+r∗) = V
iβω
2π , the operators a in region II must be the

same as the operators in region I.

2. Second we need some operators to multiply the right moving modes that vary as

eiω(t−r∗). In (4.4) we identified these modes with aω,m, but we will find that this cannot

be correct here. We will call the ãω,m operators the mirror operators.

3. Note that the timelike coordinate inside the black hole is r∗. Therefore, the operator

multiplying eiω(t−r∗) is classified as an “annihilation” operator. This is in spite of the

fact that it has positive frequency with respect to t; the relevant point is that it has

negative frequency with respect to r∗.

4. Note that we have also conjugated the spherical harmonic Ym for this mode. This is

just a matter of choosing a convenient convention.

Inside the horizon, the canonical conjugate to the field is given by

π(t, r∗,Ω) = gr∗r∗
√−g ∂

∂r∗
φ(t, r∗,Ω) = rd−1 ∂

∂r∗
φ(t, r∗,Ω).

The canonical commutation relations are

[φ(t1, r∗,Ω1),
∂

∂r∗
φ(t2, r∗,Ω2)] =

i

rd−1
δ(t1 − t2)δ

d−1(Ω1 − Ω2).

By repeating the analysis of the canonical commutation relations we find that

[ãω,m, ã
†
ω′,m′ ] = δ(ω − ω′)δmm′ ,

where we have tacitly assumed that the possible mixed commutator [ãω,m, a
†
ω′,m′ ] vanishes.

The mirror annihilation operator ãω,m and the ordinary creation operator a†ω,m have the

same energy under the CFT Hamiltonian as we show in (4.13). So in a state that is time-

translationally invariant, we do not expect this commutator to have a non-zero expectation

value.12

12This assumption of time-translational invariance on the boundary is not true in some cases, like in the

geon geometry considered in [42] where the mirror operators can be identified with the ordinary ones.
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We now consider a two point function with one point in front of the horizon, and another

point behind the horizon. This calls into play both the expansions (4.4) and (4.7). Recalling

the fact that, the relation between the Kruskal and Schwarzschild coordinates inside and

outside the horizon differs by a minus sign, and repeating the derivation above for this case,

we find that

〈∂U1φ(U1, V1,Ω1)∂U2φ(U2, V2,Ω2)〉 =
β2

4π2U1U2

∑

m,m′

∫ ∞

0
ω

1
2dω(ω′)

1
2dω′Iω,ω′,m,m′ , (4.8)

with

Iω,ω′,m,m′ ≡ 〈aω,mãω′,m′〉Ym(Ω1)Y
∗
m′(Ω2)(−U1)

iβω
2π (U2)

−iβω′

2π

+ 〈aω,mã†ω′,m′〉(−U1)
iβω
2π (U2)

iβω′

2π Ym(Ω1)Ym′(Ω2) + h.c.
(4.9)

Note that the result (4.3) is valid regardless of whether the points are on opposite sides, or the

same side of the horizon. Now we find, repeating the contour integral argument above that

(4.8) agrees with (4.3) only if the two point function between the two annihilation operators

(and the two creation operators) is non-zero, whereas the mixed two-point function vanishes.

〈aω,mãω′,m′〉 = e−
βω
2

1− e−βω
δ(ω − ω′)δmm′ ; 〈aω,mã†ω′,m′〉 = 0,

〈a†ω,mã†ω′,m′〉 =
e−

βω
2

1− e−βω
δ(ω − ω′)δmm′ ; 〈a†ω,mãω′,m′〉 = 0.

(4.10)

The additional factor of e−
βω
2 arises because of the relative minus sign between U1 and U2 in

(4.9).

We can also consider the case where both points are inside the black hole. This is very

similar to the cases above, so we will just state the result. The smoothness of the two point

function of φ requires

〈ãω,mã†ω′,m′〉 =
1

1− e−βω
δ(ω − ω′)δmm′ ,

〈ã†ω,mãω′,m′〉 = e−βω

1− e−βω
δ(ω − ω′)δmm′ .

(4.11)

Finally, recall from the discussion of section 3.1.1 that relationally defined observables

in the bulk must obey the Heisenberg equations of motion. Consider a bulk point obtained

considering a geodesic that originates on the boundary at point (tb,Ωb), with no initial velocity

along the sphere, and following it for an affine parameter λ. In (3.17), this this point was

denoted by Pλ(tb,Ωb, λ). By solving the geodesic equation in the metric given by (4.1), we

can trade these coordinates for Schwarzschild coordinates.

Pλ(tb,Ωb, λ) = (t,Ω, r∗).

– 34 –



Then it is easy to check that the isometry of the metric under time-translations implies that

if we follow another geodesic that originates at tb + T , then

Pλ(tb + T,Ωb, λ) = (t+ T,Ω, r∗). (4.12)

The relation (4.12) holds for points both outside and inside the horizon. In terms of the field

this means that for the field written in Schwarzschild coordinates,

eiHTφ(t, r∗,Ω)e−iHT = φ(t+ T, r∗,Ω),

where H is the boundary Hamiltonian that translates times on the boundary. This translates

into the following commutation relations for the modes introduced above

[H, aω,m] = −ω aω,m; [H, a†ω,m] = ω a†ω,m,

[H, ãω,m] = ω ãω,m; [H, ã†ω,m] = −ω ã†ω,m.
(4.13)

Note the opposite signs in the two lines of (4.13). This is a result of the fact that we mentioned

above — the operator ãω,m multiplies a mode that is positive frequency with respect to the

Schwarzschild time.

Summary

In this section we considered a scalar field propagating in the geometry of a Schwarzschild

black hole. By simply imposing the requirement that the two point function had the correct

short distance behaviour we were able to derive necessary conditions on the two point func-

tions of the modes of the field in the black hole state. These conditions are given by (4.6),

(4.10) and (4.11). If the field is defined relationally with respect to the boundary, then the

modes must also have the Hamiltonian commutators (4.13).

In the CFT we must find operators that satisfy these conditions in any state that is dual

to a smooth geometry.

4.2 Local operators in the CFT

Let us now understand what the analysis above implies for the CFT. As discussed in section

3, we would like a family of operators in the CFT, parameterized by a set of real numbers,

φ(U, V,Ω), so that the correlation functions of these operators reproduce the correlators of a

perturbative field in AdS. In this subsection, we discuss how to find such correlators outside

the horizon. We turn to the issue of the nature of these operators inside the horizon in section

5.

4.2.1 Local operators outside the horizon

For the CFT to successfully reproduce effective field theory correlators outside the horizon, it

must have operators which play the role of the modes aω,m that we encountered in (4.4). If we

allow ourselves to use state-dependent operators, then this can be done in a straightforward

way, as we show below.
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Dual to each propagating field in the bulk, we have a generalized free field (GFF), O

on the boundary — usually it is a single trace operator in a gauge theory. The fact that

bulk correlators factorize because the bulk theory is perturbative is reflected in the large-N

factorization of boundary correlators. When evaluated in the vacuum,

〈0|O(t1,Ω1) . . .O(t2n,Ω2n)|0〉

=
1

2n

∑

π

〈0|O(tπ1 ,Ωπ1)O(tπ2 ,Ωπ2)|0〉 . . . 〈0|O(tπ2n−1 ,Ωπ2n−1)O(tπ2n ,Ωπ2n)|0〉

+O

(
1

N

)
,

(4.14)

where π sums over all possible permutations. A similar relation holds for thermal correlators.

1

Z(β)
Tr
[
e−βHO(t1,Ω1) . . .O(t2n,Ω2n)

]

=
1

2n

∑

π

(
1

Z(β)
Tr
[
e−βHO(tπ1 ,Ωπ1)O(tπ2 ,Ωπ2)

]
. . .

× 1

Z(β)
Tr
[
e−βHO(tπ2n−1 ,Ωπ2n−1)O(tπ2n ,Ωπ2n)

])

+O

(
1

N

)
,

(4.15)

Note that (4.15) is subtly different from (4.14) and does not follow from it directly. In

particular, in (4.15), the thermal two point functions have already re-summed the 1
N series

about the vacuum that appears in (4.14) into a different 1
N series. In particular, the thermal

two point function

Gβ(t1,Ω1, t2,Ω2) =
1

Z(β)
Tr
[
e−βHO(t1,Ω1)O(t2,Ω2)

]
, (4.16)

where Z(β) is the partition function, is very different from the vacuum two point function

Gvac(t1,Ω, t2,Ω2) = 〈0|O(t1,Ω1)O(t2,Ω2)|0〉.

Also, note that the large N factorization of the thermal correlators (4.15) may break down if

the operators are separated by large distances in time.

Finally, by the usual equivalence of ensembles, and the eigenstate thermalization hypoth-

esis [43], a similar statement holds when the thermal correlators on both sides of (4.15) are

replaced by expectation values in typical energy eigenstate of the CFT. Explicitly, this is the

statement that in a a typical eigenstate of the CFT |E〉 with energy E ≫ N , we again have

〈E|O(t1,Ω1) . . .O(t2n,Ω2n)|E〉 = 1

Z(β)
Tr
[
e−βHO(t1,Ω1) . . .O(t2n,Ω2n)

]
+O

(
1

N

)
,
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where β is the temperature corresponding to the energy E. At high temperatures in the CFT

we expect that this is given by

β = fβ(
E

N ), (4.17)

where fβ is a smooth function. For example, in the N = 4 super Yang-Mills with SU(N)

gauge group at high temperature and at strong coupling on a sphere of volume V , we have

β =

(
8E

3π2N2V

)− 1
4

,

Therefore, in particular, correlators in an energy eigenstate also factorize, and the eigenstate

two point function is close to the thermal one. We will use this important fact to switch freely

between thermal and pure state expectations below.

Now consider the modes of these generalized free fields.

Oωn,m =
1

T
1
2
b

∫ Tb

−Tb
O(t,Ω)eiωntY ∗

m(Ω) dt d
d−1Ω. (4.18)

Here we have discretized the modes by introducing a time band [−Tb, Tb], and correspondingly

we have introduced a discrete frequency ωn = n
Tb
. This is necessary because if we consider

the strict Fourier modes of the CFT operators, they do not have the behaviour that we need

below. In [9, 8], we performed this discretization by “clubbing together” these Fourier modes,

whereas here we have reverted to a time band that has some other advantages. We also need

a UV cutoff on n because if we consider very high energy modes then the 1
N corrections that

we have neglected above become important.

Now we find that in eigenstates

〈E|[Oωn,m,O
†
ωn′ ,m′ ]|E〉 = Cβ(ωn,m)δωnω′

n
δmm′ +O

(
N−1

)
.

On the right hand side the delta functions follow from the fact that both sides have the same

CFT energy and CFT angular momentum. The non-trivial coefficient Cβ(ωn,m) is a function

of the temperature β corresponding to E by (4.17). Now we define the operators

aωn,m =
Oωn,m√
Cβ(ωn,m)

+ O
(
N−1

)
. (4.19)

These operators are the natural candidates for creation and annihilation operators in the

bulk. By construction we have that up to N−1 corrections

[H,aωn,m] = −ωnaωn,m, [aωn,m,a
†
ω′
n,m

′ ] = δωn,ω′
n
δm,m′ .

It is not difficult to check that they have the right thermal two point function.

1

Z(β)
Tr
(
e−βHaωn,ma

†
ωn,m

)
=

1

Z(β)
Tr
(
a†
ωn,me

−βHaωn,m

)
= eβωn

1

Z(β)
Tr
(
e−βHa†

ωn,maωn,m

)

= eβωn
1

Z(β)
Tr
(
e−βHaωn,ma

†
ωn,m

)
− eβωn

1

Z(β)
Tr
(
e−βH

)
,
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where we have used the cyclicity of the trace and the commutation relations above. A little

algebra now shows that

1

Z(β)
Tr
(
e−βHaωn,ma

†
ωn,m

)
= 〈E|aωn,ma

†
ωn,m|E〉 = 1

1− e−βωn
,

where we have used the equivalence of ensembles and the relations above hold only up to 1
N

and other corrections from discretizations.

Now consider the CFT operator

φ(t, r∗,Ω) =
∑

ωn,m

1√
ωn

aωn,mfωn,m(t, r∗)Ym(Ω) + h.c. (4.20)

where fωn,m is a solution of the Klein Gordon equation in the metric (4.1) with the boundary

condition at the horizon

fωn,m −→
r→r0

(
eiδeiωnr∗ + e−iδe−iωnr∗

)
,

and normalizable boundary conditions at infinity. The expansion (4.20) not only fulfills

the necessary near-horizon conditions that we derived above, it also correctly reproduces the

behaviour of a bulk field propagating in a smooth spacetime in the rest of AdS. This completes

our construction of local operators in a high energy eigenstate. As we mentioned in section

3.2.3, we obtain a bonus, and a consistency check, from AdS/CFT. The fields constructed in

(4.20), with the aid of (4.19) automatically satisfy

lim
r→∞

r2∆Z2〈E|φ(t1, r∗,Ω1)φ(t2, r∗,Ω2)|E〉 =Wβ(t1 − t2,Ω1,Ω2).

where Z is a numerical factor and Wβ is defined in (4.16). Note that we did not put this

relation in by hand. It follows from, and is a prediction of the claim that the eigenstate is

dual to the black-hole geometry.

4.2.2 A state-independent mini-superspace bulk-boundary map outside the hori-

zon

In (4.19), we explicitly put in the commutator in the energy-eigenstate. The modes in (4.20)

also contain information about the state. Therefore, as written the expression (4.20) is state-

dependent and will not correctly reproduce local correlation functions in states corresponding

to black holes with macroscopically different properties.

Now we consider whether it is possible to write down an expansion that will work outside

the horizon in a larger class of states. The basic idea is to use projectors to try and “detect”

the state. We will show how one can generalize (4.20) so that it works in all high energy

spherically symmetric eigenstates.

Given a spherically symmetric energy eigenstate |E〉, we can associate a temperature to

the energy eigenstate by means of (4.17), and also an associated metric via (4.1). We denote
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this metric as gE,µν . We also consider modes fE,ω,m; these are the same as the modes fω,m
in (4.20), except that we have displayed their energy dependence explicitly. Now, consider

φstate-ind(t, r∗,Ω) =
∑

E

∑

ω,m

1√
ωn

(
1√

Cβ(ωn,m)
Oωn,m|E〉〈E|

)
fE,ωn,m(t, r∗)Ym(Ω) + h.c,

(4.21)

where, as we emphasized above, the expectation of the commutator that we have used to nor-

malize the mode also depends on the energy eigenstate. The claim is that this generalizes the

construction (4.20) so that, as long as we stay away from the horizon, it works in spherically

symmetric states of the CFT corresponding to an arbitrary temperature.

To verify this, note that the expression (4.21) is designed so that when it acts directly

on an energy eigenstate its action reduces to that of (4.20). Now consider an excitation of an

energy eigenstate by a polynomial in the modes (4.18)

Oω1,m1 . . .Oωn,mn |E〉 =
∑

i

αi|Ei〉.

If
∑
n≪ N and

∑
nωn ≪ N , then all states |Ei〉 that appear above have E−Ei

N = 0+O
(

1
N
)

and therefore, from (4.17), the coefficients αi are restricted in support to states that have the

same macroscopic temperature and correspond to the same macroscopic metric. Therefore,

(4.21) again acts on this superposition as (4.20) away from the horizon. This is the expected

behaviour since we do not expect these excitations to have any significant back-reaction on

the geometry.

It is easy to verify that the action of (4.21) is also consistent with the fact that we expect

state of the form (3.4) to behave like classical superpositions of different geometries.

If we approach too close to the horizon, then not all quantities of physical interest are

smooth functions of the energy. For example, there has been some debate in the literature

on highly spacelike modes [37] where the ratio of value of the mode function near the horizon

to its value at the boundary can vary exponentially with temperature. Although we showed

in [7] that these modes do not present an obstruction to reconstructing the field near the

horizon in the thermal state, it is less clear how to deal with this difficulty in the putative

state-independent expression (4.21). It is also not clear whether (4.21) can be refined to work

in all non-spherically symmetric situations.

5 Arguments against state-independent operators

In the previous section we explicitly found operators aωn,m in the CFT that were dual to

propagating modes in the bulk. However, if we want to describe local operators behind the

horizon, then we also need to locate the operator ãωn,m in the CFT. Alternately, we could

find operators Õωn,m related to ãωn,m by a relation analogous to (4.19). At this order in 1
N ,

we do not have to consider corrections to (4.19) and we will switch freely between Õω,m and

ãω,m.
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In this section, we will review and refine some of the arguments that suggest that these

operators cannot be state-independent in the CFT. In [2, 3, 4], these arguments were used to

argue that the CFT could not look past the black hole horizon, or even more dramatically

that the horizon was just a cloak for a “firewall”. Our interpretation is, instead, that these

arguments tell us that the bulk to boundary map is state-dependent. From this point of

view, the objective of this section is to prove that one must either accept state-dependence

or firewalls.

5.1 Some general results regarding projectors

Before we continue with this analysis, let us make an elementary observation about matrix

elements of projection operators. Eigenvalues of projection operators are either 1 or 0, so

the operator norm of a projection operator is ||P || = 1. As a result projectors are bounded

operators and this implies that the map from state vectors |Ψ〉 into expectation values 〈Ψ|P |Ψ〉
is a continuous map.

Hence, to the extent that we can characterize the physical properties of a state by evaluat-

ing expectation values of projectors, nearby state vectors must have nearby physical properties.

Let us try to make this a bit more precise. Suppose that we have two unit-normalized

states |Ψ1〉 and |Ψ2〉 in the Hilbert space and we denote their difference as |δΨ〉 = |Ψ1〉−|Ψ2〉.
We define δ = || |δΨ〉 ||. We consider a projector and estimate the difference of its expectation

value on the two nearby states

|〈Ψ1|P |Ψ1〉 − 〈Ψ2|P |Ψ2〉| = |〈δΨ|P |Ψ2〉+ 〈Ψ2|P |δΨ〉+ 〈δΨ|P |δΨ〉|
≤ |〈δΨ|P |Ψ2〉|+ |〈Ψ2|P |δΨ〉|+ |〈δΨ|P |δΨ〉|
≤ 2δ + δ2.

Notice that it may also be useful to think of two nearby states as those obeying

|〈Ψ1|Ψ2〉| = 1− ǫ2

2
, (5.1)

with small positive ǫ. Since physical states are represented by rays on the Hilbert space, we

are free to chose the phase of the vectors as we like. It is easy to check that there is a choice

where ǫ = δ and the same result as before follows i.e. for any two vectors obeying (5.1), we

have

|〈Ψ1|P |Ψ1〉 − 〈Ψ2|P |Ψ2〉| ≤ 2ǫ+ ǫ2. (5.2)

We will use these results below.

5.2 Na 6= 0 Argument

First, let us consider the Na 6= 0 argument [4]. The essence of this argument is as follows. We

would like the set of states in the CFT to obey two conditions, both of which seem motivated

on physical grounds.
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1. Typical superpositions of energy eigenstates are not excited states from the point of

view of the infalling observer.

2. If we consider states that are eigenstates of a Schwarzschild number operator Nωn ≡
a
†
ωn,maωn,m, for the modes introduced in (4.18) and (4.19), then these are excited states

from the point of view of the infalling observer.

To phrase the first condition more precisely consider the following set of energy eigenstates

RE ≡ {|Ei〉 : E −∆ ≤ Ei ≤ E +∆},

where E is some mean energy and ∆ is a spread. We will use the same symbol RE to denote

the Hilbert space spanned by these states and the meaning should be clear from the context.

We also denote

DE ≡ dim(RE).

Finally we introduce

PE ≡ projector onto RE .

Now consider a projection operator P F corresponding to the measurement of the infalling

observer, defined so that P F = 0 corresponds to a smooth and empty interior. This projector

can be constructed as an ordinary projector in the CFT Hilbert space if the bulk to boundary

map is state-independent. The authors of [4] used the number operator, as measured by the

infalling observer, to detect whether the horizon was smooth but it is possible to use other

operators and therefore we keep the analysis here general.

From the first physical assumption mentioned above, we expect that for typical states in

RE the expectation value of P F should be small. Hence we expect

1

DE
TrRE

(P F ) = 0 + O

(
1

N

)
, (5.3)

The second condition means that for eigenstates |Ni〉 of the Schwarzschild number operator

Nωn we have

〈Ni|P F |Ni〉 = O(1) . (5.4)

In the large N limit we have [H,Nωn ] = 0 + O(N−1), so we intuitively expect that we can

find a basis of the Hilbert space RE spanned by number operator eigenstates |Ni〉. The trace
of an operator can be evaluated in any basis, so we can evaluate the trace (5.3) in the |Ni〉
basis. For each of the basis vectors (5.4) gives a significant contribution. Then it seems that

we get
1

DE
TrRE

(P F ) = O (1) + small error. (5.5)

and that hence typical states are not smooth, in contradiction to the first assumption above.

This concludes the Na 6= 0 argument of [4]. The result was interpreted by [4] as an indication

that typical pure states do not have a smooth interior. The small error above is due to the
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fact that the operators H and Nωn can be simultaneously diagonalized within RE only in

an approximate sense, in the large N limit.

One might attempt to find a loophole in this argument by looking more carefully at the

error terms mentioned above. Could it be that, contrary to what was assumed in [4], these

error terms are significant enough to make the RHS of equation (5.5) close to zero? In the

following subsection, we perform a systematic analysis of the error terms and exclude the

possibility that they can invalidate the Na 6= 0 argument.

5.2.1 Bounding errors in the Na 6= 0 argument

The linear algebra literature contains several results on “almost commuting matrices” [44],

which could be used to make the argument above rigorous. Here, rather than taking this path,

we will follow an approach motivated by perturbation theory to make the Na 6= 0 paradox

sharper.

We will assume that

H = H0 +
1

N V, (5.6)

where the “infinite N” Hamiltonian, H0 has the property that [H0,Nωn ] = 0 and V is

a “perturbation”, whose matrix elements have the property that 〈E|V |E〉
E = O(1) for high

energy eigenstates. Note that (5.6) is somewhat stronger than our original starting point —

which was simply that 〈E|[H,Nωn ]|E〉 = O
(

1
N
)
.13

If (5.6) is correct, then by standard arguments from perturbation theory we expect that

groups of eigenstates of H can be reorganized into eigenstates of Nωn and vice versa. Now

consider the set of all number eigenstates that can be accurately approximated by energy

eigenstates in RE . We will call this set of Nωn eigenstates R− and denote its dimension by

D−. The projector onto R− will be denoted by P−. By definition,

〈Ni|PE |Ni〉 = 1−O

(
1

N

)
, ∀|Ni〉 ∈ R−.

The structure of these two sets is shown in Figure 6.

The key physical consequence of (5.6) is that to form eigenstates of H0 with an eigenvalue

E, we have take eigenstates of H with H-eigenvalues E ± ∆, where ∆ = O
(
E
N
)
= O(1).

Therefore if we take the original spread of energies ∆ in RE to be large, ∆ ≫ O(1), then we

have DE −D−
DE

≪ 1. (5.7)

If we accept these statements, then it is easy to produce a contradiction. From the

assumptions above, given a |Ni〉 ∈ R−, we have

|Ni〉 =
∑

m

U∗
mi|Em〉 =

∑

m∈RE

U∗
mi|Em〉+

∑

m/∈RE

U∗
mi|Em〉 ≡ |Mi〉+ |Ri〉,

13It is subtle to consider perturbations of the Hilbert space at high energies in 1
N because the Hilbert space

changes discontinuously with N and its dimension goes off to ∞ as N → ∞. So we are assuming that (5.6)

holds at each N and some properties of these operators, such as the ratio of the dimensions of different sets

below have a well defined large N limit.
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Figure 6: The schematic structure of the two relevant sets. The solid circular set is the set of energy

eigenstates. The smaller set of number eigenstates, shown as an elliptical patterned set, is almost

completely contained inside the set of energy eigenstates.

where U∗
mi is some matrix that implements the change in the two eigenvalue bases and where

〈Ri|Ri〉 = O
(

1
N
)
. Here, we have divided the sum into two parts and used the definition of

R− which is precisely that its elements can be re-expressed as elements in RE . Moreover,

using (5.2) we find that 〈Mi|P F |Mi〉 = 〈Ni|P F |Ni〉+O
(

1
N
)
. But this implies that

1

DE
Tr
(
P−PEP FPEP−

)
=

1

DE
Tr
(
P−P FP−

)
=

1

DE
Tr
(
P FP−

)
= κ

D−
DE

,

where κ is some constant of O (1) which determines the probability for an infalling observer to

see an excitation in a number eigenstate and which follows from (5.4). Here we have neglected

O
(

1
N
)
corrections.

Second notice that the original trace in the microcanonical ensemble can be transformed

by a sequence of elementary manipulations to

Tr
(
P FPE

)
= Tr

(
PEP FPE

)
= Tr

(
(1− P− + P−)PEP FPE

)

= Tr
(
(1− P−)PEP FPE

)
+Tr

(
P−PEP FPE

)

= Tr
(
(1− P−)PEP FPE(1− P−)

)
+Tr

(
P−PEP FPEP−

)
.

Here we have repeatedly used the cyclicity of the trace, and the fact that projectors square

to themselves. Now notice that given any product of projectors X = P1 . . . Pn, we find that

Tr(X) = Tr(X†X) ≥ 0. Therefore the first term in the last line above is positive and we find

Tr
(
P FPE

)
≥ Tr

(
P−PEP FPEP−

)
= κ

D−
DE

. (5.8)

Combing the result of (5.8) and the physical assumption (5.3), we seem to find

0 = Tr(P FPE) ≥ κ
D−
DE

. (5.9)
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This is clearly a contradiction, if we recall (5.7). Note that the difference between the left

and right sides of (5.9) is O (1), and so the errors, which we have bounded to be O
(

1
N
)
using

the construction above cannot affect this result.

This was used by [4] to suggest that (5.3) should be abandoned. We will show below how

a more plausible explanation is that P F does not exist as a fixed (state-independent) linear

projector; rather the question of whether a firewall exists or not depends on a state-dependent

measurable.

5.3 Negative occupancy argument

We now present an argument that is closely related to the “counting argument” (or the lack of

a left-inverse argument). As originally stated in [3], the counting argument is as follows. First,

we consider a mode behind the horizon with creation and annihilation operators obeying the

algebra

[ãωn,m, ã
†
ωn,m] = 1. (5.10)

Notice that this equation unambiguously selects ã†
ωn,m as the “creation operator”, since we

can rewrite it as
[
(1 + ã†

ωn,mãωn,m)
−1ãωn,m

]
ã†
ωn,m = 1, which means that the operator ã†

ωn,m

has a left inverse and hence it does not annihilate any state.

Then we notice that, as explained in section (4), modes behind the horizon obey “in-

verted” commutators with the CFT Hamiltonian

[H, ã†
ωn,m] = −ωnã†

ωn,m. (5.11)

This means that the operator ã†
ωn,m, despite being a creation operator, lowers the energy of

the CFT. Hence, it maps the space of states of energy E into that of energy E−ωn. However,
the density of states in the CFT increases monotonically with energy. This implies that the

operator ã†
ωn,m maps the larger Hilbert space of energy E into a smaller one of energy E−ωn.

The linear operator ã†
ωn,m can do this only if it annihilates a fraction of the states of energy

E. But this is in contradiction with the prediction of (5.10) that ã†
ωn,m has a left inverse.

Hence it seems that imposing the algebra (5.10), (5.11) for state-independent linear op-

erators is inconsistent with the growth of entropy in the CFT. This concludes the “counting

argument“ of [3].

One apparent difficulty with this argument is that it is phrased in terms of operator

relations (5.10), (5.11). One might wonder whether it is possible to satisfy these relations,

not as operator equations, but only within simple correlation functions. We now present a

closely related argument, that is phrased entirely within the context of low point correlation

functions.

Let PE be the projector onto a narrow band of energy states. Define DE = Tr(PE),

which counts the number of states in this band. We consider the expectation value of the
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occupation level of the mode in this ensemble of states

〈Ñωn〉 = D−1
E Tr

(
PE ã†

ωn,mãωn,m

)
= D−1

E Tr
(
ãωn,mPEã

†
ωn,m

)

= D−1
E Tr

(
PE+ωn ãωn,mã

†
ωn,m

)
+ δ1

= eβωn +D−1
E Tr

(
PE+ωn ã

†
ωn,mãωn,m

)
+ δ1 + δ2.

(5.12)

In the first line we used the cyclicity of the trace. In the second line we used that (5.11)

should hold inside simple correlators, which implies ãωn,mPE = PE+ωnãωn,m up to some

small error δ1. In the last line we used that (5.10) should hold in simple correlators, up to

some small error δ2. Since the trace above consists just of a sum of low point correlators we

expect that δ1, δ2 ∼ O
(

1
N
)
. This assumptions allows us to ignore these errors in deriving the

contradiction that follows. The factor outside the trace of eβωn arises because

D−1
E Tr(PE+ωn) =

DE+ωn

DE
= eβωn .

We also use the fact that for a reasonably smooth operator Ñωn , we have

D−1
E Tr

(
PE+ωn ã

†
ωn,mãωn,m

)
= eβωn〈Ñωn〉+O

(
N−1

)
.

Replacing this in (5.12) and dropping all subleading error terms we arrive at our final relation

〈Ñωn〉 = eβωn + eβωn〈Ñωn〉 ⇒ 〈Ñωn〉 = − 1

1− e−βωn
,

which is negative! In some sense, this unphysical result is not surprising, because ãωn,m is

an annihilation operator with positive energy, and the thermal properties of such an operator

seem to be ill-defined.

To summarize, the argument above demonstrates that there cannot exist linear, state-

independent operators in the CFT which approximately satisfy the relations (5.10), (5.11)

inside simple correlation functions. One might conclude from this that the black hole does

not have an interior that the CFT can describe. Instead, we advocate [7, 9, 8] that the desired

relations (5.10), (5.11) can be consistently realized by allowing the operators ãωn,m, ã
†
ωn,m to

depend on the state. For state-dependent operators the counting argument does not apply [9]

and the negative occupancy argument presented above does not apply since it is meaningless

to evaluate the trace, if the operators vary as a function of the state in the ensemble.

5.4 The generic commutator

Now we consider the fact that there is not enough “space” in the CFT Hilbert space to

accommodate the commutant of the ordinary operators if they are finely spaced enough.

There are two ways in which this argument can be phrased. One point, which was originally

made in [3] is as follows. If we assume that the algebra of the mirror operators is given by

some “scrambling“ unitary transform of the ordinary operators so that we have

ã†
ωn,m = Ua†

ωn,mU
†,
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then we find that, for a generic unitary operator U , we have

| [ã†
ωn,m,aωn,m] |2 ∼ O(1) .

This by itself is not a proof of the lack of existence of the commutant. In particular, if the

Hilbert space has a factorization into coarse and fine pieces, as was discussed originally in [7],

then this would break down.

In what follows, we will discuss how finely an observer has to measure generalized free

fields on the boundary, in order to exhaust the space of the CFT. However, first, we turn to

two toy models: the spin chain and a set of decoupled harmonic oscillators.

Consider a chain of spins. We denote the operators acting on this chain by σia as in [9].

We assume that the spins are all decoupled. The index i = 1 . . . N , where N is the length of

the spin chain, and a = x, y, z as usual. We normalize them to satisfy [σia, σ
j
b ] =

i
2δ
ijǫabcσ

i
c.

A complete set of operators for the Hilbert space is obtained by taking arbitrary products

of these single-spin operators. Nevertheless, even if we consider the significantly smaller set

of just the N single-spin operators, the commutant of this smaller set is trivial and consists

only of the identity operator.

One might hope that there exist (state-independent) operators σ̃, apart from the identity,

which approximately commute with all single-spin operators. We now demonstrate that this

is not possible: if σ̃ has small commutators with all single-spin operators, then σ̃ is small

as an operator. To show this, we consider an arbitrary operator σ̃ acting on the spin chain.

In order to factor out the identity operator, which is trivially in the commutant, we assume

that σ̃ is traceless, which means that we can represent it as a polynomial in the atomic spin

operators

σ̃ =
∑

im,am,n

ca1...ani1...in
σi1...ina1...an ,

where σi1...ina1...an ≡ σi1a1 . . . σ
in
an , and we impose the constraint that i1 < i2 < . . . in to avoid

overcounting.

We find that we have the following relation

[σ̃, σjb ] =
i

2

∑
ca1...ani1...in

(
δji1ǫa1bcσ

i1
c σ

i2...in
a2...an + δji2ǫa2bcσ

i2
c σ

i1i3...in
a1a3...an + . . .

)
.

While we have written a sum of delta functions on the right, note that at most one of them is

non-vanishing. A natural norm of an operator to consider in this space is |X|2 = 1
2nTr(X

†X).

With this definition

|[σ̃, σjb ]|2 =
1

4

∑
|ca1...ani1...in

δji1ǫa1bc|
2 + |ca1...ani1...in

δji2ǫa2bc|
2 + . . .

Note that there is no interference between the different terms in the sum due to the observation

above. However, when we sum over b we find that there are two values for which the completely

anti-symmetric tensor is non-zero. This leads to

∑

j,b

|[σ̃, σjb ]|2 =
1

2

∑
|ca1...ani1...in

|2 = 1

2
|σ̃|2.
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The physical implication of this is as follows. If an observer can measure the various single

spin operators, then given any operator σ̃, the observer can detect that it fails to commute

with these “ordinary” operators. In particular, it is not necessary for the observer to measure

very complicated observables. Even if the observer does not have access to more complicated

products of these spin operators, she can determine that the commutant is trivial.

The argument presented above shows that an operator of unit-norm, |σ̃|2 must have an

order 1 commutator with at least one single-spin operator, or alternatively it could have O
(
1
S

)

commutators with all the single-spin operators. In either case, the important point is that it

cannot simultaneously have smaller commutators with all the σia.

Now, we consider a similar argument for the case of decoupled harmonic oscillators. The

setup was described in more detail in [9]. We have unbounded creation and annihilation

operators. The frequencies of the oscillators are given by ω1 . . . ωN and their respective

creation and annihilation operators are specified by a1 . . . aN . The only non-zero commutators

are [ai, a
†
j ] = δij . The Hilbert space is a Fock space indexed by the eigenvalues of the number

operators Ni = a†iai.
We can still write any operator of interest as

ã =
∑

pj ,qj

A(p1, q1 . . . pn, qn)a
p1
1 (a†1)

q1 . . . apNN (a†N )
qN .

Once again we factor out factors of Ni from each monomial in the polynomial above so that

either pi = 0 or qi = 0 for all i. the most general operator then lives in the direct product of

the vector space of polynomials of Ni and the space of operators above. But note that the

sum above can also accommodate operators where a particular frequency, say ωi, does not

appear simply by setting pi = qi = 0.

Now in a typical equilibrium state, we see that the only non-zero expectation values are

products of Ni. This implies that

〈ã†ã〉 =
∑

|A(p1, q1 . . . pn, qn)|2〈aq11 (a†1)
p1ap11 (a†1)

q1 . . . aqNN (a†N )
pNapNN (a†N )

qN 〉,

where the . . . indicate similar terms for all the other frequencies and cross terms vanish.

Evaluating the expectation value above in a state |N1 . . . NN 〉 we find that

〈ã†ã〉 =
∑

pj ,qj

|A(p1, q1 . . . pn, qn)|2(N1+1)q1(N1+q1−p1+1)p1 . . . (NN+1)qN (NN+qN−pN+1)pN ,

where the Pochhammer symbol is (x)n ≡ x(x+ 1) . . . (x+ n− 1).

Next we notice that

[ã, aj ] = −
∑

A(p1, q1, . . . pn, qn)qja
p1
1 (a†1)

q1 . . . a
pj
j (a†j)

qj−1 . . . apNN (a†N )
qN .

[ã, a†j ] =
∑

A(p1, q1, . . . pn, qn)pja
p1
1 (a†1)

q1 . . . a
(pj−1)
j (a†j)

qjapNN . . . (a†N )
qN .

Defining a new function, by the recursion relations

B(p1, q1 . . . pj , qj , . . . pn, qn) = (pj + 1)A(p1, q1, . . . pj + 1, qj , . . . pn, qn),

B(p1, q1 . . . pj , qj , . . . pn, qn) = (qj + 1)A(p1, q1, . . . pj , qj + 1, . . . pn, qn),
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we see that we have

∑

j

〈|[ã, aj ]|2〉+ 〈|[ã, a†j ]|2〉 =
∑[

|B(p1, q1 . . . pn, qn)|2(N1 + q1 − p1 + 1)p1(N1 + 1)q1 . . .

× (NN + qN − pN + 1)pN (NN + 1)qN

]
.

In this case, we do not have a simple result like that of the simple harmonic oscillator.

Indeed for some operators ã that are comprised of creation and annihilation operators, which

have a very high occupancy in the state, it seems possible to make 〈ã†ã〉 ≫ 〈∑j〈|[ã, aj ]|2〉+
〈|[ã, a†j ]|2〉. However, in most configurations and for almost all operators ã, these two terms

are comparable.

Note that in order to build an entire effectively isomorphic commuting algebra, we need

a ã operator for each ordinary operator. Therefore even if, in some states, some of these

operators have a small commutator with the ordinary operators, it is clear that there is not

enough space in this chain of simple harmonic oscillators to accommodate mirror operators

for each oscillator.

It is this intuition that carries over to the CFT. Consider the set of modes of generalized

free fields. For simplicity, imagine separating them in frequency by ω0, so that these modes all

appear to be Onω0,m. As usual, there could be other GFFs, while we are displaying only one

of them. The main observation is the following. By putting a cutoff at the stretched horizon,

we can limit the maximum angular momentum m that can appear for a given ωn = nω0.

Second, as we take ω0 ∝ 1
Nα , where the precise power α depends on how we impose the cutoff

above, then we find that these modes are already enough to account for the entropy of the

CFT. (This is similar to the “brick wall” explanation of the black hole entropy in flat space

[45].) Dimension counting, and the intuition from the simple harmonic oscillator above would

then suggest that there are no operators Õωn,m that commute with all these modes.

While this commutator argument is a powerful constraint in practice, and was an impor-

tant guiding principle in our construction [9, 8], as the reader will notice it is hard to make

it rigorous beyond this level. Moreover, power law suppressed commutators may be justified

and even needed on physical grounds since the fields in the bulk are not strictly local. If we

are willing to accept these small commutators, then the “commutator argument” above loses

its power somewhat. For example, the reader can consult the talk [46] for an example that

predates [8, 9] and explores a model with such commutators.

This concludes our summary of the arguments that suggest that Õωn,m cannot be found

as state-independent operators in the CFT. A logical possibility is to accept that black holes

have no interior. However, we believe that a more compelling alternative is that the black

hole interior is described by state-dependent operators in the CFT.
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6 Paradoxes for the eternal black hole

In this section, we show how versions of the paradoxes discussed in section 5 also appear in the

thermofield double state. It is sometimes believed, even by those who advocate that the single

sided black hole does not have an interior, that the thermofield double state nevertheless does

correspond to an eternal black hole with a smooth horizon. For example, see [4].

We will now show that this position is inconsistent. If we assume that the thermofield

double state is dual to the eternal black hole, and demand only that the bulk theory respects

diffeomorphism invariance — which is a minimal requirement in a theory of quantum gravity

— then we can set up a large new class of states, all of which are dual to smooth black holes.

This new class of states is obtained by performing one-sided diffeomorphisms on the geometry.

We argue that diffeomorphisms that die off at the right boundary (but not, possibly, on the

left boundary) should not affect the value of observables defined relationally from the right.

This is a robust statement, and relies only on the fact that the gravity dual is diffeomorphism-

invariant — and not, in any way, on the equations of motion.

We then show that demanding that we find operators that behave correctly in all the

states above leads to the same paradoxes that one finds in the single-sided case. Therefore

a map between the bulk and the boundary, which can successfully describe the black hole

interior in all these states, must be state-dependent.

Our analysis is also useful because it indicates what state-dependence really means. To

obtain the paradoxes above, we have to perform “extremely large” diffeomorphisms on one

side — shifting the left boundary by timescales of order eN ×ℓAdS before gluing it back to the

geometry. What the analysis below shows is that it is not possible to use the same operator

in the original state, and in all states that are obtained by deforming it with diffeomorphisms

that could be exponentially large.

We start by reviewing the thermofield double state, and the geometry of the eternal black

hole. Then we examine a class of “phase shifted” states, which are natural to consider from

the point of view of the CFT, and show that they are also smooth because they are related

to the original geometry by diffeomorphisms. We then set up analogues of the single-sided

paradoxes. We defer the construction of state-dependent operators to section 7.

A shorter version of the arguments of this section was also presented in [23]. In this

section we elaborate on the arguments there and fill some gaps. For some previous discussion

of the eternal black hole see [47].

6.1 Review of the eternal black hole and the thermofield double

We start by reviewing the eternal black hole geometry and the duality proposed in [40]. The

important point that we want to emphasize is the “time reversal” that is involved in gluing

the geometry to the CFT, which is sometimes under-emphasized.

A schematic figure of the eternal black hole is shown in Figure 7. For the eternal black

hole, the metric is again given by (4.1) outside the horizon. Just as in 4.1 we introduce tortoise

coordinates with the property that r∗ → −∞ at the future horizon. The difference with the
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Figure 7: Eternal Black Hole in AdS.

discussion in 4.1 is that after introducing the Kruskal coordinates, and extending the geometry

inside the black hole we now extend the metric in a maximal way while assuming that there is

no matter anywhere. This leads to the eternal black hole shown in figure 7, which also contains

regions III and regions IV as shown in the figure. We can introduce Schwarzschild coordinates

in all regions, and the relationship between the Kruskal and Schwarzschild coordinates is given

below.
Region signs of (U, V ) Relationship to (t, r∗)

I U < 0, V > 0 U = −e
2π
β
(r∗−t), V = e

2π
β
(r∗+t)

II U > 0, V > 0 U = e
2π
β
(r∗−t), V = e

2π
β
(r∗+t)

III U > 0, V < 0 U = e
2π
β
(r∗−t), V = −e

2π
β
(r∗+t)

IV U < 0, V < 0 U = −e
2π
β
(r∗−t), V = −e

2π
β
(r∗+t)

(6.1)

The boundary, in these coordinates, is determined by the hyperbola UV = −1. On the

other hand, the singularity lives at another hyperbola UV = positive constant. The two null

rays U = 0, V = 0 determine all four horizons. The horizon between region I and region II,

which would be the “future horizon” for the right infalling observer is at U = 0. This same

null ray also demarcates the boundary between regions IV and III and is therefore the “past

horizon” for the left observer. The ray V = 0 is the “future horizon” for the left infalling

observer, and the past horizon for the right observer.

The advantage of the choice of coordinates in (6.1) is that, in the U-V plane, surfaces of

t = const are simply straight lines running through the origin. This includes the horizons,

which are t = ∞ and t = −∞ respectively. Therefore, in these coordinates, geometrically we

can think of time-translations as “rotations” of the Kruskal diagram about the bifurcation

point. Of course, we caution the reader that no finite rotation can rotate a line past the

horizons. On the other hand, surfaces of constant r∗ are hyperboloids that always stay within

a single region.

Now, we mention an important point. When we associate the Schwarzschild time with

the CFT time, we must “glue” the geometry to the left CFT with a flip in the time coordinate
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in region III. Therefore, denoting the time in CFTR by tR and the time in CFTL by tL we

have the identifications

tL = −t, tR = t, (6.2)

where t is the Schwarzschild time. An alert reader might ask that, given that there is no

natural choice of the origin of time, why one should not glue the geometry on the left as

tL = −t + T , where T is some constant. This is indeed possible, and will be a central point

in our discussion below.

We now turn to a description of the thermofield double state of the CFT. Maldacena

conjectured [40] that the geometry we have described above is dual to an entangled state of

two identical, non-interacting CFTs

|Ψtfd〉 =
1√
Z(β)

∑

E

e−
βE
2 T |E,E〉, (6.3)

Here Z(β) is the partition function of a single CFT at the inverse temperature β and |E,E〉 ≡
|E〉L ⊗ |E〉R is a tensor-product state of two energy eigenstates. Although the CFTs are

entangled, they are non-interacting, and T is the time-reversal operator, which acts on left

energy eigenstates.14 The formula (6.3) is usually written with a tacit choice of the time-

reversal operator

T |E〉 = |E〉,

in which case (6.3) reduces to the standard form

|Ψtfd〉 =
1√
Z(β)

∑

E

e−
βE
2 |E,E〉,

We denote the Hamiltonian of the “left CFT” by HL while that of the “right CFT” by H15.

We immediately see that |Ψtfd〉 has a symmetry

(HL −H)|Ψtfd〉 = 0

⇒ ei(HL−H)T |Ψtfd〉 = |Ψtfd〉.
(6.4)

This symmetry of the thermofield double state corresponds to the isometry of the bulk geome-

try under t→ t+T . However, as is clear from the equation above, this symmetry corresponds

to a shift in the CFT time in opposite directions in the two CFTs.

t→ t+ T ⇒ tR → tR + T ; tL → tL − T.

Now, let us examine why the eternal black hole, glued to the boundary as described

above, is dual to the thermofield state |Ψtfd〉, which involves a time-reversal on the left rather

14For simplicity, we assume that the CFT under consideration is invariant under time-reversal and direct

the reader to [48] for comments about the more general case.
15We use the notation (HL,H) instead of what would be the more symmetric (HL,HR) in order to keep

the notation consistent with section 9 and also because we try to define “right-relational” observables, thus

breaking the symmetry between the two CFTs.
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than a time-reversal combined with a time-translation. Consider mixed correlators of a single

trace operator in the thermofield state with one point, (t1, r1,Ω1) in region III and the other

point (t2, r2,Ω2) in region I. We would like to ensure that the bulk two-point function in this

geometry has a limit that leads to these correlators.

Z2 lim
r1,r2→∞

(r1)
∆(r2)

∆〈φ(t1, r1,Ω1)φ(t2, r2,Ω2)〉EBH = 〈Ψtfd|O1(−t1,Ω1)OR(t2,Ω2)|Ψtfd〉,
(6.5)

where the left hand side is computed using bulk effective field theory in a metric that behaves

asymptotically on both the right and the left as (4.1), and the right hand side is computed

as an expectation value in the thermofield state.

To compute the bulk two point function in the eternal black hole metric is non-trivial,

but we can do it patch-wise as follows. We write down expansions for the field in regions I,

II, and III of the eternal black hole geometry. Only the near-horizon expansions are relevant

and, with a short extension of the analysis of section 4 these expansions can be written as

follows.

φ(t, r∗,Ω)
V >0−−−−→
U→0−

∑

m

∫ ∞

0

dω√
ω
aω,me

−iωtYm(Ω)
(
eiδeiωr∗ + e−iδe−iωr∗

)
+ h.c (6.6)

φ(t, r∗,Ω)
V >0−−−−→
U→0+

∑

m

∫ ∞

0

dωe−iδ√
ω

(
aω,me

−iω(t+r∗)Ym(Ω) + ãω,me
iω(t−r∗)Y ∗

m(Ω)
)
+ h.c (6.7)

φ(t, r∗,Ω)
U>0−−−−→
V→0+

∑

m

∫ ∞

0

dωe−iδ√
ω

(
ãL,ω,me

−iω(t+r∗)Ym(Ω) + aL,ω,me
iω(t−r∗)Y ∗

m(Ω)
)
+ h.c

(6.8)

φ(t, r∗,Ω)
U>0−−−−→
V→0−

∑

m

∫ ∞

0

dω√
ω
aL,ω,me

iωtYm(Ω)
(
eiδeiωr∗ + e−iδe−iωr∗

)
+ h.c (6.9)

Here we have introduced two new operators aL,ωm and its mirror ãL,ω,m. At the horizon

between region III and region II, the field is defined using a left relational coordinate system

using the techniques of (3.1.1) and at the horizon between region I and II, it is defined using

a right relational coordinate system as usual.

The phase factors of eiδ in the expansion above are slightly subtle. In (6.6) the two

phase factors are fixed by the behaviour of the mode at infinity by demanding (6.5) and by

scattering in the bulk. In (6.7) the factor of e−iδ multiplying the left mover is fixed but we

have a choice of convention for the right movers. In region IV we have the same geometry

but time-reversed and this fixes the phase factors in (6.9) once again. We once again have

some freedom in (6.8) for left relational mirror.

Now notice that (6.7) and (6.8) have an overlapping regime of validity near the bifurcation

point. Imposing the condition for the regularity of the two point function that was discussed

in section 4 we find that we must have

〈aω,maL,ω′,m′〉 = e−
βω
2

1− e−βω
δ(ω − ω′)δmm′ .
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Since the two point function of the generalized free fields is the same in both CFTs, we

can assume that (4.19) holds on both sides after we appropriate discretize the CFT modes.

Therefore, from the bulk geometry and from (6.5) and after taking (6.2) into account we find

that from the bulk we obtain the prediction for the boundary two-point function

〈Ψtfd|Oωn,mOLωn,m|Ψtfd〉 = e−
βωn
2 Gβ(ωn,m). (6.10)

Note that here we have used a relationship between the boundary two point functionGβ(ωn,m)

and the boundary commutator Cβ(ωn,m) that appears in (4.19). This follows from the KMS

condition and is reviewed in [7].

To prove this we allow the matrix elements of these operators to be cji so that

Oωn,m

∑

i

e−
βEi
2 |Ei, Ei〉 =

∑

i,j

e−
βEi
2 cji|Ei, Ej〉. (6.11)

If the time reversal symmetry acts as T |E〉 = |E〉 then using the fact that T Oωn,mT = Oωn,m,

it follows that the cji must be real. Therefore

OLωn,m

∑
e−

βEj
2 |Ej , Ej〉 =

∑
e−

βEj
2 cij |Ei, Ej〉.

Since the matrix elements of cji are concentrated around Ei − Ej = ωn we see that This is

indeed true in the CFT because we can show that

OLωn,m|Ψtfd〉 = e−
βωn
2 O

†
ωn,m|Ψtfd〉.

From here (6.10) follows automatically.

We have therefore shown that the thermofield double state corresponds to the eternal

black hole geometry glued with the specific identification (6.2). We return to this question

below. We will see that states with different correlators between the left and right boundary

can also correspond to smooth geometries, albeit ones which are “glued” differently to the

boundary.

6.2 Time-evolved thermofield states

We start by examining the effect of time evolution on the thermofield state. We consider the

state

|ΨT〉 = ei(HL+H)T
2 |Ψtfd〉 = eiHLT |Ψtfd〉. (6.12)

This is obtained by performing Hamiltonian evolution on the base thermofield state. We now

perform both a geometric and a CFT analysis of these states. Our main results about these

states come from understanding their geometry, as we do in the next subsection. However,

we then provide some supporting arguments for these conclusions directly from the CFT.
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6.2.1 Geometric analysis of time shifted states

The action of the global symmetry group of the theory (which includes the Hamiltonian, of

course) has been the subject of significant analysis in the general relativity literature [49].

The reader may find it useful to recall the analysis of Brown and Henneaux [50] who used such

diffeomorphisms to analyze the action of the conformal group on the AdS3 vacuum. For some

more recent applications see [51]. The point is that Hamiltonian evolution — or evolution

by some other global charge — corresponds to large diffeomorphisms. These operations may

change the state of the theory.

A quick way to see this is as follows. Consider a nice slice that that runs through the

interior of the black hole and is anchored at the points (tL, tR). According to the standard

analysis of the Hamiltonian constraint [25], the bulk Hamiltonian (including that of gravity

and the other matter fields) must satisfy Hbulk|Ψtfd〉 = 0. Therefore, time evolution of this

slice is generated only by the boundary HamiltoniansH andHL. The action of eiHLT evolves

this slice to another slice that is anchored at (tL + T, tR). This is shown in Figure 8.

T

Figure 8: The action of eiHLT is a large diffeomorphism that does not vanish on the left boundary.

Its action on one nice slice is shown above.

To summarize the geometric action of the left and right Hamiltonians is as follows.

1. eiHLT ↔ large diffeomorphisms that die off at the right boundary, but not at the left

boundary. On the left boundary, these diffeomorphisms shift points by (tL,ΩL) →
(tL + T,ΩL).

2. eiHT ↔ large diffeomorphisms that die off at the left boundary, but not on the right

boundary. On the right boundary, these diffeomorphisms shift points by (tR,ΩR) →
(tR + T,ΩR).
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We emphasize two important points. First, note that the operation eiHLT does not cor-

respond to a unique diffeomorphism. Rather there is an equivalence class of diffeomorphisms,

all of which have the property outlined above. All diffeomorphisms in this equivalence class

differ by trivial diffeomorphisms, which are those that die off at both boundaries. In terms of

the nice slice picture of Figure 8, this corresponds to the fact that we can choose to extend

the nice slice in any way we like in the bulk, and a particular choice of nice slices is related

to a choice of gauge. The left Hamiltonian must nevertheless evolve these slices forward in

time. It achieves this because its Dirac brackets with operators in the interior depend on the

choice of gauge. Therefore gauge invariant statements about the diffeomorphism can only

make reference to its action on the boundary and not in the interior.

Second, from the CFT we can see that while eiHLT and eiHT change the state, an opera-

tion by ei(HL−H)T leaves the thermofield state invariance, since it satisfies (HL−H)|Ψtfd〉 =
0. Geometrically, this has the following meaning. Apart from the form of the metric itself,

the thermofield state also has an additional piece of information that specifies the relative

placement of the two boundaries. More specifically, there is an entire class of states — all of

which correspond to the same gauge invariant geometric quantities — which differ in how the

left boundary is glued to the geometry.

To make this more precise, we describe a specific element of the class of diffeomorphisms

that induce the action of eiHLT . In the Kruskal coordinates U, V described above, we consider

the following diffeomorphism U → UT , V → VT , where UT , VT are defined by

UT = U
(
e

2πT
β θ̂(U − V ) + θ̂(V − U)

)
,

VT = V
(
e
− 2πT

β θ̂(U − V ) + θ̂(V − U)
)
,

where θ̂(x) is an infinitely differentiable version of the theta function with the property that

θ̂(x) =

{
1 x > ǫ

0 x < −ǫ
In the intermediate region −ǫ ≤ x ≤ ǫ we can take f to be any smooth interpolating function

between 0 and 1. For example, a function that satisfies all these criterion is given by

θ̂(x) =
θ(x+ ǫ)

1 + θ(ǫ− x)e
ǫ

ǫ+x
+ ǫ

x−ǫ

.

Since this is just a diffeomorphism, it does not actually change any gauge invariant quantity

that we can calculate in the bulk geometry. The correct way to picture the gauge-invariant

effects of this diffeomorphism is to think of it as one that slides the left boundary by an

amount T . The figure 9 may help the reader think of the effect of this diffeomorphism which,

as we emphasized above, just changes the relation between the bulk and the boundary.

It is clear from the analysis above that the states |ΨT〉 are also smooth states. This is an

exact statement that does not rely on the bulk equations of motion and should be respected

in any theory of quantum gravity that is diffeomorphism-invariant. In particular, this implies

that even for very large T , such as T = eN , the geometry remains smooth.
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T

Figure 9: Another diffeomorphism in the equivalence class of the diffeomorphism of Figure 8: it

slides points on the boundary but acts trivially in the bulk. This can be achieved by composing the

diffeomorphism of Figure 8 with a trivial diffeomorphism that cancels its action everywhere except for

a region that is infinitesimally close to the boundary.

Time-shifted states for an infalling observer Consider the experience of an infalling

observer in the time shifted thermofield state. This observer starts from region I, and falls

towards the singularity. For example, such an observer could measure CFT correlators

〈ΨT|φ(t1, r1,Ω1) . . .φ(tn, rn,Ωn)|ΨT〉,

where all the points along his trajectory are defined relationally with respect to the right

boundary as in section 3.1.1.

We consider the relational observables, and the mirror creation and annihilation operators

a little more carefully in the next subsection. However, for now we note an important property

of the unshifted, standard thermofield state |Ψtfd〉: if the observer jumps “earlier” or “later”

in |Ψtfd〉, according to the classical geometry, he will measure the same correlators. As the

reader can verify, using classical geometry and quantum field theory quantized around this

geometry we have

〈Ψtfd|φ(t1, r1,Ω1) . . .φ(tn, rn,Ωn)|Ψtfd〉 = 〈Ψtfd|φ(t1 +T, r1,Ω1) . . .φ(tn+T, rn,Ωn)|Ψtfd〉.

Next, we note that

|ΨT〉 = eiHLT |Ψtfd〉 = eiHT |Ψtfd〉.
This results from the isometry (6.4) of the eternal black hole. So

〈Ψtfd|e−iHLTφ(t1, r1,Ω1) . . .φ(tn, rn,Ωn)e
iHLT |Ψtfd〉

= 〈Ψtfd|e−iHTφ(t1, r1,Ω1) . . .φ(tn, rn,Ωn)e
iHT |Ψtfd〉

= 〈Ψtfd|φ(t1 − T, r1,Ω1) . . .φ(tn − T, rn,Ωn)|Ψtfd〉.
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Therefore, if we combine the isometry of the eternal black hole with the fact that an infalling

observer from the right observes the same geometry whenever he jumps in, then we obtain

the same conclusion: the states |ΨT〉 are smooth for all times. This is a second method to

reach the conclusion that we already reached above. We now discuss these states from the

perspective of the CFT.

6.2.2 CFT analysis of time-shifted states

We emphasize that the statement that we have made above — namely that the eternal black

hole geometry should appear to be smooth under arbitrarily large diffeomorphisms — could

be considered to be rather strong. Since, we do not usually make statements about quantities

that are exponentially large, using the geometry, let us understand these time shifted states

directly from the CFT.

The point we are making above is equivalent to the assertion that there is no natural

common origin of time for the two CFTs. Usually, the origin of time is not relevant to any

experiment. On the right CFT, for example, we declare some point in time to be t = 0,

pick some basis of operators that we can measure at that time, which we denote by O(0,Ω)

and declare that these are the Schrödinger operators. We can then classify states, using the

eigenstates of these operators.

In our case, we have two CFTs. Roughly speaking, the original thermofield state involves

entanglement between O(0,Ω) and OL(0,Ω). The relation

〈Ψtfd|O(0,Ω)OL(0,Ω
′)|Ψtfd〉 = 〈ΨT|O(0,Ω)OL(T,Ω

′)|ΨT〉,

tells us that the shifted states involve entanglement between O(0,Ω) and OL(T,Ω). We can

make an even stronger statement, as follows. Let us consider eigenstates of the Schrödinger

picture operators which satisfy

O(0,Ω) |OL(Ω), O(Ω)〉 = O(Ω) |OL(Ω), O(Ω)〉,
OL(0,Ω) |OL(Ω), O(Ω)〉 = OL(Ω) |OL(Ω), O(Ω)〉,

where OL(Ω), O(Ω) are c-number functions that specify the eigenstate. We have a correspond-

ing basis of eigenstates for the time-shifted Schrödinger basis operators, which are given by

O(0,Ω) |OL(Ω), O(Ω)〉T = O(Ω) |OL(Ω), O(Ω)〉T ,
OL(T,Ω) |OL(Ω), O(Ω)〉T = OL(Ω) |OL(Ω), O(Ω)〉T .

Then the thermofield state and the time-shifted thermofield state are identical when consid-

ered as wave-functions on these states

〈Ψtfd|OL(Ω), O(Ω)〉 = 〈ΨT|OL(Ω), O(Ω)〉T .

So, unless we have some means of preferentially choosing the states |OL(Ω), O(Ω)〉 over the

states |OL(Ω), O(Ω)〉T , we must treat both the thermofield state and the time-shifted ther-

mofield state on the same footing.
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One distinguishing principle that is sometimes invoked in problems of this kind is to

appeal to the “environment.” We could state that the environment picks out the operators

OL(0,Ω) and distinguishes them from the operators OL(T,Ω). However, this would tacitly

break the time-translational invariance on the boundary. Moreover, from the point of view

of gravity this would be very unusual; we would like the two coupled CFTs to autonomously

describe the bulk geometry, and it would be unusual if some tacit reference to an external

environment was important for deciding whether the geometry was smooth or not.

Let us consider some other methods that appear to uniquely pick the thermofield state

but, on closer inspection, do not actually do so.

Euclidean path integral

The thermofield state can be defined by a Euclidean path integral on an interval of length

β. More precisely we specify

〈Ψtfd|OL(Ω), O(Ω)〉 =
∫ O(β,Ω)=O(Ω)

O(0,Ω)=OL(Ω)
e−S [DO],

where we have used [DO] to schematically represent the measure over fields in the theory,

and placed boundary conditions so that, at time 0, the field is in the state specified by OL(Ω)

and at Euclidean time β it is in the state O(Ω). However, we see immediately that while

the path integral on the right side has an unambiguous value, the interpretation of the path

integral as a wave-function on the left requires us to choose an origin of time. We could as

well, write

〈ΨT|OL(Ω), O(Ω)〉T =

∫ O(β,Ω)=O(Ω)

O(0,Ω)=OL(Ω)
e−S [DO].

So, using the Euclidean path integral to define the wave-function begs the question of whether

we should privilege |OL(Ω), O(Ω)〉T versus the states |OL(Ω), O(Ω)〉.

Time-reversal invariance

Another ostensible method of choosing the phases is to use invariance under the time-

reversal operation. If we define the time-reversal operator in the left CFT as T |E〉 = |E〉,
then the thermofield state is the only one of the family of time-shifted states that satisfies

T |Ψtfd〉 = |Ψtfd〉.

For the other states, recalling that the time-reversal operator acts anti-linearly, we have

T |ΨT〉 = |Ψ-T〉.

However, it is clear that this time-reversal operator itself involves the choice of an origin of

time. We could just as well define a new time-reversal operation by a shift of the time-reversal

above and a time-translation. On the basis of energy eigenstates, we define

T T |E〉 = e2iET |E〉,
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and extend this operation anti-linearly on linear combinations of energy eigenstates. It is

clear that

T T |ΨT〉 = |ΨT〉.
The new operator T T is as valid a time-reversal operator as the operator T . Therefore, the

idea that time-reversal invariance picks a particular origin of time is also specious; it can only

do so, if the origin of time is built into the time-reversal operator.

Time-shifted states as phase-modified states

We now turn to another property of the time-shifted states. This property is again sug-

gestive of the fact that nothing very special happens if we take a long time limit of the

time-translation. Note that we can write the time-shifted states as

|ΨT〉 = eiHLT |Ψtfd〉 =
1√
Z(β)

∑

E

e−
βE
2 eiφE |E,E〉, (6.13)

where φE are real phases. Since we expect the spectrum of the CFT to be chaotic at the

high energies that dominate the state (6.13), we can obtain almost any choice of phases φE
by choosing a suitable time translation. The relevant equation that we need to satisfy is

E T mod 2π = φE ,

and we can satisfy this to arbitrary accuracy for a chaotic collection of energies, if we are

allowed to choose T from a large enough range.

There are some exceptions to the kinds of phases we can generate. For example, the

energies of supersymmetric states are quantized integrally, and therefore we cannot choose

their phases all independently. However, the set of supersymmetric states constitute an expo-

nentially unimportant subset in the thermofield state |Ψtfd〉. More importantly, the energies

within a conformal representation are integrally quantized. Therefore by time evolution with

the Hamiltonian,16 we can only generate phases that satisfy

φ[E]− φ[E + 1] = φ[E + 1]− φ[E + 2] mod 2π.

The statement that there is no natural common origin of time translates, in this language,

to the statement that there is no natural choice of phases for the energy eigenstates on both

sides. (This is, subject, of course, to the relations above.) The advantage of thinking in this

language is that it is clear that the phases do not have any special behaviour at late times.

Therefore if we accept the standard interpretation that eiHLT acts as a large diffeomorphism

in the bulk, for O (1) times, and preserves a smooth geometry, then it is natural to expect

that this also happens for arbitrarily long T .

We caution the reader however that the argument above is a “naturalness” argument. It

is predicated on the assumption that a “natural” bulk to boundary map should not privilege

one pattern of random phases (obtained by translations of O (1)) from another pattern of

random phases (obtained by translations of O
(
eN
)
). So it is suggestive and not a proof.

16The reader might notice that we can generate a slightly more general class of phases using other diffeo-

morphisms, such as those that rotate the Sd−1, but this is not relevant to our discussion.
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6.3 Relational observables in time shifted states

We now turn to a detailed discussion of relational observables in time-shifted states. These

operators are particularly important in our discussion of the eternal black hole.

We have already carefully defined relational observables in section 3.1.1. Now, the key

point is as follows. These observables are defined relationally with respect to the right bound-

ary. Therefore, if we consider diffeomorphisms that die off at the right boundary, then right-

relational observables are invariant under such diffeomorphisms, even if the diffeomorphisms

do not die off at the left boundary.

This point may be slightly confusing if one thinks of diffeomorphisms that shift the

left boundary as acting everywhere in the spacetime. However, as we pointed out, these

diffeomorphisms belong to an equivalence class, and a limiting element of the class is the

diffeomorphism that simply “slides” the left boundary up and down while leaving the rest of

the geometry invariant. If we consider this element of the class, it is clear that right relational

observables are left invariant.

Let us check this more explicitly by carefully repeating the derivation of 3.1.1. We start by

defining points in the bulk as intersection points of null geodesics which end on the boundary.

We introduce asymptotically AdS coordinates, so the near the boundary the metric coincides

with (3.12). These coordinates are (t, ρ,Ω) and the boundary is at ρ = 1. We now consider

two solutions to the geodesic differential equation parameterized by ordinary AdS time (not

necessarily an affine parameter) with the property that

~x1(t1) = (t1, ρ = 1,Ω1); ~̇x1(0) = (1,−1, 0),

~x2(t1 + τ) = (t1 + τ, ρ = 1,Ω1); ~̇x2(t1 + τ) = (1, 1, 0).
(6.14)

We then tune Ω1 so that the geodesics meet. Given a particular value of t1,Ω1(t1), we vary

Ω2(t1 + τ) so that the geodesics intersect at some ti with t1 < ti < t1 + τ ,

ρ2(ti) = ρ1(ti); Ω2(ti) = Ω1(ti),

and we denote the intersection point by ~Pi(t1,Ω1, τ) as in section 3.1.1.

Let us now make a large diffeomorphism that dies off at the right boundary:

~x→ ~ξ(~x). (6.15)

To implement this diffeomorphism in a quantum field theory, we can act on all fields (including

the metric), rather than points, with the inverse transformation. The new scalar fields φ̄(~x)

are given by

φ̄(~x) = φ(~ξ−1(~x)).

The action of the diffeomorphism on the metric is

gµ̄ν̄(~x) →
∂xµ

∂ξµ̄
∂xν

∂ξν̄
gµν(~ξ

−1(~x)). (6.16)
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Now if we transform the entire entire geodesic trajectory specified by the solution to the

geodesic equation with initial conditions (6.14) by means of the diffeomorphism (6.15), then

we get a new trajectory that is a geodesic with respect to the new metric (6.16).

The boundary conditions (6.14) remain invariant under the diffeomorphism since, by

assumption, ξ turns into the identity at the boundary. Moreover, if the original geodesics

intersected, then the new geodesics also intersect. In particular the new intersection point,

P̄i is just given by the transform of the original intersection point

~̄P i(t1,Ω1, τ) = ~ξ(~Pi(t1,Ω1, τ)),

where we are using the same notation as (3.16).

Now consider evaluating a scalar field at this intersection point. Clearly we have

φ̄( ~̄P i) = φ(~ξ−1(~ξ(~Pi))) = φ(~Pi),

which is the same value as it had before the diffeomorphism. Therefore, scalar observables

defined at points which are related relationally to the right boundary are invariant under left

diffeomorphisms.

This logic extends to points behind the horizon. Recall that these points were defined

by solutions to the geodesic equation, where the affine parameter was normalized by using

the points outside the horizon already defined above. Clearly, in the new metric the new

geodesics are again given by ~ξ(~x(λ)), and by the same logic scalar variables evaluated inside

the horizon are invariant under any diffeomorphism that dies off at the right boundary.

6.3.1 Commutator of mirror operators

Note that, in the analysis above, it was important that the boundary conditions (6.14) were

not altered by the diffeomorphisms. If we consider diffeomorphisms that do not die off at the

right boundary, then the right relational observables do transform, but in a simple manner.

Under a diffeomorphism that shifts points on the right boundary by tR → tR + T , we have

~̄P i(t,Ω, τ) = ~ξ(~Pi(t− T,Ω, τ)).

For the field operators, defined relationally with respect to the right boundary, this leads to

eiHLTφ(tR,Ω, λ)e
−iHLT = φ(tR,Ω, λ),

eiHTφ(tR,Ω, λ)e
−iHT = φ(tR + T,Ω, λ),

(6.17)

where HL and H are the left and right boundary Hamiltonians respectively.

We now write down a mode expansion for the fields in front of and behind the horizon,

as in (6.6) and (6.7). The conditions (6.17) imply that when we try and find CFT operators

that can play the role of these mirrors then they must have the CFT commutation relations

[H , aω,m] = −ω aω,m, [HL , aω,m] = 0,

[H , ãω,m] = ω ãω,m, [HL , ãω,m] = 0.
(6.18)
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We remind the reader that the asymmetry above arises because these are right relational

modes. The relation (6.18) must hold approximately within low point correlation functions,

and not necessarily as operators. However, within correlators they are crucial to ensure that

the field operators transform correctly under large diffeomorphisms.

We will proceed to now argue that it is impossible to find state-independent operators

ãω,m that have the right properties to play the role of mirror operators behind the horizon in

the entire family of time-shifted states.

6.4 Naive construction of local operators in the thermofield double

We start by considering the naive construction of local operators in the thermofield double.

We will show that this does not satisfy the conditions above and, therefore, cannot be correct.

In particular we would like to identify CFT operators ãωn,m with the properties that we

derived from the bulk above.

The naive construction of local operators proceeds by simply identifying discretized mirror

modes with modes on the left CFT

ãωn,m −→
naive

aLωn,m.

However, this is clearly wrong as a computation of the two point function across the horizon

shows. If we now compute this two point correlator in the time-shifted state, we find that

〈ΨT|aLωn,maωn,m|ΨT〉 = eiωnT e−
βωn
2

1− e−βωn
,

〈ΨT|a†
Lωn,m

a†
ωn,m|ΨT〉 = e−iωnT e−

βωn
2

1− e−βωn
.

Let us call the CFT operator obtained by using this “naive” mode φn. Now, repeating the

computation of the two point function that we performed in section 4, with point 1 outside

the horizon and point 2 behind the horizon we find that

lim
V1−V2→0

〈ΨT|∂Uφn(U1, V1,Ω1)∂Uφ
n(U2, V2,Ω2)|ΨT〉 = c

δd−1(Ω1 − Ω2)

(U1 − U2e
− 2πT

β )2
,

lim
U1−U2→0

〈ΨT|∂V φn(U1, V1,Ω1)∂V φ
n(U2, V2,Ω2)|ΨT〉 = c

δd−1(Ω1 − Ω2)

(V1 − V2)2
,

(6.19)

where c is a normalization constant. Clearly this is not the correct result. In particular, the

first line of (6.19) does not have the right behaviour when U1 → U2. We obtain a similar

pathology by considering the boundary between region II and region III.

This was only to be expected since the operators aLω clearly do not obey the correct

commutators with the Hamiltonian that we demanded above. Therefore, it is incorrect to

identify ãωn,m with aL,ωn,m as has been done commonly in the literature. As we will discuss

below, this led to some errors in the analysis of [12].
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6.5 Paradoxes for the eternal black hole

We now set out various paradoxes, similar to the ones outlined by [2, 4, 3] which show that the

relational observable defined above, cannot be realized by a linear operator. These paradoxes

were already outlined concisely in [23], and we suggest that the reader consult that paper in

parallel with this section. Our arguments here are more detailed variants of the arguments

there.

Let us assume that some state-independent operators ãωn,m exist with the properties

that we derived earlier. If so we can multiply them with the appropriate modes and construct

state-independent operators φ(U, V,Ω) in the thermofield double state and in a right relational

gauge. Then, consider

C(U1, V1,Ω1, . . . Un, Vn,Ωn) = 〈ΨT|φ(U1, V1,Ω1) . . .φ(Un, Vn,Ωn)|ΨT〉.

From the arguments above we have

d

dT
C(U1, V1,Ω1, . . . Un, Vn,Ωn) = 0.

Second, from the discussion in section 3, we expect this T -independent answer to correspond to

the correlators as computed by effective field theory in the eternal black hole. This expectation

is indicated in 3.10. Now, for any operator Aα we have

〈ΨT|Aα|ΨT〉 =
1

Z(β)

[∑

E

e−βE〈E,E|Aα|E,E〉+
∑

E′ 6=E
e

−β(E+E′)
2 ei(E−E′)T 〈E′, E′|Aα|E,E〉

]
.

Even if we know that this expectation value is T -independent, we must be careful not to

immediately discard the second term above. This is because, if Aα happens to be an operator

with support on narrowly separated eigenstates E − E′ = O
(
e−

S
2

)
, then the time-variation

of the second term will be negligible and so it may appear to be time-independent for short

times. However, if we demand

〈ΨT|Aα|ΨT〉 = 〈Ψtfd|Aα|Ψtfd〉,

even for exponentially long times, then the contribution to the expectation value can only

come from diagonal terms.

In the case of the correlator under consideration this implies that

1

Z(β)

∑

E

e−βE〈E,E|φ(U1, V1,Ω1) . . .φ(Un, Vn,Ωn)|E,E〉 = C(U1, V1,Ω1, . . . Un, Vn,Ωn).

Using the standard arguments from the equivalence of the canonical and the microcanonical

ensemble this means that for a typical eigenstate pair |E,E〉 at the energy relevant to the

eternal black hole

〈E,E|φ(U1, V1,Ω1) . . .φ(Un, Vn,Ωn)|E,E〉 = C(U1, V1,Ω1, . . . Un, Vn,Ωn).
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At an intuitive level this is already a strange conclusion because the energy-eigenstate pair

that appears above has no entanglement. We have shown above that no state-independent

operators φ(U, V,Ω) can reproduce the effective field theory correlators in arbitrary single

sided energy eigenstates. How can such operators correctly reproduce this answer in two

sided eigenstate pairs?

We can turn this into a sharp contradiction as follows. In the eigenstate pair |E,E〉 with
no entanglement, we expect that there is no geometric wormhole. Therefore no excitation

generated by the left observer can affect the correlators observed by the right infalling ob-

server. In particular, if the left observer decides to act with an arbitrary unitary, UL we

should have

〈E,E|U †
Lφ(U1, V1,Ω1) . . .φ(Un, Vn,Ωn)UL|E,E〉

= 〈E,E|φ(U1, V1,Ω1) . . .φ(Un, Vn,Ωn)|E,E〉.
(6.20)

We can use this freedom to map the left energy eigenstate to some fixed state — UL|E,E〉 =
|F,E〉, where F could even correspond to the left CFT vacuum. This means that the operators

φ(U, V,Ω) must reproduce the correct correlators in all states |F,E〉 and must be independent

of F . This can only be if they are ordinary operators in the right CFT. But we have already

proved that there are no state-independent operators in the right CFT. Therefore our starting

assumption — that such operators exist in the doubled CFT — must be wrong.

The reader may consult [23] for concrete versions of the Na 6= 0 argument, and the

negative occupancy argument phrased directly in the doubled CFT. Here, we will conclude

by briefly re-emphasizing the importance of the (6.20), which states that there is no wormhole

in eigenstate pairs.

In section 7 we will review the construction of state-dependent operators in a single

CFT that can correctly reproduce effective field theory correlators about a black hole. This

construction was first described in [9, 8]. Let us denote such operators acting only in the

original (right) CFT, and defined about an energy eigenstate |E〉 by φ{E}(U, V,Ω). The

superscript E indicates that they reproduce the expected effective field theory answers when

evaluated in correlators about |E〉 and reasonable excitations of this state. Now, consider the

following state-independent operator, which acts in the Hilbert space of two CFTs

Θ(U, V,Ω) =
∑

E

PEL
⊗ φ{E}(U, V,Ω),

where PEL
is the projector onto the energy eigenstate on the left: PEL

≡ |EL〉〈EL|, and the

sum is over all energy eigenstates.

Now Θ(U, V,Ω) has some interesting properties. When evaluated in the thermofield

double, we find

〈Ψtfd|Θ(U1, V1,Ω1) . . .Θ(Un, Vn,Ωn)|Ψtfd〉

=
1

Z(β)

∑

E

e−βE〈E|φ{E}(U1, V1,Ω1) . . .φ
{E}(Un, Vn,Ωn)|E〉. (6.21)
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Note that the sum on the right is in a single CFT since the PEL
term simply makes cross

terms vanish and gives 1 for the diagonal terms.

Since φ{E}(U, V,Ω) is only evaluated in the state |E〉 and its excitations, the expression

above does yield the answer expected from effective field theory. Note that Θ(U, V,Ω) also

produces the following correlators about eigenstate-pairs.

〈E,E|Θ(U1, V1,Ω1) . . .Θ(Un, Vn,Ωn)|E,E〉 = 〈E|φ{E}(U1, V1,Ω1) . . .φ
{E}(Un, Vn,Ωn)|E〉.

Using the equivalence between the canonical and microcanonical ensemble, these correlators

are approximately the same as the thermofield correlators in (6.21). These correlators would

suggest that the geometry in eigenstate pairs, as seen by the right infalling observer is almost

the same in eigenstate pairs as in the thermofield. While this conclusion is correct, as we will

see below, the operator Θ(U, V,Ω) cannot be the correct CFT operator dual to a local bulk

fields.

This is because Θ(U, V,Ω) violates the no wormhole condition and keeps the wormhole

open even when there is no entanglement. In particular, using a left unitary that acts as

UL|E,E〉 = |F,E〉 we find that

〈E,E|U †
LΘ(U1, V1,Ω1) . . .Θ(Un, Vn,Ωn)UL|E,E〉

= 〈E|φ{F}(U1, V1,Ω1) . . .φ
{F}(Un, Vn,Ωn)|E〉.

But these are correlators of φ{F}(U, V,Ω) evaluated about a different eigenstate and, in gen-

eral, these lead to exponentially small answers. Therefore, Θ(U, V,Ω) cannot be the correct

field operators in the eternal black hole because they would predict that even in eigenstate

pairs, by performing the unitary transformation discussed above a left observer could alter

the correlators of a right infalling observer. So we see that the condition (6.20) is important

in ruling out such putative state-independent operators. In the next section, we will show

how the interior of the eternal black hole can be correctly constructed using state-dependent

bulk to boundary maps.

Before concluding this section, we should mention that our arguments should be dis-

tinguished from those of [52, 53], who suggested that the duality between the eternal black

hole the thermofield double does not hold. Although we will not engage with this in detail,

we briefly indicate our point of disagreement. The authors of [52] suggested that there was

an ambiguity in the duality between the thermofield double and the eternal black hole. In

particular, they argued that the CFT cannot distinguish between this case and another bulk

geometry where the bulk Hamiltonian has been modified by removing the “interaction” be-

tween the left and the right at the bifurcation point. Alternately, this corresponds to adding

a delta-function source there in a manner that appears to be hidden from both CFTs. They

argued that this leads to an ambiguity that invalidates the duality.

While this argument may have been plausible if the bulk theory had been an ordinary

quantum field theory, it is inapplicable to a theory of quantum gravity. The Hamiltonian

constraint rules out the alternate bulk Hamiltonian considered above. It is this crucial feature
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of the bulk that allows the boundary to know the “details” of the bulk Hamiltonian and allows

the duality to be consistent.

7 Definition of the mirror operators

In the past sections, we have set up paradoxes that show that no state-independent operator

can correctly satisfy the conditions outlined in section 4. We have shown that these paradoxes

apply to both the single-sided CFT and the thermofield double.

We now review and extend the definition of the mirror operators provided in [8, 9]. These

operators are state-dependent. What this means, in our context is as follows. Say that we

are computing expectation values of a mirror operator within a correlation function

〈Ψ|Oω1,m1 . . . Õωp,mp . . .Oωn,mn |Ψ〉,

where |Ψ〉 is an equilibrium state. Then, the statement is that the operator Õω,m depends,

in a subtle manner on the sandwiching state |Ψ〉.
This would imply that when one speaks of local operators in gravity, or of their modes,

then at least behind the horizon of a black hole it is important to specify the state that one is

referring to. A given local operator is good to describe physics in a given state and in small

excitations about that state. If we consider another microstate which is “far away”, in the

sense that it cannot be obtained from the original microstate by the action of a small number

of single-trace operators, then we must use a different operator to describe the “same physical

quantity.”

In this section we will first review the construction that we presented in [8, 9] both

for equilibrium and near-equilibrium states. We show how this completely resolves all the

paradoxes of [2, 3, 4]. Our review will be brief, and we direct the reader to those papers for

a more detailed exposition.

A significant new element in this paper is that we will discuss the action of our operators

on superpositions of states. This is important, because we show that even though our operators

are state-dependent, the infalling observer will not observe any deviations from linearity for

small superpositions of equilibrium or near-equilibrium states.

Next, we also describe the construction of mirror operators for the thermofield double

and its time-shifted cousins. This construction can be obtained as a special case of our

construction, as applied to an entangled state. However, in this section we also show how

one could guess this solution independently. The analysis of (7.6) is useful because it helps

to elucidate the nature of state-dependence.

7.1 The set of natural observables and the little Hilbert space about a state

Consider the modes of the generalized free field operators that were defined in (4.18). As we

explained there, we have discretized these modes Oωn,m both by selecting some discrete set

of frequencies, and also by choosing a time-band on the boundary that we integrate over to

transform to frequency space.
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We now consider the set of polynomials in these modes that we denote by

Agff = span{Oω1,m1 , Oω1,m1Oω2,m2 , . . . ,Oω1,m1Oω2,m2 . . .OωK ,mK
}. (7.1)

This means that this set comprises all monomials of the form displayed above, and arbitrary

linear combinations of these monomials. In addition, we consider the set of polynomials —

limited to small orders — in the CFT Hamiltonian.17

AH = span{H,H2 . . .Hn}.

We then consider the set of observables involving insertions of both the generalized free fields

and the CFT Hamiltonian

A = Agff ⊗AH . (7.2)

The dimension of this set is denoted by

DA = dim(A).

We will often refer to arbitrary elements of this set, comprising generalized free fields by

Aα ∈ Agff.

We emphasize by default the notation Aα does not include the CFT Hamiltonian. If we want

to consider an element from A that might include H, we will state this explicitly.

We want to restrict A to be the set of “reasonable” experiments that one can perform

in the bulk, and still expect to observe effective field theory about a given background. This

excludes any monomial in (7.2) that has a very high total energy

∑
ωi ≪ O(N ) .

Similarly, this also excludes any monomial that has a very large number of insertions. So

K ≪ O(N ) ,

for all monomials displayed in (7.2). These restrictions imply, as a consequence that

DA ≪ O
(
eN
)
.

The set A is approximately an algebra because we can usually multiply two of its element to

obtain another element. However, this is not always the case because of edge effects — where

such a multiplication may take us beyond the cutoff we have imposed. In this paper we will

usually not keep track of these “edge effects’.’

17For a more careful treatment of other conserved charges, including in cases where the CFT has a non-

Abelian symmetry we refer the reader to section 3.2.4 of [9].
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The set of “reasonable operators” can be used to excite a state. This leads us to consider

the space

HΨ = A|Ψ〉 ≡ span{
∑

αpAp|Ψ〉},
where Aα may include H. We will denote the projector on this subspace by PHΨ

. The fact

that A is approximately an algebra implies that we can consider the action of its elements as

Aα : HΨ → HΨ. This is subject to the same edge-effect caveat above.

We will sometimes call the space HΨ the “little Hilbert space” about the space |Ψ〉,
since it contains the part of the Hilbert space that is accessible within effective field theory.

Conceptually, this little Hilbert space is very important. We show a schematic figure of this

set in Figure 10.

Figure 10: A cartoon of the little Hilbert space HΨ as the relevant subspace in the full Hilbert space.

7.2 Equilibrium and near-equilibrium states

The next ingredient in our construction is the classification of states. First we would like to

consider equilibrium states. Intuitively, these are states where a black hole in the bulk has

not been disturbed for a long time. We then expect that all excitations both outside and

inside the horizon have died off, leaving behind a smooth horizon and an empty interior. We

now want to make this precise in the CFT.

Let us review some necessary conditions for us to classify a state as being in equilibrium.

(As we will discuss in section 8 these conditions are not quite sufficient.) The first is that

correlation functions in an equilibrium state should be invariant under time-translation.

We consider the expectation value of an element of the set of observables Ap ∈ A, as a

function of time. This is defined as

χp(t) = 〈Ψ|eiHtApe
−iHt|Ψ〉, (7.3)

where it is important that Ap may include H. Intuitively, while there may be small fluctua-

tions in this expectation value, we expect that in an equilibrium state, these fluctuations are

extremely unlikely. The size of the fluctuations is measured by

νp =
1

Tb

∫ Tb

0
|(χp(t)− χp(0))|dt. (7.4)
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An estimate of these fluctuations [9] suggests that a state should be classified as being in

equilibrium if

νp = O
(
e−

S
2

)
, ∀p. (7.5)

Note that the definition requires this to hold for all observables in A.

The condition for time-independence of correlators can be imposed very accurately. How-

ever, this condition is necessary but not sufficient in order for us to apply our definition of the

mirror operators. In particular, to apply our definition, we would also like the state to cor-

respond to a state at a single temperature. For example, consider the state 1√
2
(|E1〉+ |E2〉)

where E1, E2 are two distinct energy eigenstates at substantially separated energies. For ex-

ample, we could take E2 ≈ 10E1. It is easy to verify, using the eigenstate thermalization

hypothesis, that this state meets the criterion (7.5) above. However we would like to think

of this as a sum of two separate equilibrium states.

Now we describe near-equilibrium states. Near-equilibrium states are simply obtained by

exciting an equilibrium state with an exponentiated Hermitian element of the set of observ-

ables A.

|Ψne〉 = U |Ψ〉, U = eiAp ,A†
p = Ap. (7.6)

In [9, 8], we showed that given a state |Ψne〉 of this kind, the decomposition into a unitary U

and a base-equilibrium state |Ψ〉 was essentially unique. The reason for this is very simple.

Given an equilibrium state |Ψ〉, if we excite it with a unitary we necessarily spoil the time-

translational invariance criterion of (7.5). Therefore, given a state |Ψne〉, once we have found

a decomposition (7.6) that works to make all correlators time-translationally invariant in the

base state |Ψ〉, we know that it must be the right one.

7.3 Mirrors for equilibrium and near-equilibrium states

We now consider the definition of mirror operators for the states considered above. We start

with an equilibrium state |Ψ〉 with inverse temperature β. First we consider excitations of

this state with Aα ∈ Agff. This set was defined in (7.1) and excludes the Hamiltonian. We

now define mirror operators on this subspace of HΨ through the linear equations

Õωn,mAα|Ψ〉 = e−
βωn
2 AαO

†
ωn,m|Ψ〉. (7.7)

We can use this definition recursively to define the mirrors of products of operators as well

ÃαAβ |Ψ〉 = Aβe
−βH

2 A†
αe

βH
2 |Ψ〉.

These relations specify the action of Õωn,m on HΨ. The action of this operator outside this

space is irrelevant for questions within effective field theory. We expect (7.7) to hold at leading

order in 1
N .

However, we do specify its commutator with the Hamiltonian and this fixes some 1
N

corrections.

[Õωn,m,H]Aα|Ψ〉 = −ωnÕωn,mAα|Ψ〉. (7.8)
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Note that this means that Õωn,m has “positive energy”. It is possible to check that (7.8)

implies certain corrections to (7.7) at O
(

1
N
)
.

It is easy to check that (7.8) is equivalent to

Õωn,mAαH|Ψ〉 = Aαe
−βωn

2 O
†
ωn,mH|Ψ〉. (7.9)

This equation is equivalent to (7.7) when |Ψ〉 is an energy eigenstate satisfying H|Ψ〉 = E|Ψ〉.
In other situations H|Ψ〉 is an independent descendant and (7.9) gives an independent set of

constraints on the definition of Õωn,m.

We pause to make a slightly subtle point related to a discussion in [12]. The operator

product expansion in the CFT implies that the stress tensor always appears in the OPE

of two local generalized free fields. The Hamiltonian is the zero mode of the stress-tensor.

Nevertheless, it is consistent for the mirrors to effectively commute with the modes of these

operators, but not with the Hamiltonian. This is because if we attempt to express the CFT

Hamiltonian in terms of the modes of the GFFs we expect to get an expression involving not

just quadratic but also higher order terms.

H
.
=
∑

n

ωna
†
ωn,maωn,m + . . .+O

(
1

N

)
, (7.10)

where the . . . are similar quadratic terms from other fields and the O
(

1
N
)
terms can be

obtained from bulk interactions. As usual, the
.
= in the equation above indicates that this

holds within low point correlators. The form of (7.10) is dictated by bulk effective field theory,

but a similar expression arises from a careful analysis of boundary correlators.

Now, due to the cutoffs on the set A above, there is no strict relation between H and

other elements Aα ∈ A. Therefore it is mathematically consistent to define the mirrors to

have a zero commutator to very high order with ordinary operators but have a non-zero

commutator with the Hamiltonian.

However, we must mention another physical point. The Õωn,m operators that we have

defined above are auxiliary variables, which do not have any direct physical significance. This

is because there is no left asymptotic region in the geometry. It is the ãωn,m operators that

appear in right relational observables. Since these observables are defined relationally, they are

not strictly local. Therefore, depending on the precise choice of gauge, it is possible — without

any loss of locality in the bulk — to consider operators that have a non-zero commutator

with aωn,m at subleading O
(

1
N
)
. This may even be convenient from some perspectives. We

will comment more on this issue in forthcoming work.

We now return to the definition of the mirror operators. The equations (7.7) can be

considered to be linear equations that define the operator Õωn,m. We now explain why these

equations are consistent.

First, note that if Ap ∈ Agff then, in general, we cannot annihilate an equilibrium state

by its action.

Ap|Ψ〉 6= 0 , ∀Ap ∈ Agff. (7.11)
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This is simply a consequence of the fact that dim(Agff) ≪ eN and therefore the space of states

annihilated by an element of Agff is of a very high co-dimension.

For physical reasons we would like to consider energy eigenstates, which can be annihi-

lated by elements of AH . In such cases, we might have (H − E)|Ψ〉 = 0 for some eigenvalue

E. However, as we noted above, in such cases (7.9) reduces to (7.7), and therefore does not

lead to an inconsistency.18

To summarize (7.7) and (7.9) specify the action of the mirror operator, Õωn,m on a set

of linearly independent vectors. This guarantees that we can find a linear operator with the

desired action. We can even write down an explicit solution for these linear equations as

follows.

We consider a basis of HΨ given by

A1|Ψ〉 . . .ADA |Ψ〉,

and denote an element of this basis by |vp〉, where the corresponding Ap may include H. The

linear equations (7.7) and (7.9) specify the action of the operator Õωn,m on this basis as

Õωn,m|vp〉 = |up〉,

where |up〉 can be read off from the right hand side of (7.7) and (7.9). With gpq = 〈vp|vq〉, we
can simply define

Õωn,m =
∑

p,q

gpq|uq〉〈vp|, (7.12)

where gpq is the inverse of gpq. The solution (7.12) has the property that it acts only within

HΨ. If PHΨ
|w〉 = 0 for a state |w〉, then Õωn,m|w〉 = 0.

This definition directly extends to near-equilibrium states. Given a state of the form

(7.6), we define the action of the mirrors by

Õωn,mAα|Ψne〉 = e−
βωn
2 AαUO

†
ωn,mU

−1|Ψne〉. (7.13)

The commutator with the Hamiltonian is unchanged.

Õωn,mHAα|Ψne〉 = HÕωn,mAα|Ψne〉 − ωnÕωn,mAα|Ψne〉,

where all elements on the right hand side can be computed using (7.13).

7.4 Resolution of paradoxes

We emphasize that our construction above resolves all of the paradoxes set out by AMPSS in

[2, 3, 4]. We reviewed and sharpened these paradoxes in section 5 but none of these arguments

apply to state-dependent operators.

18Here we have been careful to consider these special states where some descendants obtained by the action

of conserved charges are null. In the rest of the paper, when we consider the action of the mirror operators

in other settings, we will not always consider this case separately. However, our construction can smoothly

accommodate charge or energy eigenstates in all cases.

– 71 –



Our construction resolves the Na 6= 0 argument as follows. It is true that typical energy

eigenstates are smooth, whereas number eigenstates may not be smooth. However, as we

saw in (5.2) to obtain a contradiction we have to perform a basis change to go from (5.3)

where the trace is evaluated in the energy-eigenbasis to (5.5) where the trace is evaluated in

the number eigenbasis. If the operator P F that appears there is state-dependent, then this

change of basis is impermissible because it is a different operator in each eigenstate. We can

see this immediately if we make the state-dependence explicit by adding a small superscript

1

DE

∑

RE

〈E|P {E}
F |E〉 6= 1

DE

∑

RE

〈Ni|P {Ni}
F |Ni〉,

even if these two sets of eigenstates span the same space RE .

In (5.3) we refined the original “lack of a left inverse paradox” of [3] to argue that no

state-independent operator could have the commutator required of ãωn,m with its adjoint and

with the CFT Hamiltonian. However, the argument breaks down if we attempt to apply it

to state-dependent operators. In (5.12) we had to use the cyclicity of the trace. But if the

operator ãωn,m that appears varies as we vary the energy eigenstate then we cannot use this.

As we explained in section 5.4, the commutator argument is not really a paradox but

more of a “genericity argument.” Our construction sidesteps this because our mirrors are

designed to explicitly commute with the ordinary operators within correlation functions as

(7.7) shows.

Finally, consider the strong-subadditivity paradox of [1, 2]. Our construction resolves

this through a version of black hole complementarity [45, 54]. The statement is that it is

impossible to define mirror operators so that they exactly commute with all CFT operators

in any finite time band. From the CFT this is clear from general principles of local quantum

field theory. Therefore the mirror operators that describe the interior of the black hole must

appear to commute with simple observables within correlation functions but cannot do so

exactly. This is a precise version of the colloquial statement that the “interior is a scrambled

version of the exterior.” The strong subadditivity paradox assumes that the Hilbert space

of gravity factorizes exactly into parts that can be associated with the outside and inside of

the black hole. If complementarity is correct, then this assumption is wrong and the strong

subadditivity paradox vanishes.

We direct the reader to [9, 8] for further discussion of the resolution of these paradoxes.

7.5 Small superpositions of equilibrium and near-equilibrium states

We now describe how our construction extends to small superpositions of states. Such su-

perpositions will be important, and will obtain a direct observational significance, when we

consider entangled states of the CFT with an external system of qubits in section 9.6. For

now we are interested in the following abstract question.

Question: Is exciting a superposition of states by a mirror operator the same as

superposing the excited states.
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We show that the answer to this question is affirmative. This follows almost trivially from

the definition above and ensures that the infalling observer does not observe any departures

from linearity.

7.5.1 Superpositions of equilibrium states

Consider a superposition of equilibrium states |Ψk〉,

|Ψs〉 =
M∑

k=1

|Ψk〉, (7.14)

where, M is an O (1) number and we assume that 〈Ψk|Ψp〉 = 0 for k 6= p and also that∑
k |〈Ψk|Ψk〉|2 = 1 so that the state (7.14) is normalized.

We first show that for generic |Ψk〉, the superposition (7.14) is also in equilibrium. Let

us assume that each equilibrium state can be expanded |Ψk〉 =
∑

i αk,i|Ei〉, so that the entire

superposition is

|Ψs〉 =
∑

i,k

αk,i|Ei〉,

We now consider Ap ∈ A and assume that it obeys the eigenstate thermalization hypothesis

[43].

〈Ei|Ap|Ej〉 = A(Ei)δij + e
− 1

2
S
(

Ei+Ej
2

)

B(Ei, Ej)Rij , (7.15)

Here, the quantity S
(
Ei+Ej

2

)
is the log of the density of states at the mean energy, for

which we just write S. The function A,B are “smooth” functions, and Rij is a matrix with

erratically varying phases in its entries but with magnitudes of order 1.

We see now that

〈Ψs|Ap|Ψs〉 =
∑

i,k,n

α∗
k,iαn,iA(Ei) +

∑

i 6=j,k,n
e
− 1

2
S
(

Ei+Ej
2

)

B(Ei, Ej)Rijα
∗
k,iαn,j .

Consider the first term in the sum above. This involves a sum over O
(
eS
)
energy eigenstates,

but for k 6= n the terms in this sum are erratic. Since each αk,i = O
(
e−

S
2

)
, this turns

into an erratic sum over eS terms over size e−S . We expect it to typically be only of size

O
(
e−

S
2

)
. The same argument applies to the second term in the sum, involving R. This

term — irrespective of whether n = k or n 6= k — turns into an erratic sum over e2S terms,

each of size e−
3S
2 . This is again expected to typically only be of size e−

S
2 . This leads to the

conclusion that

〈Ψs|Ap|Ψs〉 =
M∑

k=1

〈Ψk|Ap|Ψk〉+O
(
e−

S
2

)
.

Therefore if the equilibrium criterion (7.2) applies to each state |Ψk〉 it also applies to the

superposition |Ψs〉, as long as M = O(1). Therefore the superposition is also in equilibrium.
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The interesting case is where the |Ψi〉 are microstates corresponding to the same black

hole.19 We can now define the mirrors independently for |Ψs〉 and each of the |Ψi〉. We

display this state-dependence explicitly with a superscript below.

We now notice the following simple fact.

Õ
{sup}
ωn,mAα|Ψs〉 = e−

βωn
2 AαO

†
ωn,m|Ψs〉.

This follows because |Ψs〉 is also in equilibrium and at the temperature β−1. On the other

hand

Õ
{k}
ωn,mAα|Ψk〉 = e−

βωn
2 AαO

†
ωn,m|Ψk〉.

Therefore we find that

Õ
{sup}
ωn,mAα|Ψs〉 =

M∑

k=1

Õ
{k}
ωn,mAα|Ψk〉.

This equation shows that the mirror operators act consistently with the superposition prin-

ciple, as long as we are looking at small superpositions of equilibrium states. As we will

see later, this is important in order for the infalling observer not to be able to detect any

violations of quantum mechanics.

7.5.2 Superpositions of near-equilibrium states

Now, we consider an O (1) superposition of near-equilibrium states

|Ψne
s 〉 =

M∑

k=1

Uk|Ψk〉, (7.16)

where |Ψk〉 are orthogonal equilibrium states, as previously, and we again assume that the

sum in (7.16) is normalized to 1. Here, as in (7.6), Uk = eiAk , where Ak are Hermitian

elements of Agff.

We now define the action of the tildes via

Õωn,mAα|Ψne
s 〉 =

M∑

k=1

AαUke
−βωn

2 O
†
ωn,m|Ψk〉. (7.17)

Note that, strictly speaking, (7.17) is an extension of our definition of mirror operators since a

superposition of near-equilibrium states is not itself a near-equilibrium state by the definition

of such states in (7.6).

We also note that in this case the action of Õωn,m is not closed within the span of A|Ψne
s 〉.

This can be seen from (7.17) where the right hand side is not just an ordinary operator acting

19The case where they correspond to different geometries simply corresponds leads to a classical probability

distribution over the various possibilities as we described around (3.5). This situation is not of significant

physical interest but, in any case, it can be dealt with easily by extending the results obtained here.
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on |Ψne
s 〉. It is convenient to imagine that we expand the little Hilbert space to the direct

sum of the little Hilbert spaces produced by acting on the equilibrium states in (7.16)

HΨne
s

=
⊕

k

HΨk
.

This may be used as a general rule when the space obtained by acting with A does not contain

any equilibrium state at all.

Let us check that (7.17) immediately passes a consistency check. The decomposition

of a state in the form (7.16) is not unique. As we explained above, almost all sums of

O (1) equilibrium states are also equilibrium states. Correspondingly HΨne
s

contains many

equilibrium states.

This implies that we can just as well write (7.16) as

|Ψne
s 〉 =

M∑

k,q,p=1

UkQ
−1
kq Qqp|Ψp〉 =

M∑

q=1

V q|Ψ′
q〉,

with

V q =

M∑

k=1

UkQ
−1
kq ; |Ψ′

q〉 =
M∑

p=1

Qqp|Ψp〉.

Here Q is any invertible M × M matrix and Q−1 is its inverse:
∑

q Q
−1
kq Qqp = δkp. It is

important to us that the matrices V q also be invertible. This is true for generic choices of

the Uk and we will only consider cases of this sort.

Now, since the state |Ψ′
q〉 will also typically be in equilibrium, it is equally natural to

demand that

Õωn,mAα|Ψne
s 〉 = e−

βωn
2 Aα

M∑

q=1

V qO
†
ωn,m|Ψ′

q〉. (7.18)

We would like to ensure that (7.18) is consistent with (7.17). But this follows immediately

by inserting the definitions of V and |Ψ′
q〉 above.

We can also repeat the check we performed for equilibrium states above. Using the

definition (7.17) of mirror operators on superpositions of near-equilibrium states on the left

hand side of the equation below, we have

Õ
{Ψne

s }
ωn,m |Ψne

s 〉 =
M∑

k=1

Õ
{k}
ωn,mAαUk|Ψk〉, (7.19)

where on the right hand side we use the standard definition of the mirrors on non-equilibrium

states given in (7.13), and we have again indicated the state-dependence explicitly by means

of the superscript.

The result (7.19) shows that the infalling observer does not observe any violation of

linearity even for superpositions of near-equilibrium states. This includes, as a special case, a

superposition of an equilibrium and a near-equilibrium state, and thereby answers a question

about superposition raised in [55].
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7.6 The interior of the eternal black hole

We conclude this section by constructing state-dependent local operators in the eternal black

hole. We already showed in (6.4) that the naive state-independent construction of local

operators where we identify Õωn,m = OLωn,m does not work correctly in the states |ΨT〉
defined in (6.12).

We will proceed as follows. We start by reviewing the conditions that we need from the

mirrors in the eternal black hole. Based on these, we guess an appropriate solution. We then

verify that it meets the conditions that we outlined. We hasten to add that the formulas we

present here can be derived in a completely systematic fashion using the formalism for entan-

gled states that we present in section 9. We present this alternate method of obtaining the

answer only because it provides some additional insight into the nature of state-dependence.

We would like to suggest that the reader also consult [23] — where this result is stated

concisely — before examining the detailed calculation below.

Constraints on Õωn,m

The precise conditions that Õωn,m need to satisfy are given in section 6. These modes

need to be correctly entangled with Oωn.m in all states |ΨT〉, they need to commute with

the Oωn,m within correlators, and also have the commutator with the Hamiltonians given in

(6.17).

In fact all of these conditions would be met if

〈ΨT|AαÕωn,mAβ |ΨT〉 = 〈ΨT|AαOLωn,m(T )Aβ |ΨT〉+O

(
1

N

)
, (7.20)

where

OLωn,m(T ) ≡
1

T
1
2
b

∫ Tb

−Tb
OL(t+ T,Ω)eiωntY ∗

m(Ω) dt d
d−1Ω. (7.21)

Note that for small T we have OLωn,m(T ) = OLωn,me
−iωT . However, this is no longer true

when T ≫ Tb. Since we allow exponentially large T in the states |ΨT〉, we must adopt the

more careful definition (7.21).

We can try and achieve (7.20) through the use of projectors as in section 4.2.2. In

particular, we would like to use a projector to “detect” the state as an excitation of |ΨT〉
and then modulate Õωn,m accordingly. We caution the reader that this program will be only

partly successful. But to this end, we investigate these projectors in some detail below. We

have to construct these projectors and then in order to put them together correctly, we also

need to examine their overlaps.

Projectors on HΨT

We define the projector PHΨT
as follows

PHΨT
Aα|ΨT〉 = Aα|ΨT〉,

if ∀Aα , 〈v|Aα|ΨT〉 = 0 ⇒ PHΨT
|v〉 = 0.
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In these equations we restrict Aα ∈ Agff and do not allow it to include H.

We can construct the projector explicitly. Define

gαβ = 〈ΨT|A†
βAα|ΨT〉.

Note that gαβ is actually independent of T because the operators above come from the right

CFT and commute with the left Hamiltonian that is used to evolve |Ψtfd〉 to |ΨT〉. Then the

projector can be written as

PHΨT
=
∑

αβ

gαβAα|ΨT〉〈ΨT|A†
β ,

where gαβ is the inverse of gαβ . We can check that

PHΨT
Aγ |ΨT〉 =

∑

αβ

gαβAα|ΨT〉gβγ = Aγ |ΨT〉.

Obviously, in the orthogonal subspace, PHΨT
gives 0.

Overlaps of the projectors PHΨ
T

Next we have to account for the fact that the different projectors PHΨT
are not quite

orthogonal for different values of T . We can calculate the overlap between the states |ΨT〉
and their descendants as follows. We have

〈Ψtfd|Aα|ΨT〉 =
1

Z(β)

∑

E

e−βE〈E|Aα|E〉eiET , (7.22)

where all cross terms have dropped out because the operator Aα acts only within the right

CFT, and we can use the eigenstates in the left CFT to impose a delta function in energy.

First, let us consider this this quantity for T ≪ 1. In this situation we can approximate

(7.22) by

〈Ψtfd|Aα|ΨT〉 =
1

Z(β)

∫
e−βEeS(E)A(E)eiET ,

where we have indicated the diagonal element of Aα by A(E) as in (7.15).

We can compute this integral using a saddle point approximation. We write the exponent

as

−βE + S(E) = −βE0 + S(E0) +
1

2
(E − E0)

2 ∂
2S

∂2E

∣∣∣∣
E=E0

,

where E0 satisfies
∂S

∂E

∣∣∣∣
E=E0

= β.

Consider the second derivative term. We write the temperature as a function of energy τ(E),

and then this is just
∂ 1
τ(E)

∂E
= − 1

τ2(E)
∂
τ(E)

∂E
= − 1

τ2(E)C
,
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where C is the specific heat. Note that C ∝ N . Evaluated at E = E0, we find

∂2S

∂2E

∣∣∣∣
E=E0

= −β
2

C
.

Therefore the integral above can be written

1

Z(β)

∫
exp

[
−β

2

C

(E − E0)
2

2
+ iET

]
A(E)dE.

Now notice that if A(E) is a smooth function of E
N it varies slowly over the energy scales

√
C

that are relevant here, since E
N changes only by 1√

C
over this scale. Second since we have

assumed that T ≪ 1, we conclude that

〈Ψtfd|Aα|ΨT〉 =
(
〈Aα〉+O

(
1

N

))
e
−CT2

2β2 eiE0T , (7.23)

where the expectation value on the right is the normal expectation value taken in |Ψtfd〉. Note
that we can actually get the pre-factor right, and it precisely cancels the factor of 1

Z(β) in the

integral. In particular note that (7.23) also has the correct limit at T = 0. Below, we will use

f(T ) = e
−CT2

2β2 eiE0T .

We caution the reader that the estimates for the overlap between different projectors are no

longer valid for T ∼ O(1). We will consider this case separately below.

Guess for Õωn,m

We can now use these projectors and the idea explained above to write down a guess for

the Õωn,m that will reproduce (7.20). We consider

Õωnm =

√
C

πβ2

∫ Tcut

−Tcut
OLωnm(Ti)PHΨTi

dTi, (7.24)

where Tcut is a cutoff that we explore further below. The idea of (7.24) is that the projector

PHΨTi

detects the state it is acting on as an excitation of |ΨTi〉, and therefore the insertion

of Õωn,m effectively turns into an insertion of OLωnm(Ti) as required in (7.20).

We now verify in detail that the guess (7.24) does satisfy all the conditions that we need

in the state |Ψtfd〉 and in states |ΨT〉 for |T | < Tcut. For states where T does not satisfy this

condition we will need to change the operator (7.24) as we describe below.

Correlators of Õωnm

We are interested in inserting the proposed mirror defined in (7.24) in correlators. We find

that

〈ΨT|AαÕωnmAβ |ΨT〉 =
√

C

πβ2

∫ Tcut

−Tcut
dTi〈Ψtfd|e−iHTAαOLωnm(Ti)PHΨTi

Aβe
iHT |Ψtfd〉.
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To evaluate the integral on the right hand side we consider the integrand

〈Ψtfd|e−iHTAαPHΨTi

Aβe
iHT |Ψtfd〉 = 〈Ψtfd|AαPHΨT−Ti

Aβ |Ψtfd〉

=
∑

γδ

〈Ψtfd|Aαg
γδAγ |ΨT−Ti〉〈ΨT−Ti |A†

δAβ |Ψtfd〉,

where we have first used the factors of eiHT to convert the projector to PHΨT−Ti

and then

we have inserted the explicit expression for the projector derived above. This quantity can

be further be simplified to

〈Ψtfd|AαPHΨT−Ti

Aβ |Ψtfd〉 = |f(T − Ti)|2
∑

γδ

〈Ψtfd|Aαg
γδAγ |Ψtfd〉〈Ψtfd|A†

δAβ |Ψtfd〉

= |f(T − Ti)|2〈Ψtfd|AαPHΨtfd
Aβ |Ψtfd〉

= |f(T − Ti)|2〈Ψtfd|AαAβ |Ψtfd〉,

where we have used the expression for mixed correlators in (7.23),then re-absorbed the sum

over γ, δ into another projector, and recognized that the projector acts as the identity on

descendants of |Ψtfd〉.
Plugging this into the original integral we find that

〈ΨT|AαÕωnmAβ |ΨT〉 =
√

C

πβ2

∫ Tcut

−Tcut
dTi|f(T − Ti)|2〈Ψtfd|e−iHTAαOLωnm(Ti)Aβe

iHT |Ψtfd〉

= 〈ΨT|AαOLωnm(T )Aβ |ΨT〉+O

(
1

N

)
.

Here we have used the fact that OLωnm(Ti) varies very slowly with respect to the function

f(T−Ti), provided ωn ≪ N since C ∼ O(N ). Therefore, to leading order in 1
N we can simply

evaluate this integral in the saddle point approximation which leads to the result above. This

result is, of course, valid provided that |T | < Tcut and it agrees with what was required in

(7.20).

Note that this immediately leads to the right two point and higher point functions. For

example,

〈ΨT|OLωnm(T )Oωnm|ΨT〉 = 〈Ψtfd|OLωnmOωnm|Ψtfd〉 = e
−βωn

2 Gβ(ωn,m),

which is precisely what is required.

Commutator with Hamiltonians

Finally we check the behaviour of the proposed Õωnm under time evolution with the left

and right Hamiltonians. Notice that

PHΨTi

e−iHT = e−iHTPHΨTi+T
.
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Therefore,

eiHT
Õωnme

−iHT =

√
C

πβ2

∫ Tcut

−Tcut
OLωnm(Ti)PHΨTi+T

dTi

=

√
C

πβ2

∫ Tcut+T

T−Tcut
OLωnm(Ti − T )PHΨTi

dTi,

where the last equality comes from a change of variables inside the integral. Note that

OLωnm(Ti − T ) = eiωnTOLωnm,

for T ∼ O(1), and as long as T ≪ Tb. Now, when inserted into correlation functions, the

cutoffs are exponentially irrelevant as the analysis above shows. The dominant contribution

when Õωnm is inserted into a correlator always comes from a saddle point in the interior of

the integral. Therefore we find that within correlation functions

eiHT
Õωnme

−iHT .
= eiωnT Õωnm,

which is precisely what is required as long as we do not evolve for a very long time.

A very similar analysis shows that conjugation by eiHLT leaves Õωnm invariant within

correlators because of the transformation of OLωnm in the integral above. This completes our

verification of (6.17).

7.6.1 Analysis of state-dependence in the eternal black hole

The reader should note that our construction is explicitly state-dependent. The operators

(7.24) fail to click correctly when they are inserted in states |ΨT〉 with T ≫ Tcut. It is

easy to verify this by repeating the exercise above. The reader will find that when Õωn,m is

inserted into a correlator, the saddle point of the integral over Ti occurs outside the range of

integration, and therefore the correlator is exponentially suppressed.

Now, we might naively believe that this can be fixed simply by taking Tcut to infinity.

However, we will show below that if we do this, then instead of behaving correctly in every

state, the integral (7.24) would fail to behave correctly in any state. To see this we need to

reconsider the overlap estimate of (7.23). The expression in (7.23) is not the correct answer

for T ≫ 1 since our saddle-point technique of evaluating the thermal correlator breaks down

if the phase factor that arises from the term involving T varies too rapidly.

At large T , we simply note that the overlap is a sum over approximately O
(
eS
)
uncor-

related complex numbers of O (1).

〈Ψtfd|Aα|ΨT〉 =
1

Z(β)

∑
e−βEeiETA(E) = O

(
e−

S
2

)
, T ≫ 1. (7.25)

In particular for T ≫ 1, this overlap is much larger than the overlap predicted by (7.23). It

has a “fat tail.”

– 80 –



Therefore if we take Tcut to be exponentially large, Tcut ≫ O
(
eS
)
and insert (7.24) into

a correlator, then the contributions from this fat tail will overwhelm the contribution of the

dominant saddle. This is the reason that we are forced to use state-dependence.

For the states |ΨT〉 with T ≫ eS , we can still write down interior operators. These

operators are given by

O
{T}
ωn,m =

√
C

πβ2

∫ T+Tcut

T−Tcut
OLωnm(Ti)PHΨTi

dTi,

where we have explicitly moved the range of integration.

This discussion helps to shed light on the nature of state-dependence. By performing these

large diffeomorphisms we have, in a sense, “geometrized” the microstates of the black hole.

The states |ΨT〉 are all identical states from the perspective of the right infalling observer,

but the left and right modes are entangled differently in each of them. The novel part of this

situation is that these are also distinct and well separated solutions from the point of view of

the semi-classical theory if we keep track of how the solution is “glued” to the boundary.

Now, classically the right-relational observables are well defined objects on each of these

geometries. Often, in such situations, it is possible to lift such classical observables to opera-

tors as we describe in more detail in Appendix A. This is usually done by identifying classical

solutions as coherent states in the Hilbert space, and using projectors to map classical func-

tions to operators. (See, for instance, (A.4).) However, if we consider the states |ΨT〉 for

exponentially large ranges of T , then (7.25) tells us they are “overcomplete”. This “overcom-

pleteness” goes beyond the usual overcompleteness of coherent states. In fact, we believe that

a computation using coherent states to represent the different states |ΨT〉 in canonical gravity

should yield the overlap (7.23) but at large T this is very different from (7.25). This forces us

to use state-dependent operators for the black hole interior, even in this one-parameter class

of states.

By considering time-shifted versions of the geon solution analyzed in [42], we believe

that it should not be difficult to find a similar one-parameter set in a single CFT where

state-dependence can be analyzed in detail.

8 Removing ambiguities in the construction

We now turn to the issue of some ambiguities in our construction. There are two sorts of

ambiguities that have been described in the literature. The first is related to an observation

about the eternal black hole by Marolf and Wall [47] and a similar observation by van Raams-

donk [11] which was framed more directly in terms of our construction. We show here how

this ambiguity should be resolved.

The second ambiguity was discussed by the authors of [4] and some of these objections

were expanded in a paper by Harlow [12]. However, Harlow’s construction attempted to add

to this ambiguity by adopting a modified definition of the mirror operators, which had a

different commutator with the Hamiltonian from the one in our construction. We will show
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that this alternate definition of the mirror operators of [12] suffers from certain inconsistencies

which we point out below.

As a consequence of this, the alternate mirror operators described by Harlow do not

themselves have direct physical significance. However, it is true that there is an interesting

class of excited states that we will consider in section 8.3; these are related to the analysis of

[12] but we will consider them independently so as to separate them from the main claims of

that paper.

We should mention that an additional class of ambiguities, involving only ordinary op-

erators was described in [3]. The authors of [3] suggested that one could act with the

Schwarzschild number operator eiθNω |Ψ〉 on an equilibrium state to obtain another state

that was approximately time-translationally invariant. We have addressed this issue previ-

ously. (See page 46 of [9].) If we use a finite time-band to extract the modes of the CFT

generalized free-fields, and then combine them into a number operator then such an operator

does not commute exactly with the CFT Hamiltonian. One may attempt to improve this con-

struction by considering an extremely slow acting source, which inserts only a finite amount

of energy into the system over an extremely long time scale. The action of such a source

might be consistent with our equilibrium condition but this would not be a contradiction

since the infalling observer would also not see any excitation in this case.

8.1 Mirror unitary behind the horizon

Consider an equilibrium state |Ψ〉 and perform the construction described in section 7, leading

to the mirror operators. Now, consider the state

|Ψex〉 = eiαÃp |Ψ〉 ≡ Ũ |Ψ〉. (8.1)

Here Ãp is the mirror of a Hermitian operator satisfying (Ap)
† = Ap. The parameter α is a

real number that will be useful below.

Figure 11: A state |Ψex〉 = Ũ |Ψ〉 corresponding to an equilibrium state |Ψ〉 excited with a mirror

unitary behind the horizon Ũ .
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In our construction above, we have not really defined the exponentiated version of the

mirror operators. To exponentiate the mirror we need to be able to evaluate

eiαÃp |Ψ〉 =
∞∑

n=0

(iα)n

n!
(Ãp)

n|Ψ〉,

which involves arbitrarily high products of the mirror operator and necessarily takes us outside

the space HΨ. To be precise, beyond some cutoff K, we expect 〈Ψ|[(Ãp)
K ,As]|Ψ〉 6= 0. The

precise value of K depends on the precise definition of Ãp. We return to this “edge effect”

below in the discussion of Harlow’s ambiguity.

The first putative ambiguity mentioned in the beginning of section 8 is the following: if

we assume that the state |Ψ〉 is a black hole in an equilibrium state, then the state |Ψex〉
should be an excited state. Intuitively we expect |Ψex〉 to be a state with an excitation

behind the horizon as shown in figure 11. In particular, an observer crossing the horizon

in the state |Ψex〉, within a suitable time-range, should detect this excitation. Now, the

question is, suppose we are given the state |Ψex〉 without the additional information that it

came by acting with eiαÃp on some equilibrium state |Ψ〉. How can we directly detect that

the state |Ψex〉 is a non-equilibrium state? The difficulty comes from the fact that since Ũ

approximately commutes with elements of the small algebra, so we have

〈Ψ|Ũ†
Oω1,m1 . . .Oωn,mnŨ |Ψ〉 = 〈Ψ|Oω1,m1 . . .Oωn,mn |Ψ〉+R,

where R is the small remainder that we discussed above. We will neglect this remainder in

what follows. Hence, simple correlators of the small algebra on the state |Ψex〉 seem to be

almost the same as those in the state |Ψ〉. This might lead to the erroneous conclusion that

|Ψex〉 is an equilibrium state. This mistake would lead to the definition of mirror operators as

if |Ψex〉 were equilibrium, and using these wrong mirror operators would lead to the incorrect

prediction that the infalling observer will not detect any excitation behind the horizon. In

order to avoid this ambiguity in the mirror operator construction, we need to find a way to

detect from the CFT that |Ψex〉 is an excited state.

The key point is that we have also included the Hamiltonian in our set of observables. The

Hamiltonian does not commute with the mirror operators. Hence, correlators of operators

in the small algebra, together with insertions of the Hamiltonian will differ between typical

equilibrium states and states which have been excited by mirror unitary operators |Ψex〉 =

Ũ |Ψ〉. We can use these differences as a diagnostic of the non-equilibrium nature of these

states. This resolves the ambiguity of the mirror unitaries behind the horizon.

To make this more clear, let us consider the state |Ψex〉 in (8.1) and let us define

Ãs ≡ [H, Ãp]. (8.2)

We can detect the non-equilibrium nature of the state |Ψex〉 by considering the correlation
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function with H and the corresponding As operator

〈Ψex|HAs|Ψex〉 = 〈Ψ|Ũ†HAsŨ |Ψ〉 = 〈Ψ|(1− iαÃp)HAs(1+ iαÃp)|Ψ〉+O
(
α2
)

= 〈Ψ|HAs|Ψ〉+ iα〈Ψ|ÃsAs|Ψ〉+O
(
α2
)

= O
(
e−

S
2

)
+ iα〈Ψ|Ase

−βH
2 (As)

†e
βH
2 |Ψ〉+O

(
α2
)
.

(8.3)

Here we have used the fact the equilibrium expectation value of the operator HAs is exponen-

tially small, if As has non-zero “energy”. On the other hand, we expect that the expectation

value in the second term of the last line above to be O (1). So, we see that for the observable

in (8.3), we discern a substantial deviation from its equilibrium value. This allows us to

classify the state |Ψex〉 as an “excited state”, as expected intuitively.

For a concrete example, let us take Ãp in (8.1) to be Ãp = Õω,m+ Õ
†
ω,m.

20 We consider

(8.2) for this case, to find Ãs = ω(Õω,m − Õ
†
ω,m). In an equilibrium state we have

ω〈Ψ|H(Oω,m −O
†
ω,m)|Ψ〉 = 0, (8.4)

up to exponentially small corrections. On the other hand, for the state eiα(Õω,m+Õ
†
ω,m)|Ψ〉 we

find to linear order in α and up to exponentially small corrections that

ω〈Ψ|Ũ†H(Oω,m −O
†
ω,m)Ũ |Ψ〉 = ω〈Ψ|e−iα(Õω,m+(Õω,m)†)H(Oω,m −O

†
ω,m)e

iα(Õω,m+Õ
†
ω,m)|Ψ〉

= iαω2〈Ψ|(Õω,m − Õ
†
ω,m)(Oω,m −O

†
ω,m)|Ψ〉+O

(
α2
)

= iαω2〈Ψ|(Oω,m −O
†
ω,m)

(
e−

βω
2 O

†
ω,m − e

βω
2 Oω,m

)
|Ψ〉+O

(
α2
)

= 2iαω2e−
βω
2 Gβ(ω,m) + O

(
α2
)
,

which is O (1). So this correlator is different on |Ψex〉 from that on the equilibrium state (8.4)

and by measuring this correlator we can detect the excitation by the mirror unitary behind

the horizon.

Uniqueness of the behind-horizon unitaries

We note that given a state |Ψex〉 of the form (8.1) it has an essentially unique decomposition

into an equilibrium state and a unitary behind the horizon. The reason is as follows. First,

it is clear that we cannot have such a decomposition with two different basis states, since in

that case we would have

Ũ1|Ψ1〉 = Ũ2|Ψ2〉 ⇒ |Ψ1〉 = Ũ
†
1
Ũ2|Ψ2〉.

As we have shown above, if |Ψ2〉 is in equilibrium a relation of the sort above implies that

|Ψ1〉 cannot be in equilibrium, and vice versa.

20In this section and in section 9, to lighten the notation, instead of ωn for the discretized frequencies, we

drop the subscripts and simply write ω.
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Furthermore, with Ũ1 = eiÃ1 , and Ũ2 = eiÃ2 , it is clear from a chain of reasoning that

Ũ1|Ψ〉 = Ũ2|Ψ〉 ⇒
(
Ũ

†
1
Ũ2

)
|Ψ〉 = |Ψ〉

⇒ (Ã1 − Ã2)|Ψ〉 = 0

⇒ (A†
1 −A

†
2)|Ψ〉 = 0,

which is prohibited by (7.11) unless A1 = A2, and so Ũ1 = Ũ2. This concludes our proof of

the uniqueness of the decomposition.

Therefore, to summarize, given a state of the form (8.1) we can not only detect that it is

out of equilibrium, but even detect the operator with which it has been excited.

8.2 Comments on the Harlow unitaries

Now, let us turn to a second set of unitaries described by Harlow [12], who attempted to

define a new set of mirror operators X̃
H

ω,m which act on an equilibrium state as follows

X̃
H

ω,mAβ |Ψ〉 = Aβe
−βω

2 (Oω,m)
†|Ψ〉, (8.5)

[X̃
H

ω,m,H]Aβ |Ψ〉 ?
= 0. (8.6)

Notice that the first equation, (8.5), is the same as the one in our definition, (7.7), but the

commutator with the Hamiltonian given in (8.6) differs from ours, which is specified by (7.8).

We will now show that the definition of mirror operators given by Harlow is inconsistent,

and runs into difficulties in several physical situations. We discuss an energy eigenstate,

and then a state drawn from the microcanonical ensemble. We then discuss a more serious

problem — definition (8.6) leads to operators that do not satisfy the Heisenberg equations

of motion. Therefore, these operators X̃
H

ω,m cannot be used to build up gauge invariant

relational observables.

8.2.1 Inconsistency of X̃
H

ω,m mirrors in energy eigenstates

First, we point out that the second line above, (8.6) does not have any solutions at all, when

defined about energy eigenstates. We find that

X̃
H

ω,mH|E〉 = EX̃
H

ω,m|E〉 = e−
βω
2 EO

†
ω,m|E〉. (8.7)

But21

HX̃
H

ω,m|E〉 ?
= e−

βω
2 H(Oω,m)

†|E〉 = e−
βω
2 [H, (Oω,m)

†]|E〉+ e−
βω
2 (Oω,m)

†H|E〉
= e−

βω
2 ωO†

ω,m|E〉+ e−
βω
2 EO

†
ω,m|E〉

= e−
βω
2 (E + ω)O†

ω,m|E〉.

(8.8)

21Note that these results are unaffected by a possible small correction to the commutator between the

Hamiltonian and the ordinary operator: RC = [H,O†
ω,m] − ωO†

ω,m. This may arise because we define

the “modes” by considering only a finite time interval as we discussed above. However, we expect that

||RC |E〉||2 ≪ 1, and particularly that 〈E|Oω,mRC |E〉 = O
(

1
N

)

. These statements just point out that the

“remainder” is small and, in particular, it does not have an overlap with O
†
ω,m|E〉 at O (1).
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To understand the inconsistency of Harlow’s definition for eigenstates, we consider the

correlator 〈E|Oω,m[H, X̃
H

ω,m]|E〉. We can compute it in two ways. The first is to subtract

(8.7) from (8.8) and multiply the resulting state with the bra 〈E|Oω,m. This leads to the

prediction

〈E|Oω,m[H, X̃
H

ω,m]|E〉 = e−
βω
2 〈E|Oω,mωO

†
ω,m|E〉

= ωe−
βω
2 Gβ(ω,m).

(8.9)

On the other hand, using directly (8.6), we find that

〈E|Oω,m[H, X̃
H

ω,m]|E〉 ?
= 0. (8.10)

Clearly (8.10) and (8.9) are in contradiction, and therefore the equation (8.6), which was

used by Harlow to define the mirrors, is actually inconsistent in an energy eigenstate. More-

over note that at this level the contradiction arises at O (1) and cannot be resolved by 1
N

corrections.

Now, we move away from a strict energy eigenstate and turn to a state with an O (1)

spread in energies. We show that even in such a state, the modified definition of the mirror

operators in [12] cannot be used consistently.

8.2.2 Inconsistency of X̃
H

ω,m in microcanonical states

We now show that the inconsistency in Harlow’s unitaries in not restricted to energy eigen-

states. It persists in states that are drawn from a microcanonical ensemble with an O (1)

spread in energies. Consider a state of the following kind

|Ψmic〉 =
∑

i

αi|Ei〉,

where the coefficients αi have the property that they are peaked around a given energy, which

we will call E, but the spread in energies is O (1). More precisely, we demand

〈Ψmic|H|Ψmic〉 = E,

〈Ψmic|PE |Ψmic〉 = 1−O
(
N−1

)
,

where

PE =

i=E+∆∑

i=E−∆

|Ei〉〈Ei|, (8.11)

is the projector onto states in the range E ±∆, and ∆ ≪ N is some O (1) number.

Now, the key point is as follows. In (8.6) we have imposed the relation that the commu-

tator of the operator X̃
H

with the Hamiltonian annihilates the state. However, the projector

onto a range of energies, like the one that appears in (8.11), is also a good observable. In

fact, physically we expect to be able to measure this observable rather easily both on the
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boundary, and in the bulk. On the boundary, this observable is completely determined by

considering the zero mode of the stress tensor. In the bulk, it can be determined by consider-

ing the subleading falloff in the metric. This is in contrast to a projector onto a Schwarzschild

number eigenstate which, as we reviewed in Appendix C of [9], requires an extremely long

time to measure and projects the final state onto a firewall.

Now, consider again the relation (8.6), but extended to products of the operator X̃
H

ω,m.

As we discussed above, unless we can define such products consistently to a high order, it is

not possible to consider “unitaries” made out of this operator, which are required to produce

the ambiguity that was discussed in [12].

However, for any O (1) frequency ω, we have an O (1) number nc, so that

nc ω > 2∆.

Now, following (8.6), we would like to impose

(X̃
H

ω,m)
nc |Ψmic〉 = e−

ncβω
2 (O†

ω,m)
nc |Ψmic〉+

1

N |Rmicro
C 〉,

where we have included a small possible 1
N correction with the property that

〈Rmicro
C |Rmicro

C 〉 = O(1) .

However, now we note that

e−ncβω〈Ψmic|(Oω,m)
ncPE(O

†
ω,m)

nc |Ψmic〉 ≪ 1. (8.12)

This is because the action of nc insertions of Õ
†
ω,m raises the energy by the state by nc ω and

so necessarily takes it out of the band E ± ∆. On the other hand, if the operator X̃
H

ω,m is

defined to commute also with PE then we would expect

〈Ψmic|
[
(X̃

H

ω,m)
†
]nc

PE(X̃
H

ω,m)
nc |Ψmic〉

?
= 〈Ψmic|PE

[
[(X̃

H

ω,m)
†
]nc

(X̃
H

ω,m)
nc |Ψmic〉+O

(
N−1

)
.

= 〈Ψmic|PE(O
†
ω,m)

nc(Oω,m)
nc |Ψmic〉+O

(
N−1

)

= O(1) ,

(8.13)

where in the final result we have noted that action of (Oω,m)
nc followed by the action of its

adjoint maps us back to the same band of energies. Clearly the results of (8.12) and (8.13) are

in contradiction given the general results about the expectation value of projectors in states

that are almost parallel, which we reviewed in section 5.1.

8.2.3 Failure of X̃
H

ω,m to satisfy the Heisenberg equations of motion

Now we turn to an even more serious difficulty with the mirror operators defined by (8.6):

their failure to satisfy the Heisenberg equations of motion. This failure persists even in
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states with a canonical spread of energies. In such states, the fundamental relation (8.6)

does not suffer from an obvious inconsistency, unlike in energy eigenstates or states with a

microcanonical spread. However, as we show below these operators nevertheless do not have

the correct geometric properties to play the role of interior mirror operators.

In particular, as we described in detail in section 6.3.1, if the bulk operators are defined

relationally with respect to the boundary, in order to be gauge invariant, then they must

satisfy

eiHTφ(t, r,Ω)e−iHT = φ(t+ T, r,Ω).

It is clear that if we attempt to create these operators by means of the operators defined in

(8.6), then the local operators will not obey the Heisenberg equations of motion. Let us check

this explicitly by computing a two point function across the horizon.

Outside the horizon we have the usual expansion of the field in terms of CFT modes

φH(t, r∗,Ω) −→
U→0−

∑

m,ω

1√
ωCβ(ω,m)

Oω,me
−iωtYm(Ω)

(
eiδeiωr∗ + e−iδe−iωr∗

)
+ h.c.

This expansion does not depend on our definition of the mirror operators. Inside the horizon,

however, using the Harlow mirror operators we find

φH(t, r∗,Ω) −→
U→0+

∑

m,ω

e−iδ√
ωCβ(ω,m)

[
Oω,me

−iω(t+r∗)Ym(Ω)+ X̃
H

ω,me
iω(t−r∗)Y ∗

m(Ω)
)
+h.c.

]
.

Now, let us compute correlation functions with this operator in an equilibrium state, |Ψ〉.
Moving to the usual Kruskal coordinates U, V , let us consider two points, so that one of

them, (U1, V1,Ω1), is just outside the horizon whereas the other (U2, V2,Ω2) is just inside.

Then we find

〈Ψ|e−iHTφH(U1, V1,Ω1)φ
H(U2, V2,Ω2)e

iHT |Ψ〉 =

=
∑

m,ω

1

ωCβ(ω,m)

[
〈Oω,mO

†
ω,m〉

(
V1
V2

)iω
+ eiωT 〈Oω,mX̃

H

ω,m〉
(−U1

U2

)iω]
Ym(Ω1)Y

∗
m(Ω2) + h.c.

Notice the extra factor of eiωT which appears in front of the U1
U2

factor. In particular, this

implies that if we compute the derivative of the two point function and take the two points to

be close then we find (using the techniques of section 4), substituting the relevant two point

functions and converting the sum to an integral that

lim
V1−V2→0

〈Ψ|e−iHT∂Uφ
H(U1, V1,Ω1)∂Uφ

H(U2, V2,Ω2)e
iHT |Ψ〉 = c

δd−1(Ω1 − Ω2)

(U1 − U2e
− 2πT

β )2
.

However, this is in explicit contradiction with the universal short distance form of the cor-

relator that we derived in (4.3). In fact, such a correlator would suggest the presence of a

firewall.
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Therefore, we have reached the following conclusion. Even in an equilibrium state, where

we expect correlation functions to be time-invariant, if one uses Harlow’s definition of the

mirror operators, this leads to the prediction that if one starts with a state with no firewall,

a firewall appears immediately!

This is a straightforward consequence of the fact that these putative mirror operators do

not obey the Heisenberg equations of motion. The commutator with the Hamiltonian (8.6)

was not derived from a gauge fixing procedure, which we carried out carefully in [9], nor was

it derived from a careful consideration of relational observables in the geometry, which we

performed in subsection 6.3.

In fact, the source of this error is apparent. The motivation of [12] to propose the

vanishing commutator of the interior operators with the Hamiltonian (8.6) was partly based

on the analogy with the thermofield doubled state. In fact, it was argued in [12] that in some

specific pure states, one may expect bulk correlators to approximate thermofield correlators

to high orders in 1
N . However, even in the thermofield state, as we showed in section 6,

when we carefully consider commutators of the right Hamiltonian with the mirrors that are

relevant for the right relational observables, one finds non-zero commutators. It is only if one

uses the naive but incorrect expansion 6.4, that one obtains the incorrect expectation for the

commutator used in (8.6).

8.3 States in the “canonical” ensemble

We now turn precisely to an interesting class of excitations of states in the canonical ensemble.

The point is that we need to refine our notion of equilibrium, since the time-independence

of correlators of single-trace operators may not be sufficient to classify these states into

equilibrium and non-equilibrium. We do not explicitly perform this classification here, but

we show that such a classification should exist.

These states were also discussed in [12], but we phrase the issue independently of Harlow’s

mirror operators, since these do not have any geometric significance as we pointed out above.

Consider a state |Ψcan〉 that satisfies the following condition. For any element Ap of the

set of observables A, we have

〈Ψcan|Ap|Ψcan〉 = Tr(ρAp) + O
(
e−S

)
, (8.14)

where ρ is an invertible matrix. Note that if the state |Ψcan〉 is in equilibrium then the

density matrix ρ satisfies [H,ρ] = 0. This is important for correlation functions to be time-

translationally invariant.

We pause to make two important points. Given a state |Ψcan〉 the density matrix that

appears on the right of (8.14) is not unique. In fact, the possible solutions to this equation are

the subject of entropy maximization [56]. Second, both the energy eigenstate and the sharp

microcanonical state that we considered above are not relevant here. We cannot find any

invertible choice of ρ to satisfy (8.14) for these states without making some matrix elements

of the inverse arbitrarily large.
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Now, given any Hermitian element of the set of observables Ap, we consider the trans-

formation

|Ψ′
can〉 = ρ

1
2 eiApρ− 1

2 |Ψcan〉. (8.15)

We can check that correlators of elements of A in the state |Ψ′
can〉 are the same as those in

|Ψcan〉. We see that

〈Ψ′
can|Am|Ψ′

can〉 = 〈Ψcan|ρ− 1
2 e−iApρ

1
2 Am ρ

1
2 eiApρ− 1

2 |Ψcan〉
= Tr

[
ρ
(
ρ− 1

2 e−iApρ
1
2Amρ

1
2 eiApρ− 1

2

)]
+O

(
e−S

)
(8.16)

= Tr(ρAm) + O
(
e−S

)
= 〈Ψcan|Am|Ψcan〉+O

(
e−S

)
. (8.17)

In obtaining (8.16), we simply used (8.14), and then we use the cyclicity of the trace and

(8.14) to obtain the final result in (8.17). The question now is as follows: is the state |Ψ′
can〉

in equilibrium or not?

Consider a concrete example. Take the state that was discussed in [12]

|Ψcan〉 =
1√
Z(β)

∑

i

e−
βEi
2 eiφi |Ei〉, (8.18)

where φi are arbitrary phases, the sum is over all energy eigenstates and Z(β) is the partition

function of the boundary theory. As discussed in [12] for simple correlators this state behaves

like the canonical ensemble to exponential accuracy, and for this state we can take ρ =
1

Z(β)e
−βH and satisfy (8.14).

To see this, consider any operator, Ap obeying the eigenstate thermalization hypothesis

(7.15). Adopting the notation of (7.15), we consider

〈Ψcan|Ap|Ψcan〉 =
1

Z(β)

∑

i

A(Ei)e
−βEi +

1

Z(β)

∑

ij

e−β
Ei+Ej

2 Rije
−SB(Ei, Ej)e

i(φj−φi).

To convert the second term to a sum over i, we sum over all j that can be connected by the

cross-terms. We make the further reasonable assumption that the unitary links states that

are separated only by a “finite” band, i.e. B(Ei, Ej) ≪ 1 for |Ei−Ej | ≫ 1. Now, we see that

for each value of i, the sum over j runs over effectively O
(
eS
)
states. However, since these

states contribute with varying phases the typical size of this sum over j is suppressed by e−
S
2

compared to the first term involving A(Ei). So we can estimate that

〈Ψcan|Ap|Ψcan〉 =
1

Z(β)

∑

i

A(Ei)e
−βEi +O

(
e−

S
2

)
=

1

Z(β)
Tr(e−βHAp) + O

(
e−

S
2

)
.

Now, we consider the group of transformations of the form (8.15) that we can make to this

state, where now ρ = 1
Z(β)Tr(e

−βH)

M |Ψcan〉 ≡ e−
βH
2 eiApe

βH
2 |Ψcan〉. (8.19)
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The question is, if |Ψcan〉 is an equilibrium state, then is M |Ψcan〉 in equilibrium or not?

We will work with this concrete example to consider this question. Of course, the reader

can easily generalize this discussion to states that mimic a density matrix that is distinct

from the thermal one.

At first sight, this question is a little puzzling because of two seemingly contradictory

facts. On the one hand, all correlators of elements of A in this new state (8.19) are the same

as in the canonical ensemble

〈Ψcan|M †AmM |Ψcan〉 =
1

Z(β)
Tr
(
e−βHAm

)
+O

(
e−

S
2

)
.

On the other hand, it is easy to verify that

〈Ψcan|M †e−iÃp |Ψcan〉 = 1−O
(
N−1

)
, (8.20)

where here e−iÃp |Ψcan〉 is an excited state, as discussed in subsection 8.1. So if we declare the

transformed state in (8.19) as an equilibrium state, then we would have the unusual situation

of having equilibrium and excited states separated by a “distance” 1
N in the Hilbert space

(8.20). This would not be a contradiction, since the operators Õ are state-dependent, but it

would be a rather striking departure from the behaviour of state-independent operators.

Therefore, the better alternative is to enlarge the set of observables A to include an

operator that can distinguish between the states M |Ψcan〉 and |Ψcan〉. There are many such

operators because it is certainly not true that all physical properties of these states can be

captured by the thermal density matrix. For example, if we take the boundary to be on Sd−1

and ask for the entanglement entropy of a subregion on this boundary, then in both states,

this entanglement entropy starts to decrease after the volume of the subregion increases past

half the volume of the Sd−1, which would not be the case for a truly thermal mixed state.

We will return to the discussion of the appropriate operators that can detect this excita-

tion in future work. However, for now, we perform an important consistency check. Consider

the set of states formed by the action of the group of exponentiated unitaries

{|Ψcan〉,M(A1)|Ψcan〉,M(A2)|Ψcan〉 . . .M(An)|Ψcan〉}, (8.21)

where A1,A2, . . .An are elements of A and M(Ap)|Ψcan〉 ≡ e−
βH
2 eiApe

βH
2 |Ψcan〉 as above.

We will show that it is consistent, in principle, to have sets of this form, where only one

element of the set is an equilibrium state, and all others are non-equilibrium states. The

consistency check that we need to perform is to ensure that such a classification will not

violate the rule that “most” states in the Hilbert space must be equilibrium states.

8.3.1 Consistency condition for maps from equilibrium to non-equilibrium states

Let us state this consistency condition more precisely. It is applicable not only to this case,

but to more general statistical mechanical questions of classifying equilibrium. Let us say

that we have two regions of the Hilbert space, D, and I. We have a function on the Hilbert
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space ΘE(Ψ), with the property that ΘE(Ψ) = 0 for equilibrium states and ΘE(Ψ) = 1 for

non-equilibrium states. This function provides a classification of equilibrium. Next, we have

a measure on the Hilbert space dµ(Ψ), which has the property that by this measure “most

states” in both D and I are in equilibrium.

∫
D dµ(Ψ)ΘE(Ψ)∫

D dµ(Ψ)
≪ 1, (8.22)

∫
I dµ(Ψ)ΘE(Ψ)∫

I dµ(Ψ)
≪ 1. (8.23)

This means that the volume of non-equilibrium states as a fraction of the total volume is very

small both in D and in I. Finally, consider a map M

M : D −→ I,

which has the property that it maps equilibrium to non-equilibrium states.

Let M(D) be the image of D under this map. Now, let ID be the intersection of an ǫ-ball

about this image with the set I. More precisely, for ǫ≪ 1,

|Ψex〉 ∈ ID ⇔ ∃|Ψ〉 ∈ D, s.t. |〈Ψex|M |Ψ〉|2 ≥ 1− ǫ2.

Then we have the following important consistency condition on this map

∫
ID dµ(Ψ)
∫
I dµ(Ψ)

≪ 1. (8.24)

We explain this condition in a little more detail below. Intuitively, it means that states that

are close to the image of D under M must have very small volume in I.
From this condition it follows immediately that an invertible map D −→ D cannot map

equilibrium to non-equilibrium states consistently. For example, consider the microcanonical

measure where we pick states in an energy band. (We define this more precisely below.) We

expect most such states to be in equilibrium. Now consider time-translations, which map this

region back to itself. Therefore, the image under time-translations of the original region is

the region itself. Thus time-translations do not satisfy (8.24) and therefore cannot have the

property

8.3.2 Microcanonical ensemble and unitaries

To warm up for the problem of maps from “canonical states” back to themselves, we consider

a similar problem for the microcanonical ensemble. We will define this ensemble, define an

appropriate measure so that (8.22) and (8.23) are satisfied and show how unitaries of simple

operators do satisfy (8.24).
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Consider the set of all states of the form

|Ψmic〉 =
Ei=E+∆∑

Ei=E−∆

ai|Ei〉, (8.25)

where
∑

i |ai|2 = 1 for the state to be normalized. We now write down an invariant Haar

measure on this set, dµ(Ψmic), with the property that for any unitary that maps states

of the form (8.25) back to another state of the same form, |Ψ′
mic〉 = U |Ψmic〉, we have

dµ(Ψ′
mic) = dµ(Ψmic). Explicitly, to obtain the “microcanonical ensemble”, we consider the

uniform probability measure

dµ(ai) = Nµδ(1−
∑

i

|ai|2)d2a1 . . . d2aD, (8.26)

where D is the total number of energy eigenstates in this range, and Nµ is a normalization

constant that we will fix below. In the measure above, note that we have not identified states

that differ by a phase.

In terms of the objects introduced in section 8.3.1, the set D is the set of all states

of the form (8.25). We have not specified a precise equilibrium function. However, with

almost any reasonable choice of ΘE(Ψ) — for example, we can choose this function so that

it implements our equilibrium condition in (7.5) — and with the measure (8.26), we see that

(8.22) is satisfied.

We can take the map under consideration to be the unitary matrix, Um = eiAm . Now

one might naively imagine that there are “as many” states of the form Um|Ψmic〉 as of the

form |Ψmic〉. The reason this is still consistent with the fact that most states are equilibrium

states is that Um|Ψmic〉 does not belong to the original microcanonical ensemble. Even if we

consider Am = Oω+O
†
ω where ω is a very low frequency we see that the new state Um|Ψmic〉

contains energy eigenstates of higher energies. The term A
k
m

k! in the expansion of the unitary

operator leads to a new ensemble with states E ± ∆ ± kω. The point is that even a small

increase in energy increases the “volume” of the ensemble by a huge amount, and therefore

the state U(Am)|Ψmic〉 come from a larger ensemble, where they are extremely atypical.

Let us see this more precisely, let us define I to be the set of states that can be written

in the form (8.25), but with a width ∆′ > ∆. In the example above, if we take ∆′−∆
ω ≫ 1,

then we can consistently think of the unitary as a map from D to I. Strictly speaking

the image of the lower dimensional manifold in the higher dimensional manifold is measure

0. However, this does mean that non-equilibrium states are infinitely unlikely. To answer

physical questions we must examine how many states in the higher dimensional manifold

are within an ǫ distance of the states obtained by exciting the lower dimensional manifold

with a unitary. The relevance of this condition is that by the arguments of section 5.1 the

expectation value of any projector in states which have an almost unit inner product is almost

identical and therefore such states have similar physical properties.
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To verify (8.24), we consider the volume of the manifold of all states of the form (8.25).

This is just that of a 2D − 1 dimensional sphere under the measure (8.26) and is given by

Vmicro = Nµ
πD

Γ(D)
.

So we should take Nµ = Γ(D)
πD for the distribution to be normalized.

However, we may also ask the following useful question. Let us discretize this region into

ǫ-nets. Given a state |Ψ〉, we ask: what is the volume of the space in the neighbourhood,

comprising states |Ψ′〉 so that |〈Ψ|Ψ′〉|2 ≥ 1− ǫ2? We can see that this is given by the volume

of the 2D− 2 dimensional ball with small radius ǫ, with an additional factor of π that comes

from the possible relative phase between the two vectors.22 This is

Vǫ−ball = Nµ
πD−1ǫ2D−2

Γ (D)
.

So the number of such ǫ-balls in a space of dimension D is given by

ND =
Vmicro

πVǫ−ball
=

1

ǫ2D−2
.

Now we consider the unitary map above, which takes us from the microcanonical space of

dimensionality D to a set of states of dimensionality D(1+ δ). This map clearly sends ǫ-balls

in the lower dimensional space to a cross-section of an ǫ-ball in the higher dimensional space.

However, the higher dimensional space has far more ǫ-balls, and therefore the image of the

lower dimensional space only intersects a small fraction of these. The precise fraction is given

by
ND

ND(1+δ)
= ǫ2Dδ ≪ 1.

Note that D is exponentially large: D = O
(
eS
)
. Therefore even if the unitary increases

the dimension of the new ensemble by only a small fraction, it is completely consistent with

thermodynamic expectations to classify almost all states both in the original ensemble, and

in the new ensemble, as equilibrium states.

8.3.3 Excitations of canonical states

Now we want to show that the same principle holds for the canonical states that we discussed

above. More precisely, we consider some possible measures on a subset of the Hilbert space,

so that typical states picked using this measure are of the form (8.18). Then the action of the

operators M takes us to another subset of the Hilbert space where the image of the original

subset occupies a vanishingly small volume. By the remark below (8.18), as a corollary, this

provides some evidence for the claim that there is no subset of the CFT Hilbert space, with

22Choose a basis so that |Ψ〉 = (1, 0, . . . 0). Then we must have |Ψ′〉 = (a1, . . . aD) where |a1|
2 ≥ 1− ǫ2 and

so |a2|
2 + . . . |aD|2 ≤ ǫ2.
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a nice measure satisfying (8.22) which has the property that it is left invariant by the action

of M .

First, let us attempt to make precise what we mean by states “of the form” (8.18). In

(8.18) we ensured that each coefficient was precisely the Boltzmann factor. This is clearly a

very special class of states and we would set ourselves too simple a problem by focussing on

these states. So we can generalize this slightly to consider states of the form

|Ψcan〉 =
E2∑

E1

1√
Z(β)

aie
−βEi

2 |Ei〉, (8.27)

where the ai are complex numbers that are drawn from a distribution so that their norms

can each independently fluctuate a little about 1 but

〈|ai|2〉 = 1. (8.28)

We will comment more on the range of the sum [E1, E2] below. It is easy to verify, by

repeating the argument above, that even for the states (8.27) we have

〈Ψcan|Ap|Ψcan〉 =
1

Z(β)
Tr(e−βHAp) + O

(
e−

S
2

)
.

By the central limit theorem, since there are an exponentially large number of energy eigen-

states in (8.27) the the fact that the coefficients ai can fluctuate in magnitudes as well as

phases is unimportant. To see this consider a range of energies of size e−
N
2 . Even this tiny

range of energies has an exponentially large number of eigenstates. In the notation of (7.15),

the expectation value A(Ei) is constant over this range, and therefore the fluctuations of |ai|2
average out. Therefore, for any smooth function, it is only the mean magnitude of the |ai|2
that matters, which is what leads to the result above.

Now consider the action of an element of M on the state (8.27). If we write M =

e−
βH
2 Ue

βH
2 . If the matrix elements of U are U |Ei〉 =

∑
j Uji|Ej〉, then we reach the new

state

|Ψ′
can〉 ≡ NMM |Ψcan〉 = NM

Ei=E2∑

Ei=E1

∑

Ej

1√
Z(β)

e−βEjaiUji|Ej〉.

where the factor

NM = 〈Ψcan|M †M |Ψcan〉−
1
2 ,

is required to normalize the state. If we neglect the “edge effects” for the moment (these will

be important below), then we see that we again have a state of the form (8.27), although

with coefficients

a′j = NM

∑

i

Uijai.

From the argument above we can check that Nm = 1+O
(
e−

S
2

)
. Therefore the action of the

group of transformations denoted by M , is basically like that of a unitary transformation on

the elements ai.

We now see the following
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1. Physically the range of energies that is relevant in (8.27) is limited. So, we may truncate

this range so that the lower bound is E1 = E−∆ and the upper bound is E2 = E+∆.

In that case, by an extension of the arguments of the previous subsection we find that

M maps us to a slightly larger band of energies. Under almost any reasonable measure,

this larger band has a much larger volume and therefore (8.24) is met. The technical

details of this argument are identical to the previous subsection since, as we noted, M

acts precisely as a unitary transformation on the coefficients ai.

2. We may try and avoid this conclusion in the following artificial manner. We extend

the band of energies [E1, E2] in (8.27) so that it spans a very large range. We now

truncate the action of M so that it acts only within this large energy range. By

construction, now M maps this set back to itself. This may suggest that (8.24) cannot

be met. This conclusion is clearly physically incorrect since the higher energies in (8.27)

are physically unimportant and therefore artificially extending the band should have no

effect. However, there is another important point. If we indeed take our original domain

D to be the subspace of this large range of energies then, and attempt to define a measure

that is left invariant by the action of M then as we show below we find that the states

(8.27) are extremely unlikely states and themselves occupy only a small volume of the

space.

The point is that there is a tension between the requirement (8.28) which mandates that

all the ai must have equal and approximately unit magnitude and the fact that M acts as a

“unitary” on this space. We now consider one particular example to bring out this tension.

In an attempt to write down a measure that is invariant under the action of M we may try

and write the “uniform” measure on the space ai. More precisely, we consider the measure

µcan(ai)d
2a1 . . . d

2aD = 2πNµδ(Z(β)−
∑

i

|ai|2e−βEi)d2a1 . . . d
2aD. (8.29)

Here, to make the measure well-defined we had to truncate the range of energies [E1, E2] so

that the total number of eigenstates that enter the range are D. If we take this range to be

large enough so that E2 − E1 ≫
√
N then, for the purposes of its action on states (8.27),

the action of M can be consistently restricted to this range. Now, naively, one might believe

that this leads to a contradiction with (8.24). However, we find that under (8.29) with a

large range of energies the states (8.27) are themselves very atypical. Therefore the fact that

the truncated version of M maps the energy-range back to itself and also leaves the measure

(8.29) invariant still does not lead to a contradiction with (8.24).

We now explicitly bring out the tension between measures like (8.29) which are the natural

guesses for measures invariant under M and the fact that we would like the magnitudes of the

ai to be approximately constant in (8.28). We compute the reduced probability distribution,

µred for the coefficient a1 by integrating out a2 . . . aD. We write the delta function as

δ(Z(β)−
∑

i

|ai|2e−βEi) = lim
ǫ→0

∫
dl

2π
eil(Z(β)−

∑
i |ai|2e−βEi )−ǫl2 ,
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where ǫ is a small regulator. We also add small regulators ǫ′e−βEi |ai|2 to make the integrals

over a2 . . . aD well defined. Then we find

µred(a1) ≡
∫
µcan(ai)d

2a2 . . . d
2aD

= Nµ

∫
d2a2 . . . d

2aD lim
ǫ,ǫ′→0

∫
dl eil(Z(β)−

∑
i |ai|2e−βEi )−ǫl2e−ǫ

′
∑

i e
−βEi |ai|2

=
[Nµπ

D−1

e−β
∑

i Ei

]
lim
ǫ,ǫ′→0

∫
dl
eil(Z(β)−|a1|2e−βE1 )−ǫl2

(ǫ′ + il)D−1

=
[ Nµπ

D−1

Γ(D − 1)e−β
∑

i Ei

] ∫
dl dx xD−2e−x(il+ǫ

′)eil(Z(β)−|a1|2e−βE1 )−ǫl2

=
[ Nµπ

D−1

Γ(D − 1)e−β
∑

i Ei

√
π

ǫ

] ∫
dx xD−2e−

(x+Z(β)−|a1|
2e−βE1 )2

4ǫ
−xǫ′

= κ(1− |a1|2e−βE1

Z(β)
)D−2.

In the last step here, we have absorbed all the normalization factors into an irrelevant constant

κ and taken all regulators to 0 and kept the part that is non-vanishing in this limit.

Generalizing this computation to the other coefficients, we find that the reduced proba-

bility distribution for the coefficient |ai|2 can be written as

µred(ai) = κ(1− |ai|2e−βEi

Z(β)
)D−2 ≈ κ exp

[
−De

−βEi |ai|2
Z(β)

]
. (8.30)

Now, we see something interesting. If we take the range of energies [E1, E2] that appeared

in (8.27) to be much larger than
√
N as we would need to make M act effectively in this

space then (8.30) suggests that the different ai have very different typical magnitudes. To

ensure that the typical magnitudes of the coefficients ai are the same in (8.30), we have to

take the range of energies E1 − E2 ≪ 1. However, in this case the ensemble is clearly not

invariant under the action of M .

Physical intuition

Let us briefly summarize the physical intuition behind the analysis above. The action of

M is like a unitary on the coefficients ai. Therefore, just like unitaries in a microcanonical

ensemble, M tends to “move” the coefficients slightly from lower to higher energies. From

this point of view, in the states (8.27), as written, the high energy states are weighted with

coefficients that are typically too small and the low energy states are weighted with coefficients

that are typically too large. If we truncate the coefficients ai to a small range of energies,

then M simply moves us out of this range. This suggests that it may be difficult to find

a measure on the Hilbert space that satisfies (8.22) and (8.23) for which M does not meet

(8.24).

So, in principle it is consistent to expect that there may exist further criteria, based on

the magnitudes and the phases of (8.27) which can be detected by various operators beyond
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the simple operators in our algebra, which will determine that in the set (8.21) at most one of

the states is in equilibrium whereas the others are not. We will return to this issue in future

work.

8.4 Summary

We now summarize the results of this section.

1. For ordinary excitations of an equilibrium state with unitary operators, we can detect

them using ordinary correlators and modify the construction of our mirrors accordingly.

2. For the van Raamsdonk type unitaries, which act behind the horizon, we can detect

them by using correlators of the Hamiltonian.

3. Harlow attempted to define new mirrors that could evade detection by the Hamiltonian.

However, we have shown here that this was predicated on an error in the computation

of the Hamiltonian with the mirror operators. Harlow’s operators do not have the right

geometric properties to play the role of mirror operators, and do not even obey the

Heisenberg equations of motion.

4. Nevertheless, for some states with a canonical spread, we can find a group of trans-

formations as in (8.21) so that we can map one state to another where the correlators

are almost the same. There is no strict ambiguity involved here, because none of these

states coincide exactly with the states obtained by acting on an equilibrium state with

a mirror operator.

5. However, while it is true that at the moment we do not know how to classify the states

in the orbit (8.21), we have further shown that it is consistent with statistical mechanics

expectations to classify one of these as equilibrium and the others as non-equilibrium.

Although, it appears that all these states are “equally” generic, this is specious, and

such a classification would be perfectly consistent with the notion that most states are

equilibrium states.

We will return to this issue of the classification in further work. However, we note that this

is a broader question in AdS/CFT — that of precursors. At the moment, we do not know

how to write down the bulk to boundary map for all possible states but this is an issue

that extends beyond our construction, and is independent of the recent discussions on the

information paradox. We emphasize again that, our results in this subsection show that,

within the class of states we have considered — equilibrium states, near-equilibrium states

excited by the ordinary and mirror operators, and small superpositions of these — there is

no ambiguity in our construction.
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9 State-dependence in entangled systems and ER=EPR

We now describe the construction of our operators in general entangled systems. In section

7.6, we already examined the construction of the interior in a specific entangled state — the

eternal black hole. Here we generalize the construction to more general entangled states. We

show, also, that the construction of section 7.6 follows automatically from our generalized

definition here.

We first present a general construction of interior operators. This construction is a

very natural generalization of the one-sided interior constructed in section 7 and in fact the

defining equations for the mirror are unchanged. The only difference is in the construction

of the “little Hilbert space” HΨen . This is because for entangled systems we have two sets of

possible natural excitations: one, where we act with excitations in the original CFT, and the

other where we act with excitations in the entangled system.

We then examine the consequences of this construction. We divide this analysis into two

parts. We first consider states where the CFT is entangled with another CFT in a maximal

manner so that the entanglement entropy scales with N . Next we consider states where the

CFT is entangled with a small “pointer”, which could be a collection of a few qubits so that

the entanglement entropy is O (1).

In both cases, we obtain interesting results. When the CFT is entangled with another

CFT, our construction leads to a precise and natural formulation of the ER=EPR conjecture

[13]. When light operators on the right are entangled with light operators on the left, we

find that excitations on the left can affect the experience of the right infalling observer in

precisely that manner predicted by a geometric wormhole. On the other hand, in a generic

state where there is no such entanglement we find that an observer on the left CFT loses his

power to affect the region behind the right horizon by means of simple operations, although

he could do possibly do so by using some very complicated operators. This is consistent with

the heuristic notion that the wormhole becomes “very long” for these states.

On the other hand, when the CFT is entangled with a small system then no such geometric

wormhole appears for any state. However, for this case, there is another crucial question,

which is as follows. As we show below, the important test of whether there are any observable

violations of quantum mechanics for the infalling observer arises when the observer entangles

the CFT with a small system, jumps into the black hole and observes whether the state-

dependence leads to any deviations from linearity. We show below that such an experiment

does not lead to any observable departure from the predictions of quantum mechanics.

We wish to emphasize throughout this section that these predictions arise as a natural

consequence of our construction and not because we have tailored the definition of the interior

operators to entangled systems. As we mentioned above, the only change in an entangled

system is that we have additional “coarse” or “light” operators to excite the system from the

left and therefore we must enlarge the space HΨen .

We should mention that, our emphasis and approach is complementary to the approach

of directly studying density matrices that was adopted in [17].
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Notation and objective

In this section, we will consider entangled states

|Ψen〉 =
∑

i

αi|Ψ̃i〉 ⊗ |Ψi〉. (9.1)

Here αi are some coefficients, |Ψi〉 are orthonormal states in the original CFT, and |Ψ̃i〉 are
states in a second system that may be another CFT or a collection of qubits. We will refer

to this system as the “left” system. The sum may be over a small number of states, or an

exponentially large number.

In this section, our primary objective is to reconstruct the experience of the infalling

observer from the original CFT, which we also call the “right” CFT. Our construction of

the mirrors, and also the little Hilbert space is appropriate for right-relationally defined local

observables. In many cases where the left system is also a CFT, we can perform an analogous

construction to describe the experience of a left-infalling observer. But apart from indicating

this briefly below, we do not focus on this.

9.1 Mirror operators for entangled systems

Summary of the construction

The construction can be summarized as follows. We call A the small algebra of the right

CFT and AL for the algebra of observables of the left system. We also define the product of

the two algebras Aproduct = AL ⊗A.

The “little Hilbert space” is defined as the span of states {Aproduct|Ψen〉}. In general

this will be bigger than just the span of states {A|Ψ〉}, but there are some cases (like the

thermofield double state) where the two spaces are the same. In the general case, the Hilbert

space HΨen can be decomposed into the direct sum of subspaces Hj
Ψen

, each of which is closed

under the action of the right algebra A

HΨen =
⊕

j

Hj
Ψen

.

For each j we can identify a unique state |Ψj
en〉 ∈ Hj

Ψen
which is an equilibrium state with

respect to the right CFT.23 The rest of the subspace Hj
Ψen

can be generated by acting on this

equilibrium vector with elements of the algebra A.

Hence, within each of these subspaces we have a representation of the algebra A which

obeys all the conditions that we encountered in the case of non-entangled systems. More

precisely, no element of the algebra A can annihilate the state |Ψj
en〉 and the entire Hilbert

space Hj
Ψen

can be generated by acting with A on |Ψj
en〉. The first condition follows from our

assumption that right-CFT states in (9.1) are black hole states.

23As in section 7.5.2 when considering superpositions, it may happen that there is no equilibrium state inside

Hj
Ψen

. In this case we need to enlarge Hj
Ψen

to the direct sum of little Hilbert spaces built on equilibrium

states.
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We can now define the mirror operators acting within this subspace using exactly the

same rules as in section 7. Finally, the mirror operators acting on the full “little Hilbert

space” HΨen are just the sums of the individual mirror operators on the subspaces Hj
Ψen

.

We emphasize that this is the natural extension of our construction of the mirror op-

erators for systems without entanglement. As we will see, this simple definition is able to

reproduce the expected physics for ER=EPR and other types of entangled states with or

without wormholes. Below we describe this construction in more detail.

9.1.1 Construction of the “little Hilbert space” for entangled systems

We now discuss in detail how to construct the “little Hilbert space” about an entangled state

HΨen . We first discuss the set of allowed excitations. We then use this to discuss the notion

of “equilibrium” in entangled systems. Finally we put these notions together to construct

HΨen .

Allowed excitations of entangled systems

There are two differences from the single-sided construction. In an entangled system, we

have first the operators from the original CFT, which are part of A. Additionally, observers
should also have the ability to excite the state by acting with operators in the left system as

well. In the left system, we can again build up a set of operators, which we will denote by AL.

If the left system is a holographic CFT, we should restrict the set of allowed operators in the

same way that we restrict them for the original CFT. On the other hand if the left system

is a collection of qubits, then there is no notion of light and heavy operators, and we can

allow AL to include all operators in the left theory. Since operators on the left commute with

operators on the right the full set of allowed operators has the structure of a direct product

Aproduct = AL ⊗A.

We will denote elements of the left algebra by AL,α ∈ AL, and elements of the original algebra

by Aα ∈ A as usual.

We will explore this in greater detail below but we caution the reader that unlike in the

case of the single sided CFT the little Hilbert space HΨen is not isomorphic to Aproduct.

Equilibrium in entangled systems

We now turn to the notion of equilibrium in entangled systems. Since we are now allowing

excitations of the state by operators in Aproduct it is natural to modify the notion of equilib-

rium as well. This is a natural generalization of the definition of equilibrium in section 7.2

for the original CFT. We define the deviation from equilibrium on the right using the same

parameters as in (7.3) and (7.4)

χp(t) = 〈Ψen|eiHtApe
−iHt|Ψen〉,

νp = T
−1
2

b

∫ Tb

0
|(χp(t)− χp(0))|dt,
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where H is the right Hamiltonian. In addition, we consider similar deviations from equilib-

rium in the left CFT.

χLp(t) = 〈Ψen|eiHLtAL,pe
−iHLt|Ψen〉,

νLp = T
−1
2

b

∫ Tb

0
|(χLp(t)− χLp(0))|dt,

A necessary condition for the system to be in equilibrium is then that both left and right

correlators are time translationally invariant.

νp = O
(
e−

S
2

)
, ∀p,

νLp = O
(
e−

S
2

)
, ∀p. (9.2)

As above this condition is necessary but not strictly sufficient because of the class of excita-

tions that we discussed in section 8.3. We will also see below that (9.2) is often superfluous and

we can perform the construction of the mirrors provided that the state is in right equilibrium

even if it is not in left equilibrium.

HΨen
for entangled states

We now turn to the construction of the little Hilbert space, which describes the space

of simple excitations about the base state. The main difference compared to our discussion

above is that in the presence of entanglement, it is not necessary that all operators in Aproduct

will give rise to independent descendants of the state |Ψen〉. In particular, it is possible that

(AL,p −Aq) |Ψen〉 = 0,

for some correlated choices of AL,p and Aq. Let us consider two examples of this.

In the thermofield state |Ψtfd〉, we have

(
OLω − e−

βω
2 O

†
ω

)
|Ψtfd〉 = 0. (9.3)

It is understood, above and in other equations below that when we write an operator purely

from the left system, it can be lifted to an operator on the product system through OL,ω ≡
OL,ω ⊗ 1R and vice versa.

Next, consider the CFT entangled with a two qubit system. This system has four states,

which we denote by |1〉 . . . |4〉. Now we may have a state that is not maximally entangled

|Ψen〉 =
1√
3
(|Ψ1〉 ⊗ |1〉+ |Ψ2〉 ⊗ |2〉+ |Ψ3〉 ⊗ |3〉) ,

where |Ψi〉 are some orthogonal states in the original CFT. Denoting the projector onto state

|4〉 by P4 = |4〉〈4|, we see clearly that

P4|Ψen〉 = 0. (9.4)
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Note that both these kinds of states, where we obtain null relations, are very special. States

where relations of the form (9.3) hold are special because the entanglement is between “sim-

ple” operators on both sides. As we see below, generic states do not have such relations.

Similarly, when the left system is “small”, relations of the form (9.4) also occur only when

the entanglement is non-maximal. Nevertheless, our construction will be able to account for

these null relations correctly.

We now define HΨen as follows. Starting with the state |Ψen〉, we act with all elements

of A to obtain the space

H0
Ψen

= span of{A1|Ψen〉, . . .AD|Ψen〉}, (9.5)

where we remind the reader that the elements of A displayed above form a complete basis

for this linear set. As usual we assume that there are no null vectors in the set displayed in

(9.5). We define P 0

en to be the projector onto this subspace. This means that

|v〉 ∈ H0
Ψen

⇒ P 0

en|v〉 = |v〉,
〈v|Ap|Ψen〉 = 0 , ∀p ⇒ P 0

en|v〉 = 0.

Next we pick a Hermitian element, AL,1 of AL and construct

|Ψ1
en〉 = (1− P 0

en)AL,1|Ψen〉. (9.6)

We pick AL,1 so that |Ψ1
en〉 is non-vanishing and in right equilibrium. Note that it is not

necessary for |Ψ1
en〉 to be in left equilibrium. (The reason for the restriction that AL,1 be

Hermitian is explained below.) We now construct the space

H1
Ψen

= span of{A1|Ψ1
en〉, . . .AD|Ψ1

en〉}. (9.7)

Then we define P 1

en to be the projector on H1
Ψen

. Similarly, we look for AL,2 ∈ AL so that

|Ψ2
en〉 = (1− P 0

en)(1− P 1

en)AL,2|Ψen〉,

is non-vanishing and in right equilibrium. We then construct H2
Ψen

analogously to (9.5)

and (9.7) and continue recursively in this manner until it is no longer possible to find any

elements of AL which can produce descendants of |Ψen〉 that are orthogonal to all the previous

subspaces.

To summarize this construction, we find elements AL,1 . . .AL,Dmax (where Dmax may be

smaller than the dimension of the left algebra) with the property that

AL,1|Ψen〉 . . .AL,Dmax |Ψen〉,

are all in right equilibrium and have the property that

〈Ψen|ApAL,j |Ψen〉 = 0 , ∀p, j.
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(a) HΨen
where the action of the “left algebra” is

entirely contained within the space obtained by act-

ing with the right algebra.

(b) HΨen
in cases with less entangle-

ment. Now the action of “left operators”

opens up new directions.

Figure 12: The structure of the wormhole is directly linked to the structure of HΨen
. In the case on

the left above, where HΨen
coincides with H0

Ψen

, we obtain a geometric wormhole. The case on the

right can be understood as an elongated wormhole. In the extreme case where HΨen
becomes a direct

product space, the geometric wormhole disappears.

On each of these we construct the space Hm
Ψen

as shown in (9.5) and (9.7). The full space

HΨen is then defined by

HΨen =
⊕

j

Hj
Ψen

.

It is worth discussing the structure of the space HΨen that results from the construction

above, and the examples that we consider below will elucidate this. In the thermofield state,

an action by a “simple” operator in the left CFT corresponds to the action of a “simple”

operator on the right CFT. Therefore in this case HΨen coincides with H0
Ψen

. On the other

hand, in a generic entangled state of two CFTs, there is no relation between the action of

simple operators on the left and the right, and therefore HΨen is isomorphic to A⊗Aproduct.

In intermediate cases where there is some entanglement, but not maximal, we obtain an

HΨen that is intermediate between these two cases: its dimension is larger than H0
Ψen

but not

maximal. We describe this in detail in several cases below.

The structure of HΨen is directly related to whether we obtain a wormhole on this. This

is shown schematically in Figure 12 and explained further below.

Definition of the mirror operators

The mirror operators are now defined via precisely the same linear equations as section 7.3.

Note that each vector in HΨen can be written as a linear combinations of vectors of the form
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Ap|Ψj
en〉 for some choice of p and j. We define

Õω,mAp|Ψj
en〉 = Ap e

−βω
2 (Oω,m)

†|Ψj
en〉,

[Õω,m,H]Ap|Ψj
en〉 = −ω Õω,mAp|Ψj

en〉.
(9.8)

As usual, these equations have a solution because we have Ap|Ψj
en〉 6= 0, ∀p, j. As the reader

will note this is a direct extension of our definition of the mirrors for the original CFT. We

now show how this simple extension has remarkable properties and allows us to derive a

precise version of the ER=EPR conjecture and also show that the infalling observer will not

observer any violations of quantum mechanics.

9.2 The wormhole in the thermofield double state

We now show how the construction above leads to a wormhole in the thermofield double

state, where we take |Ψen〉 = |Ψtfd〉. First, let us examine the construction of HΨen . In the

thermofield state we have the following relations

OLω,m|Ψtfd〉 = e−
βω
2 O

†
ω,m|Ψtfd〉,

O
†
Lω,m|Ψtfd〉 = e

βω
2 Oω,m|Ψtfd〉.

(9.9)

Now consider an arbitrary polynomial in the OLω,m, which we denote by AL,α. In the

thermofield state we have the relation

AL,α|Ψtfd〉 = e−
βH
2 A†

αe
βH
2 |Ψtfd〉,

where, on the right of the equation above, we have an operator acting purely in the right

CFT. If AL,α ∈ AL then, barring edge effects, we have e−
βH
2 A†

αe
βH
2 ∈ A. Therefore, in this

case we start by constructing

H0
Ψtfd

= A|Ψtfd〉,

and then we do not get any new states by acting with AL. As a result, the full “little Hilbert

space” is simply

HΨtfd
= H0

Ψtfd
.

Then the construction of the mirror operators results in the same answer as the construction

in section 7.6 but we repeat it here from the general perspective of mirrors in entangled

systems that we have presented above. The action of the mirror operators is specified by the

linear equations (9.8). Since in this case the structure of HΨtfd
is so simple, these equations

reduce to

Õω,mAα|Ψtfd〉 = Aαe
−βω

2 O
†
ω,m|Ψtfd〉,

[Õω,m,H]Aα|Ψtfd〉 = −ωAαe
−βω

2 O
†
ω,m|Ψtfd〉. (9.10)
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Now the first point we note is that Õω,m does not commute with elements of AL, and

moreover that this non-zero commutator is very special. We can check this explicitly by

considering the commutator of [Õω,m,O
†
Lω′,m′ ]. We have

Õω,mO
†
Lω′,m′ |Ψtfd〉 = e

βω′

2 Õω,mOω′,m′ |Ψtfd〉 = e
β(ω′−ω)

2 Oω′,m′O
†
ω,m|Ψtfd〉,

where in the first equality we used (9.9). And also

O
†
Lω′,m′Õω,m|Ψtfd〉 = e−

βω
2 O

†
Lω′,m′O

†
ω,m|Ψtfd〉 = e−

βω
2 O

†
ω,mO

†
Lω′,m′ |Ψtfd〉

= e
β(ω′−ω)

2 O
†
ω,mOω′,m′ |Ψtfd〉.

This leads to an O (1) effective commutator

[Õω,m,O
†
Lω′,m′ ]|Ψtfd〉 = Cβ(ω,m)δωω′δmm′ |Ψtfd〉. (9.11)

These are very special commutators, and suggest that within correlators involving only ele-

ments of Agff, it is possible to replace Õω,m with OLω,m. However, as we have emphasized

one cannot equate these operators. In particular, to compute the commutator of the mirrors

with the left Hamiltonian we consider

Õω,mHL|Ψtfd〉 = Õω,mH|Ψtfd〉 = e−
βω
2 O

†
ω,mH|Ψtfd〉 = e−

βω
2 O

†
ω,mHL|Ψtfd〉

= HLe
−βω

2 O
†
ω,m|Ψtfd〉 = HLÕω,m|Ψtfd〉.

In this chain of equalities we have first used the isometry of the thermofield state, then used

the definition (9.10) and then manipulated this expression by using the isometry again and

the fact that HL commutes with right operators. So we find that within simple correlators

[Õω,m,HL]|Ψtfd〉 .= 0.

Therefore the mirror operators have a vanishing commutator with the left Hamiltonian. Note

that this follows as a consequence of our defining relations and is not something that we have

to put in by hand.

For the sake of completeness, we can also evaluate the two point function

〈Ψtfd|Õω,mO
†
Lω,m|Ψtfd〉 = e

βω
2 〈Ψtfd|Õω,mOω,m|Ψtfd〉 = Gβ(ω,m). (9.12)

We can proceed to evaluate other correlators along the lines of (9.11) and (9.12). If we now

try and reproduce these correlators from a geometry then the geometric picture that arises

from this is that of the standard thermofield wormhole. See Figure 13. Now we will show

how, in a generic entangled state of the two CFTs, a very different geometric picture emerges.

– 106 –



OR(t)

OL(−t)

Figure 13: The standard wormhole described in section 9.2: operators on the right OR(t) are entan-

gled with left operator OL(−t)

9.3 The generic entangled state of two CFTs

We now show how our construction works in the “generic” entangled state of two CFTs.

Consider scrambling the thermofield double state with a left unitary. So we now consider

|Ψgen〉 = UL,g|Ψtfd〉, (9.13)

where the unitary is not an exponentiated element of the algebra of simple operator: UL,g 6=
eiAL,α , but rather some “generic unitary” that changes the structure of entanglement of the

two sides. As a result, as shown in [4], simple operators on the left and right are uncorrelated.

〈Ψtfd|U †
L,gAL,αAβUL,g|Ψtfd〉 = O

(
e−

S
2

)
, ∀α, β. (9.14)

The construction of HΨgen proceeds according to the algorithm described in the beginning

of this section. Notice that there is a qualitative difference from the thermofield double state,

because we no longer have relations of the form (9.9). The relation (9.14) implies that for an

arbitrary element AL,1 ∈ AL, the left descendant constructed via (9.6) is non-null and in right

equilibrium. Hence the “little Hilbert space” HΨgen will have the direct sum decomposition

as explained earlier. We select a set of operators AL,1 . . .AL,DL
which form a basis of AL and

generate the equilibrium vector in each of these subspaces. Finally we find

HΨgen = span of{AβAL,α|Ψgen〉, β = 1 . . .D; α = 1 . . .DL}.

Now, the definition of the mirror operators above reads

Õω,mAβAL,α|Ψgen〉 = Aβe
−βω

2 O
†
ω,mAL,α|Ψgen〉. (9.15)

But since operators in A and AL commute this becomes

Õω,mAβAL,α|Ψgen〉 = e−
βω
2 AβAL,αO

†
ω,m|Ψgen〉.

Therefore for the generic entangled state |Ψgen〉, we have

[Õω,m,AL,α]|Ψgen〉 = 0, generic state. (9.16)
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We can also compute the two point function

〈Ψgen|Õω,mO
†
Lω,m|Ψgen〉 = e

−βω
2 〈Ψgen|O†

Lω,mO
†
ω,m|Ψgen〉 = O

(
e

−S
2

)
. (9.17)

Other two point functions of simple operators vanish in the same manner. Therefore the

mirrors not only effectively commute, they are also uncorrelated with the simple left operators.

Note that both (9.16) and (9.17) — just like (9.11) — came automatically from our

definition of the mirror operators for entangled systems and the different structure of HΨgen

in these cases, without having to put anything in by hand.

Now, we may try and write down a geometry that reproduces (9.17) and (9.16). We

remind the reader that correlators between the mirror operators and ordinary operators are

unchanged showing that right-infalling observer still perceives a smooth horizon. However,

the vanishing commutator (9.16) shows that in the generic state it is not possible to affect the

experience of the right-infalling observer by simple operators on the left. Hence the geometric

wormhole has disappeared. Instead, geometrically we obtain the Penrose diagram of Figure

14. This Penrose diagram was also conjectured in [57].

OR(t)
ÕL(t)

ÕR(t)OL(t)

Figure 14: The dual to the generic entangled state described in section 9.3. Simple operators on the

right OR(t) and left are not correlated. This is indicated by the jagged broken line in the middle and

there is no geometric wormhole. But both sides see a smooth horizon with the emergence of new mirror

operators behind the horizon.

9.3.1 Mirrors as scrambled left operators in the generic state

We conclude with a further observation on the mirror operators in the generic state |Ψgen〉.
The relation (9.16) is somewhat deceptive. Our construction automatically leads to the

conclusion that the commutator of the mirror operators for the right infalling observer and

simple left operators — where simple is defined through membership in AL —vanishes when

inserted in low point correlation functions. However, another interesting consequence is that

when we have a high degree of entanglement of the CFT with another system, then generically

the mirror operators act on the left system as well. This follows as an inevitable consequence

of their defining equations. It is easy to prove this as follows.

Let us write the generic entangled state in a Schmidt basis so that

|Ψgen〉 =
∑

i

κi|ṽi〉 ⊗ |vi〉, (9.18)
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where the κi are arbitrary coefficients and we have “diagonalized” the entanglement so that

|vi〉 are some orthonormal states in the right CFT and |ṽi〉 are some states in the left CFT.

Now consider just one of the defining equation for Õω,m

Õω,mAα|Ψgen〉 = Aαe
−βω

2 O
†
ω,m|Ψgen〉, (9.19)

and look for a solution to (9.19) with the Õω,m acting entirely within the Hilbert space of

the right CFT. We emphasize that (9.19) is just a special case of (9.15) with the element of

the left algebra that appears there set to the identity. Let us denote this putative solution by

X = Õω,m.

We see that this demand that X is an operator in the right CFT means that for each α,

the single equation (9.19) leads to a system of linear equations given by

XAα|vi〉 = Aαe
−βω
2 O

†
ω,m|vi〉, ∀α, i. (9.20)

However, if the set i in (9.18) runs over a large enough range, then in general (9.20) has no

solutions. For example, consider the situation where the states |vi〉 provide a basis of the

Hilbert space. Then, with Aα ∈ Agff, the states

|wα,i〉 = Aα|vi〉,

provide an overcomplete basis for the space if we span over all i and all α. Therefore in

(9.20) we are trying to specify the action of the putative purely right mirror operator on an

overcomplete basis and this is not possible in general.

For example, we can find coefficients zαi so that
∑

α,i

zαiAα|vi〉 = 0,

and in general it will not be the case that (9.20) map this vector to 0. In particular on this

vector we would find

0 = X
∑

α,i

zαiAα|vi〉 =
∑

α,i

zαie
−βω

2 AαO
†
ω,m|vi〉 6= 0?

Here we have used the fact that generically the right hand side of the relation above will not

vanish with the same coefficients zα,i.

So we have shown that in the situation with a high entanglement entropy the Õω,m

operators must act on the left as well and the operator X that acts only in the right CFT

does not exist.

We conclude with some speculative comments on the possible physical implications of

this fact. The authors of [13] suggested that the generic state |Ψgen〉 may nevertheless be

understood through a “very long” wormhole. Now note that our discussion of the generic

commutator in section 5.4 suggests that if we take a generic operator in the left CFT, Y then

we would find that

〈Ψgen||[Y , Õω,m]|2|Ψgen〉 = O(1) . (9.21)
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We emphasize that Y is not one of the simple operators that are part of AL which commute

with the mirrors within low point correlators. Now (9.21) suggests that with a suitably

complicated operation the left observer can affect the experience of the right infalling observer.

This may be taken as some evidence of the existence of a long wormhole although it would

be nice to make this more precise .

9.4 A superposition of the thermofield and a generic state

As a further example, we now show how our construction works in the superposition of the

thermofield and a generic state. We consider

|Ψs〉 = κ (|Ψtfd〉+ |Ψgen〉) . (9.22)

For the generic left unitary of the sort discussed in (9.13), we have κ = 1√
2
+O

(
e−S

)
.

We start with

H0
Ψs

= A|Ψs〉.

On the other hand, on acting with an element of AL we find that

|Ψ1
s〉 = (1− P 0

s)AL,1|Ψs〉 = κ(1− P 0
s)
(
e−

βH
2 A

†
1e

βH
2 |Ψtfd〉+AL,1|Ψgen〉

)

= κAL,1|Ψgen〉 −
1

2
κ〈AL,1〉

(
|Ψgen〉+ |Ψtfd〉

)
+
κ

2
e−

βH
2 A

†
1e

βH
2
(
|Ψtfd〉 − |Ψgen〉

)
.

(9.23)

Here 〈AL,1〉 ≡ 〈Ψgen|AL,1|Ψgen〉. In deriving this result, we have used two intermediate

results.

P 0
s

(
AL,1 − 〈AL,1〉

)
|Ψgen〉 = 0,

P 0
sAm|Ψgen〉 = P 0

sAm|Ψtfd〉 =
1

2

(
Am|Ψgen〉+Am|Ψtfd〉

)
,

where Am is any element of A.

In the final expression in (9.23) we have, once again, a superposition of an equilibrium

and a near-equilibrium state from the point of view of observables in A. This is a special

case of the superposition of near-equilibrium states that was considered in section 7. In such

states, as explained there, we must enlarge the little Hilbert space slightly and upon doing

that we find

HΨs = HΨtfd
⊕HΨgen .

The action of the mirror operators can be deduced in a straightforward way from the

definition provided in (9.8).

Õω,mAL,αAβ |Ψs〉 = κAβe
−βH

2 A†
αe

βH
2 e−

βω
2 O

†
ω,m|Ψtfd〉+ κAβAL,αe

−βω
2 Õ

†
ω,m|Ψgen〉.

Consequently correlators involving mirrors and ordinary operators separate into

〈Ψs|Ãα3AL,α2Aα1 |Ψs〉 = |κ|2
(
〈Ψtfd|Ãα3AL,α2Aα1 |Ψtfd〉+ 〈Ψgen|Ãα3AL,α2Aα1 |Ψgen〉

)
.
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Therefore the superposition of states (9.22) acts like a classical mixture of a thermofield and

a state with no wormhole. This is precisely what is expected. Note that standard Penrose

diagrams cannot capture this superposition of two geometries, although the correlators are

very simply related to the correlators in the two individual geometries.

9.5 The microcanonical double state and a low-pass wormhole

We now consider a modification of the thermofield state: a “microcanonical double state”. We

will show that in the appropriate regime this leads to a new kind of wormhole with interesting

properties.

Consider a range of energy E ±∆ that contains DE,∆ states. Here ∆ = O(1). It is also

useful to consider energies that are high enough so that the associated temperature satisfies

β∆ ≪ 1. These are all hierarchies between O (1) quantities and neither β nor ∆ scale with

N . Now consider

|Ψmd〉 =
1√DE

Ei=E+∆∑

Ei=E−∆

|Ei, Ei〉. (9.24)

This state was also considered in [12] (see page 15), but we will reach a conclusion that

is different from the conclusion reached there. In particular, the state (9.24) does have a

smooth interior and, contrary to the suggestion made in [12], our construction generates it

correctly. The error made in [12] follows from the error alluded to in section 8.2: an incorrect

expectation that the mirror operators must correspond to simple operators in the left CFT.

Consider a frequency ωl ≪ ∆. The subscript indicates that this is a “low” frequency.

For correlators involving such modes, the fact that the entanglement has been truncated is

invisible. Let us denote the matrix elements of this operator in the energy eigenbasis by cji
as in (6.11) so that we have

Ei=E+∆∑

Ei=E−∆

Oωl,m|Ei, Ei〉 =
Ei=E+∆∑

Ei=E−∆

∑

Ej

cji|Ei, Ej〉.

Note that, as we explained around (6.11), we can choose these matrix elements cji to be

real because of the T-invariance of the modes of local operators. While the sum over j above

technically runs over all energies, since we know that the matrix elements cji should be peaked

around Ei − Ej = ωl, we can write

Oωl
|Ψmd〉 =

1√DE

Ei=E+∆∑

Ei=E−∆



Ej=E+∆−ωl∑

Ej=E−∆−ωl

cji|Ei, Ej〉


 .
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Now, notice that we also have

Ei=E+∆∑

Ei=E−∆

O
†
Lωl,m

|Ei, Ei〉 =
Ei=E+∆∑

Ei=E−∆



Ej=E+∆+ωl∑

Ej=E−∆+ωl

cij |Ej , Ei〉




=

Ei=E+∆+ωl∑

Ei=E−∆+ωl

Ej=E+∆∑

Ej=E−∆

cji|Ei, Ej〉.

In the last step, we have interchanged i and j above to bring it into a form where we can

compare it with the action of the right operator. However, the ranges of the sums over i, j

are different. In the case where ωl ≪ ∆ and βωl ≪ 1 we can approximately neglect this to

obtain

Oωl,m|Ψmd〉 = O
†
Lωl,m

|Ψmd〉+O
(ωl
∆

)
+O(βωl) , ωl ≪ ∆. (9.25)

On the other hand, for large ωh ≫ ∆ we see that

〈Ψmd|O†
Lωh

Oωh
|Ψmd〉 ≪ 1, ωh ≫ ∆. (9.26)

Note that the result (9.26) holds even if βωh ≪ 1.

We can now perform the construction above to define the right-relational mirrors on this

state. The relations (9.26) and (9.25) then tell us that inside correlation functions evaluated

on (9.24) (except those involving the Hamiltonian, where 1
N corrections are important) we

can approximately perform the replacement for low frequencies

Õωl,m → OLωl,m, ωl ≪ ∆.

However, no such replacement is possible for high frequency modes Õωh,m, which cannot be

related to the action of simple left operators. These are independent operators that can be

constructed using the algorithm that we have outlined. Using this we can compute correlators

involving both ordinary operators on the left and the right, and the mirror operators precisely.

It would be interesting to develop a more precise picture of the geometric dual to this

state. However, some qualitative properties are clear. The state (9.24) is a “low-pass worm-

hole” — where low frequency modes on the left and right are entangled, but the mirrors for

high frequency modes on both sides are independent operators. In this geometry both the

left and the right infalling observer see smooth horizons. These observers can “communicate”

using low frequencies but not using high frequencies.

It may also be possible to think of these wormholes as “elongated wormholes”. It is

interesting to notice that the geometries described in [58], which were also considered in [13]

have somewhat similar properties. However, these geometries involve infalling matter and

cannot be a precise dual to |Ψmd〉, since the state |Ψmd〉 is invariant under ei(HL−H)T |Ψmd〉 =
|Ψmd〉 and this isometry is not evident in these geometries.
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9.6 Entangled qubits and linearity

We now consider a final case in some detail: the situation where the CFT is entangled with

a few qubits. In this situation not only is there no geometric wormhole, but we find that it is

possible to select the interior operators to strictly commute (as operators) with all operators

in the qubit system.

For now we make no assumption about the Hamiltonian of the qubit system. However,

the combined CFT and qubit system can be in equilibrium only in states of the form

|Ψqub〉 =
∑

i

αi|Eqi〉 ⊗ |Ψi〉, (9.27)

where |Eqi〉 are energy eigenstates in the qubit system and |Ψi〉 are equilibrium states in the

CFT, and the coefficients αi obey
∑

i |αi|2 = 1.

The reason that the entanglement structure has to be of this form in an equilibrium state

is because in the qubit system, we assume that we have access to all operators. Therefore the

only “equilibrium” states in this system are strict energy eigenstates which remain invariant

under time evolution. If, upon tracing out the CFT, we were to obtain any significant off-

diagonal terms in the qubit density matrix, then it would be possible to find an appropriate

operator whose expectation value would be time-dependent. These energy-eigenstates must be

entangled with states that are independently in equilibrium in the CFT. This fixes equilibrium

states to be of the form (9.27).

We now find that

H0
Ψqub

=
∑

i

αi|Eqi〉 ⊗ A|Ψi〉.

We now act with an arbitrary operator from the qubit system AL,1 to obtain

AL,1|Ψqub〉 =
∑

i,j

αiA
ji
L,1|Eqj〉 ⊗ |Ψi〉, (9.28)

where AjiL,1 are the matrix elements in the qubit-energy eigenbasis of the left operator. This

state is not in left-equilibrium but because a small superposition of equilibrium state is still

an equilibrium state we see that (9.28) still represents a right equilibrium state and does not

lie in H0
Ψqub

.

Proceeding in this manner, we find that the little Hilbert space has the form

HΨqub
=
⊕

i,j

|Ei〉 ⊗ A|Ψj〉.

Now, using the prescription above, we find that the action of the mirrors is given by

Õω,m (|Ei〉 ⊗Aα|Ψj〉) = |Ei〉 ⊗Aαe
−βω

2 O
†
ω,m|Ψj〉. (9.29)

Therefore in this situation the mirror operators are entirely operators within the right CFT

and do not act in the qubit system at all. Moreover the mirror operators above can be

understood as follows. We construct mirror operators on each of the equilibrium states |Ψi〉.
We then take the union of these operators and this yields the operators above.
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Avoiding possible superluminality in the presence of state-dependence

Let us briefly mention the significance of the observation above. Our state-dependent

operators are sometimes conflated with notions of “non-linear” quantum mechanics that have

been proposed earlier. Gisin [59] and Polchinski [60] pointed out sharp difficulties with one

such idea that was advanced by Weinberg [61]. In particular, Gisin noted that non-linear

evolution in quantum mechanics could lead to superluminal communication.

We emphasize that in our proposal we do not add any non-linear terms to the Hamilto-

nian, which is simply the CFT Hamiltonian. Nevertheless, one may still be concerned about

this issue of superluminality. We now show that this also does not arise in our construction.

Consider the following experiment. An experimenter entangles black hole microstates in

the CFT with states of a “small pointer” comprising a few qubits. Then the qubits and the

CFT are separated by a large distance. An observer from the CFT now jumps into the black

hole and makes a measurement. Physically, we expect that such an observer should not be

able to send messages to another observer who has access only to the qubits.

To make this more precise, consider a qubit system with M + 1 states, that we denote

by |1〉, |2〉, . . . |M + 1〉, where M ≪ N . Now, we consider M equilibrium states of the CFT,

|Ψ1〉 . . . |ΨM 〉, and we take them to be orthogonal without loss of generality. Let us prepare

the joint qubit-CFT system in the state

|Ψqub〉 =
M∑

i=1

αi|i〉 ⊗ |Ψi〉+ |M + 1〉 ⊗


∑

j

βj |Ψj〉


 . (9.30)

In order for the state to be normalized correctly, we have the condition

∑

i

|αi|2 + |βi|2 = 1.

Now, we act with a unitary of the mirror operators on |Ψqub〉. Let us call this unitary

Ũ . We see that from (9.29) we have

Ũ |Ψ〉 =
M∑

i=1

αi|i〉 ⊗ Ũ |Ψi〉+ |M + 1〉 ⊗ Ũ


∑

j

βj |Ψj〉


 . (9.31)

The key physical requirement to ensure that no messages can be sent from the black hole

interior to the qubit system is that this process should leave the density matrix of the pointer

invariant. The density matrix of the pointer in (9.30) has the following components

〈M + 1|ρinit|M + 1〉 =
∑

|βi|2,
〈i|ρinit|i〉 = |αi|2,
〈i|ρinit|M + 1〉 = αiβ

∗
i ,

〈M + 1|ρinit|i〉 = α∗
i βi.

(9.32)
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For convenience, let us denote |χ〉 = Ũ
(∑

j βj |Ψj〉
)
. Then the components of the density

matrix of the pointer in the final state (9.31) are

〈M + 1|ρfin|M + 1〉 = 〈χ|χ〉,
〈i|ρfin|i〉 = |αi|2,
〈i|ρfin|M + 1〉 = αi〈χ|Ũ |Ψi〉,

〈M + 1|ρfin|i〉 = α∗
i 〈Ψi|Ũ

†|χ〉.

(9.33)

Demanding that the infalling observer cannot send messages is equivalent to setting

ρfin = ρinit. From (9.32) and (9.33) we see that this implies

〈χ|χ〉 =
∑

|βi|2,
〈χ|Ũ |Ψi〉 = β∗i ,

〈Ψi|Ũ
†|χ〉 = βi.

In fact, since the states Ũ |Ψi〉 also give an orthogonal set, we see that we are forced to the

conclusion that

|χ〉 = βiŨ |Ψi〉.

This implies that the operator Ũ must act linearly on a superposition of a small number of

states.

This is precisely what is ensured by the construction above. As we mentioned, this

construction proceeds by constructing mirrors for each of the individual equilibrium states

and then just taking the union of their actions, which ensures that the constraint above

is satisfied. The reader may recall the discussion of section 7.5 where we verified that our

operators naturally respect linearity in their action on small superpositions.

This result is important because it shows that in the context of entanglement with point-

ers, and experiments of the kind considered above, the state-dependence of our operators is

completely transparent to the infalling observer. Therefore, in no experiment, that can be

described within effective field theory, does the observer detect a violation of linearity.

We conclude by remarking on a slightly subtle point. We have now described two sit-

uations where there is entanglement but no geometric wormhole between the CFT and the

system that it is entangled with. However, from the point of view of the microscopic oper-

ators, this is attained rather differently when the left system is a CFT, and when it is just

a collection of qubits. In the case where the left system is a CFT and the entanglement

entropy is large, the right mirror operators commute with simple left operators but not with

all operators on the left. On the other hand, in the case where the CFT is entangled with

a few qubits or with a system that does not have O
(
eN
)
states, then we can indeed find

mirrors entirely within the original CFT. As we saw above this was important to ensure the

absence of superluminal effects in such cases.
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9.7 Refining the notion of equilibrium for entangled states

In some cases, the fact that our notion of “equilibrium” as time-independence of simple

correlators is necessary but not sufficient — as we discussed in section 8.3 — is also relevant

to the discussion of entangled states. Consider the state

M(Aα)|Ψen〉 = e−
βH
2
(
eiAα

)†
e

βH
2 |Ψen〉. (9.34)

In the thermofield state, correlation functions of this state are time-invariant on the right,

but not on the left. This is because we have

M(Aα)|Ψtfd〉 = eiAL,α |Ψtfd〉.

Therefore, in this case, this lack of equilibrium can be detected by our left-equilibrium crite-

rion.

On the other hand, in a generic entangled state there is no such relation between these

states and left-excited states. Therefore, in such states the ambiguity from the single-sided

case carries over. The reason we imposed the restriction that the left excitation in (9.6) be

Hermitian was to prevent this ambiguity in descendants. Given the state in (9.6) we can

dress it with a left unitary to obtain another valid descendant, which also appears to be in

right equilibrium. With AU
L,1 = eiAL,αAL,1, we could have considered

|Ψ1,U
en 〉 = (1− P 0

en)A
U
L,1|Ψen〉,

in (9.7). However, when AL,α is entangled with a right operator, we want to ensure that we

do not mistake |Ψ1,U
en 〉 for an equilibrium descendant. However, the restriction that the left

excitation be Hermitian excludes operators of the form AU
L,1.

As we explained in section 8.3, even though all correlators on the right are left invariant

under the excitation (9.34), it should still be possible to find “measurables” that can detect

this excitation. Although we have not yet identified such measurables precisely, it is possible

that the physical quantity that is capable of detecting the excitation in (8.21) in a single-sided

CFT will also be able to detect the excitation (9.34) in the two-sided case.

10 Discussion

In this paper we have presented strong evidence for the claim that the black hole interior

must be described using state-dependent bulk-boundary maps. We showed that a state-

independent construction of the interior was impossible, not only for single-sided AdS black

holes, but even for the eternal black hole. It is possible that this indicates that AdS/CFT

does not describe black hole interiors at all. However, this is in contradiction with many other

calculations that suggest that the eternal black hole, at least, does have a smooth interior

that can be probed by the CFT.

State-dependent bulk to boundary maps provide a solution to these versions of the infor-

mation paradox that preserves the predictions of effective field theory. Our state-dependent
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construction of the black hole interior explicitly identifies the duals of bulk local operators in

the CFT. These bulk probes do not see any sign of a pathology at the horizon, and so this

should be taken as additional evidence that generic states do not correspond to firewalls.

In this paper, we demonstrated that our construction does not lead to any violation of

quantum mechanics or the “Born rule.” We also successfully resolved some of the ambiguities

in our definition of an equilibrium state.

Furthermore, we showed that our construction admitted a natural extension to entangled

systems. This extension leads to a surprising bonus: a precise version of the ER=EPR

conjecture emerges automatically from our construction without having to put anything in

by hand.

We have described our construction in significant detail and discussed how it works in

equilibrium states — which are generic at high energy. We have also considered a large class of

non-equilibrium states, including those that have been excited outside and inside the horizon.

Although it is possible to consider other special classes of states in the CFT, we believe that

our results provide persuasive evidence for the consistency of our construction.

There are several natural questions that arise from this analysis. It would be interesting

to examine local operators outside the horizon in greater detail. Although we presented

a state-independent description of such operators, in the mini-superspace approximation in

section 4.2.2, the question of whether state-dependence is also required outside the horizon

is open. We will comment more on this in [39].

It would also be interesting to understand whether our construction can shed some light

on the nature of the black hole singularity. So far we have used techniques from effective

field theory to motivate the bulk to boundary map. Any investigation of the singularity will

require new ideas.

Recent studies [62] have shown that the naive 1
N expansion can often break down unex-

pectedly. We would like to understand the implications of this breakdown for effective field

theory on the nice slices and for the limitations of locality in quantum gravity.

Finally, as we have explained, while the use of state-dependent operators is perfectly

consistent with quantum effective field theory, they are both unusual and interesting. It

would be very useful to develop a more comprehensive measurement theory for these objects

and understand whether they appear in other settings.
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Appendix

A State-dependence and semi-classical quantization

In this appendix, we explore the semi-classical origins of state-dependence. Some of the

ideas in this appendix were anticipated in [14], although our analysis differs in some eventual

details. As we mentioned in section 3, the belief that geometric quantities such as the metric

should be represented by state-independent operators in the CFT is predicated on intuition

from geometric quantization. We elaborate on this intuition here. But we also explain why

this intuition fails because of important ways in which the Hilbert space of the CFT differs

from what one might expect from a semi-classical linearized analysis of gravity.

A.1 Review of semi-classical quantization

We briefly remind the reader of the elementary concepts involved in quantizing the phase

space of a system so as to make the classical limit manifest. We will closely follow the

excellent review by Yaffe [63].

Before we proceed to the analysis for gravity, we briefly remind the reader of the ele-

mentary notions that are involved in semi-classical quantization. Consider a system with

canonical variables xi, pi, with i = 1 . . . n, obeying the classical Poisson bracket relations

{xi, pi}P.B. = 1, and some classical functions on the phase space fm(~x, ~p). We assume that all

the first class constraints have been converted to second class constraints by gauge-fixing and
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that all the second class constraints have been solved to eliminate the dependent variables.

So the phase-space is unconstrained.

Here we have denoted the coordinates on phase-space by two vectors ~x, ~p, with ~x =

(x1, . . . xn) and ~p = (p1, . . . pn). We also define ~z =
(

1√
2
(x1 + ip1), . . .

1√
2
(xn + ipn)

)
. Now,

we want to show that in the quantum theory it is possible to find (a) an appropriate set of

operators f̂m and (b) a set of semi-classical coherent states |~x, ~p〉 in one to one correspondence

with the phase space so that, when evaluated on these states the operators f̂m behave like the

classical functions fm(x, p) as we discuss more precisely below.

First, since we already have a simple and explicit description of the phase space and

symplectic form in this setting, we quantize the system and define the canonical operators

x̂i, p̂i satisfying [x̂i, p̂j ] = iδij . This provides us with eigenstates of the operators x̂i that

satisfy x̂i|~x〉 = xi|x1, . . . xn〉. We also define âi =
1√
2
(x̂i + ip̂i); â

†
i =

1√
2
(x̂i − ip̂i).

With the vacuum |Ω〉 defined as ai|Ω〉 = 0, we consider the coherent states

|~z〉 = e−
∑

i |zi|
2

2 e
∑

i a
†
i zi |Ω〉.

The wave-function of this state in the basis of eigenvectors of x̂i can be calculated by noticing

that ai|~z〉 = zi|~z〉. With Ψz(~xi) = 〈~x|~z〉, and using the fact that in the position eigenbasis

p̂i = −i ∂
∂xi

, this turns into the differential equation

(
xi +

∂

∂xi

)
Ψ~z(~x) = (zxi + izpi)Ψ~z(~x).

where we have written the components of zi as zi = zxi + izpi to avoid confusion with the

xi variable on the left. This is solved by the normalized position space wave-function for the

coherent states.

Ψ~z(~x) =

(
2

π

)n
4

exp
{
−
∑

i

[
(xi − zxi)

2 + izpi(xi − zxi)
] }
. (A.1)

These states play the role of semi-classical states, and we can place them in a bijective

correspondence with the phase space.

These coherent states have several important properties. They are not orthonormal; in

fact, it is important that they form an overcomplete basis of the Hilbert space. We have

〈~u|~z〉 = e−
|~z|2

2 e−
|~u|2

2 〈Ω|e~a·~̄ue~a†·~z|Ω〉 = e−
|~z|2

2
− |~u|2

2
+~̄u·~z,

|〈~u|~z〉|2 = e−|~z−~u|2 .
(A.2)

Nevertheless, we can partition the identity by using projectors onto these states.

1 =
1

(2π)n

∫
d2~zP~z; P~z = |~z〉〈~z|. (A.3)

This identity can be easily proved using, for example, the position space representation of the

coherent states in (A.1).
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Next, we need a way of lifting functions from the phase space to operators. Consider a

function f(~z) on the phase space. (We have suppressed the dependence on ~̄z simply to lighten

the notation; we do not necessarily consider only holomorphic functions.) We now consider

the operator defined by

f̂ =

∫
f(~z)|~z〉〈~z| d

2n~z

(2π)n
. (A.4)

This representation of operators is the so-called Sudarshan-Mehta P-representation [64]. It

differs from the more commonly used Weyl representation of operators, by operator ordering.

The Weyl representation is sometimes favoured in the literature, since this map also allows

one to represent the product of operators in the quantum theory by a Moyal star product of

functions on the phase space. However (A.4) yields more insight for our discussion, and has

the same classical limit as the Weyl representation.

Note that when this operator is inserted back into a coherent state we have

〈~u|f̂ |~u〉 =
∫
f(~z)e−|~z−~u|2 d

2n~z

(2π)n
.

Therefore, the expectation value of the quantum operator is a slightly smeared version of

the classical function. We have suppressed factors of ~ here, but if we consider classical

functions that do not vary rapidly within a volume of ~ about a point in phase space, then

the expectation value of the corresponding quantum operators faithfully reproduces their

behaviour.

Furthermore, if we consider the expectation value of the product of two operators then

by using (A.3)

〈~y| f̂ ĝ |~y〉 = 1

(2π)2

∫
f(~z)g(~u)〈~y|~u〉〈~u|~z〉〈~z|~y〉d2~zd2~u

=
1

(2π)2

∫
f(~z)g(~u)e−|~z|2−|~u|2−|~y|2+~̄u·~z+~̄y·~u+~̄z·~yd2~zd2~u.

We see that this integral is peaked around z = u = y and expanding g(~u) = g(~y) + (~u −
~y) · ∂~yg(~y) + . . ., and similarly for f , we see that the leading term is obtained by doing the

Gaussian integral and we find

〈~y| f̂ ĝ |~y〉 ≈ f(~y)g(~y).

On the other hand, we can also compute the commutator between two functions, in which

case we need to keep the first subleading term to obtain a non-zero answer. Here, we find

〈~y|[f̂ , ĝ] |~y〉 = i {f, g}P.B.(~y).

A.2 Geometrical quantities as classical functions on the phase space

We now turn to the case of gravity where we first discuss the classical phase space and then

describe coherent states in the linearized theory. In this subsection we are interested in
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establishing the following

Claim: “the metric gµν(~x) is a well defined function on the classical phase space of gravity.”

The phase space of gravity is often discussed in canonical terms, where we specify the

three-metric and the extrinsic curvature on a spacelike slice. This provides Cauchy data that

we can evolve forward and backward in time. However, a covariant description of the phase

space is given by considering the set of all classical solutions to gravity with asymptotic AdS

boundary conditions [65, 66, 67]. The map between these two pictures is straightforward.

Given a solution to the classical equations of motion, and a metric with a d+ 1 split,

ds2 = −N2dt2 + γij (dxi +Nidt) (dxj +Njdt) , (A.5)

one may simply evaluate the fields at the spacelike slice t = 0. Then the variables

γij(~x, 0), πij(~x, 0) = −γ 1
2
(
Kij − γijK

)
,

provide the standard parameterization of gravitational phase space. Here K is the extrinsic

curvature

Kij =
1

2
N−1 (∂jNi + ∂iNj − ∂tγij) , (A.6)

and for the purposes of this d + 1 split we have displayed the time coordinate separately in

(~x, t).

Conversely, given the variables γij(~x, 0) and π
ij(~x, 0), one may use the equations of motion

to evolve them forward in time and generate the entire metric in the form (A.5). Of course,

such a solution requires a choice of gauge, as we have already discussed.

It is also possible to write down a symplectic form on the phase space described covariantly

as the set of classical solutions, and this was done by [66].

For us the important point is that each point on the phase space corresponds to an entire

spacetime. Now, evidently given the entire spacetime, classically, we may ask any question

we wish; even one that involves global notions like an event horizon. For example, we may set

up relational coordinates as in section 3.1.1 and just evaluate the metric at a point gµν(~x, t).

The same is true of other propagating light fields in the theory.

Therefore, all of these observables are well defined classical functions on the phase space.

This is an important point. We now extend the discussion above to gravity to show that,

explicitly, within the linearized theory, we may indeed expect such questions to be answered

by state-independent operators.

A.3 Coherent states in linearized gravity

We now turn to an analysis of gravity. Here we are interested in establishing the following.

Claim: If we consider two nearby points in the gravitational phase space with

metrics gbµν(~x) and geµν(~x) then one can define a covariant inner product on the

corresponding coherent states in the Hilbert space which behaves like e−Nυ(gb,ge)

where we can compute the function υ in the linearized approximation.
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First we remind the reader how the discussion of (A.1) generalizes to linearized gravity.

We are only able to work in the linearized setting, and although it would be interesting to

explore this construction further in a fully non-linear setting, we do not know how to do this.

We consider fluctuations of the metric, about a background metric, defined by

gµν = gbµν +
√
8πGNhµν ,

and the normalization is chosen so that the kinetic term of hµν is canonically normalized.

Here gbµν may be any background metric, that is a solution of the equations of motion and is

asymptotically AdS. We do not take it to be necessarily the AdS-Schwarzschild solution.

Now, on general grounds, we expect that solutions to the classical equations of motion

will be given by

hµν(~x) =
∑

i,ω

aiωg
(i)
µν(ω, ~x) + h.c,

where i runs over the different (d+1)(d−2)
2 possible polarizations of the graviton, where d is

the boundary dimension and aiω are just linear coefficients at the moment. The different

eigenfunctions are denoted by ω. In empty AdS or AdS Schwarzschild, for example, this

would constitute a set of integers to pick out the spherical harmonic on the Sd−1 and a

“radial momentum”. We will not require the detailed form of these eigenfunctions, or even

of their eigenvalues. We are not assuming that there is a timelike isometry in the space, and

so, in principle, ω may not correspond intuitively to a “frequency.”

We also assume that we have picked a basis set of distinct solutions g
(i)
µν , which are not

equivalent under gauge transformations, and we normalize the functions g
(i)
µν(ω, ~x) so that the

canonical Poisson brackets translate into the statement

{aiω, aj,†ω′ }P.B = −iδijδω,ω′ .

We quantize the theory and obtain a vacuum state aiω|Ω〉 = 0. Note that now aiω is an

operator on the Hilbert space of the linearized theory. We then define coherent states by

labelling them with a set of functions χi(ω). Starting with the vacuum,

|χ〉 ≡ Nχe
∑

i,ω a
i,†
ω χi

ω |Ω〉.

where Nχ is a normalization factor. We see that

〈χ|χ〉 = |Nχ|2e
∑

i,ω |χi
ω |2 .

So for the state to be normalized, we should set

Nχ = e−
1
2

∑
i,ω |χi

ω |2 . (A.7)

Note that |χiω|2 can also be interpreted as the “occupation number” in the mode ω; so the

exponent in the normalization factor is just the total occupation number in the state.
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One measure of how large the deviation of the field is from the background metric is

given by

〈Ω|χ〉 = Nχ. (A.8)

Here the vacuum is just the original background metric. So we see that this coherent state

is substantially different from the original background metric, as a quantum state, if the

occupation number is large. In this state the metric has an expectation value

geµν = 〈χ|gµν(~x)|χ〉 = 〈χ|gbµν(~x) +
√
8πGNhµν(~x)|χ〉

= gbµν(~x) +
√
8πGN

∑

i,ω

(
χiωg

(i)
µν(ω, ~x) + h.c

)
. (A.9)

So we see that the space |χ〉 represents a nearby point in phase space, where the value of the

metric has changed to geµν(~x). Therefore (A.7) shows how the corresponding inner-product

in Hilbert space varies.

Now, in deriving (A.7) we made explicit reference to a set of mode functions. But we

would like it to depend only on the two metrics geµν(~x) and gbµν(~x). To check that this is

covariant, let us consider how this changes under a Bogoliubov transformation of the modes.

We make a canonical transformation of the aiω variables to

biω =
∑

ω′

(
βωω′aiω′ + γω,ω′a†,iω′

)
,

b†,iω =
∑

ω′

(
β∗ωω′a

†,i
ω′ + γ∗ω,ω′aiω′

)
.

(A.10)

In this analysis, we will assume that the polarization index i does not enter the Bogoliubov

coefficients. This is just to lighten the notation and does not represent any loss of generality.

For the new modes to have the canonical commutators

[biω, b
†,i
ω′ ] = δω,ω′ ,

we see that we must have

∑

ω′′

(
βω,ω′′β∗ω′,ω′′ − γω,ω′′γ∗ω′,ω′′

)
= δω,ω′ . (A.11)

An observer using these creation and annihilation operators would also use a new basis of

modes to represent the metric fluctuations that we call g̃(i)(ω, ~x). In particular, we have

∑

ω

βωω′ g̃(i)(ω, ~x) + γ∗ω,ω′(g̃(i)(ω, ~x))∗ = g(i)(ω′, ~x),

∑

ω

β∗ωω′(g̃(i)(ω, ~x))∗ + γω,ω′(g̃(i)(ω, ~x)) = (g(i)(ω′, ~x))∗.
(A.12)

Such an observer would set up a different set of coherent states

|χ̃〉Bog = eχ̃
i
ωb

†,i
ω |Ω〉Bog,
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where the vacuum is now defined to satisfy biω|Ω〉Bog = 0. To get the same expectation value

for the metric field, this observer could use a coherent state excitation with parameters χ̃iω
so that

∑

ω

χ̃iω g̃
i(ω, ~x) + (χ̃iω)

∗(g̃i(ω, ~x))∗ =
∑

ω′

χiω′g(i)(ω′, ~x) + (χiω)
∗g(i)(ω′, ~x).

Using (A.12), we see that we need

χ̃iω =
∑

ω′

(
βωω′χiω′ + γω,ω′(χiω′)∗

)
.

Therefore we see that
∑

i,ω

|χ̃iω|2 =
∑

i,ω,ω′,ω′′

[
βωω′β∗ωω′′χiω′(χiω′′)∗ + γω,ω′γ∗ω,ω′′χiω′′(χiω′)∗

+ βωω′γωω′′χiωχ
i
ω′′ + β∗ωω′γ∗ωω′′(χiω′)∗(χiω′′)∗

]
.

(A.13)

For a general Bogoliubov transformation therefore

∑

i,ω

|χ̃iω|2 =
∑

i,ω

|χiω|2 +R, (A.14)

where the remainder R does not vanish.

However, in AdS/CFT we have an additional advantage: the presence of the boundary

Hamiltonian. So we can define positive and negative energy with respect to the boundary

Hamiltonian and demand that in terms of boundary energy eigenstates, both the sets of

creation operators have strictly positive energy and the annihilation operators have negative

energy.24

PE+aiω|E〉 = 0, PE+biω|E〉 = 0,

PE−ai,†ω |E〉 = 0, PE−bi,†ω |E〉 = 0,
(A.15)

where PE+ (PE−) indicates the projector on the subspace formed by eigenstates with energy

larger (smaller) than E. If we restrict to such operators then we see that γωω′ in (A.10) must

vanish. From (A.11), we then find that βωω′ must be unitary. For this set of transformations,

which obeys the natural AdS/CFT constraint (A.15), we see from (A.13) that R = 0 in

(A.14).

To summarize, the conclusion is that using the AdS/CFT Hamiltonian to define positive

energy, the notion of the distance of a coherent excitation from the background is robust in

linearized gravity.

Now, let us examine this “distance” a little more closely. Let us write the initial metric in a

“nice” coordinate system so that all its components are of order the AdS radius squared ℓ2. In

24Here, we are not concerned with the small tails that we discussed in the text, which may appear in these

relations because we restrict observations to a finite time on the boundary.
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this case, we see that to make a substantial perturbation, we must take hµν ∼ αℓ2√
8πGN

= αN ,

where α is an O (1) parameter that we have introduced. At this point, the linearized theory

is still valid if we keep α ≪ 1. If we apply (A.8) to such a perturbation, we see that the

coherent state construction predicts the following. The semi-classical states in the quantum

theory, corresponding to two distinct solutions geµν(~x) and g
b
µν(~x) are almost orthogonal and

have an inner product

〈geµν(~x)|gbµν(~x)〉 = e−Nυ(ge,gb), (A.16)

where υ is a smooth O (1) functional on the space of metrics. To compute this function, we

write geµν(~x) as an excitation over gbµν(~x) using (A.9) and compute the inner product given

in (A.7,A.8). The choice of mode functions that we use to express the excited state in terms

of the background is unimportant by the argument above.

A.3.1 Difficulties with state-independent operators

Now the formula for the inner product (A.16) above might seem encouraging. It may

suggest the following naive program. In the full theory of quantum gravity, we identify

points on the phase space with coherent states |g〉, write down a completeness relation

analogous to (A.3) and then write a full state-independent metric operator as in (3.28):

gµν(~x) =
∑

g gµν(~x)|g〉〈g|. This is the basis for the expectation that we can find state-

independent operators to represent the metric and other bulk fields.

However, recall that (A.3) was consistent only because the inner product (A.2) died off to

arbitrarily small values to compensate for the infinite volume of phase space. It appears that

this does not happen for the case of gravity: rather, intuition from the CFT suggests that in

some cases the inner-product between different coherent states may saturate at a small but

finite value even when the corresponding volume in classical phase space is very large.

We have seen an example of this in the case of the thermofield double. There the states

|ΨT〉 all represented metrically distinct geometries. If we identify these states with points on

the phase space, then the parameter T parameterizes an infinite direction in the classical phase

space. However, even if we take T to be large, the inner product saturates at 〈Ψtfd|ΨT〉 =

O
(
e−

S
2

)
where S is the entropy.

This suggests that the classical limit in AdS/CFT emerges somewhat differently than

the intuition from canonical gravity would suggest. Specifically, the following phenomenon

occurs. We can identify states in the CFT dual to metrics |Ψg〉 ↔ |g〉. However, when the

distance between these states becomes “large”, the inner-product in the CFT differs from

the inner product predicted by semi-classical gravity. We have only been able to compute

this semi-classical inner product reliably for small separations on the phase space. If we

extrapolate this to the entire phase space then we can find cases where the semi-classical

inner product is exponentially different from the CFT inner product.

e−Nυ(ge,gb)

|〈Ψge |Ψgb〉|
= O

(
e−N ) .
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Returning to the example of the thermofield double, which is the source of our intuition,

we note that the formula (7.24) is precisely analogous to (A.4). In both cases we know the

action of an operator on a set of states that almost orthogonal to one another. However,

while in (A.4) we are able to extend the integral to all of phase space and thereby obtain a

state-independent operator, we cannot extend the limits on T in (7.24) to ±∞ because of the

saturation of the inner product.

Another manifestation of this obstacle is as follows. In the thermofield double, given a

sequence eS states shifted by {T1 . . . TeS}, so that all of them are pairwise distinct, we can

still find coefficients αi so that

∣∣∣∣∣∣
|Ψtfd〉 −

eS∑

i=1

αie
iHLTi |Ψtfd〉

∣∣∣∣∣∣

2

= O
(
e−N ) . (A.17)

Note that (A.17) is not due to Poincare recurrence, which occurs after a much longer time

scale ee
S
. The linear dependence indicated in (A.17) means that one geometry can be written

as a linear combination of eS completely different geometries. The semi-classical theory does

not see any signs of (A.17). This prevents a naive use of projectors on coherent states to

build up a state-independent operator.

Summary

The picture that we get in this manner is shown in Fig 15. A slogan that would summarize

HΨe

HΨb

Figure 15: When we quantize the theory we can put states in the Hilbert space in correspondence

with the classical phase space. However, we may have to use different operators in different regions of

phase space to represent a single classical function.

this Appendix is that “coherent states are always overcomplete, but the states in the CFT

that correspond to coherent states of the metric are even more overcomplete than one would

expect from a semi-classical analysis.” This is what prevents us from lifting some well defined
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classical observables to state-independent operators. This issue is important and interesting

and deserves further investigation.

B Mirror modes from bulk evolution

One possible proposal to define the mirror operators may proceed as follows. Consider black

holes formed by collapse in AdS. In each such classical solution, we can trace the right moving

modes behind the horizon to their origin to their support on the boundary of AdS in the past.

This is what was done by Hawking in flat space [5] using a geometric optics approximation.

Hawking’s computation suffers from a trans-Planckian problem because the geometric

optics calculation tells us that, at late times, even low frequency right moving modes behind

the horizon come from an extremely small time-band on the boundary. (See Figure 16.)

Therefore, in the past these low frequency modes must have had ultra-Planckian frequencies.

Figure 16: Tracing the mirrors back to their origin on the boundary is difficult because of the trans-

Planckian problem. However, even neglecting this issue does not help in constructing state-independent

operators because of the “fat tail” in the inner product of different solutions.

Even if we ignore this issue and proceed with the naive calculation, we find that we can

only attain a small number of microstates by considering black holes formed from collapse.

Page and Phillips estimated the number of possible configurations of massless radiation inside

anti-de Sitter space [68]. Their calculation can be summarized as follows. Consider a gas of

radiation in AdSd+1 and, as usual, we set its radius to 1. Then, Page and Phillips considered

a self-gravitating gas of radiation assuming that it was locally in thermal equilibrium at all

points. Their conclusion was that one recovers the standard thermodynamic relation between

the entropy and the energy at high energies for a gas in d+ 1 dimensions

Srad = κradE
d

d+1 , (B.1)
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where κrad is an O (1) constant which depends on the number of light degrees of freedom in

the theory. On the other hand for high energies E ≫ N , we know that the entropy of the

black hole is given by

Sbh = Nκbh

(
E

N

) d−1
d

, (B.2)

which is the result for a gas with N degrees of freedom in d-dimensions. We remind the

reader that N is the central charge, and so N = N2 in the SU(N) supersymmetric Yang-Mills

theory.

Comparing (B.2) with (B.1) for energies of order E ∝ N , we find that

Sbh
Srad

=
κbh
κrad

N 1
dE

−1
d(d+1) ∝ N 1

d+1 .

Therefore the entropy of the radiation is always subleading in this range.

We caution the reader that (B.1) is a little artificial in the regime in which we have

applied it because the temperature that follows from (B.1) is

Trad =
1(

∂Srad
∂E

) = κ−1
radE

1
d+1 .

If we consider the case of the duality between AdS5 and supersymmetric Yang-Mills theory,

with a ’t Hooft coupling λ, then we do not expect the result (B.1) to be valid beyond the

string scale λ
1
4 , at which point we expect to find a Hagedorn transition in the bulk. So, in

reality we do not even expect to be able to attain as many microstates as we considered above

for the radiating star.

This is a rather robust result: following the collapse of black holes from reasonable

geometric configurations allows us to explore only a small fraction of the Hilbert space at high

energies. Now if we do decide to restrict to such a sector of the Hilbert space, the firewall

paradoxes vanish since they can only make reference to generic states. Correspondingly,

there is no difficulty in obtaining state-independent mirror operators that have the correct

behaviour on this sector.

We now note a second important point. In some cases, it may be possible to geometrize

the microstates of the black hole as we did in section 6. There, we were able to explore a

significant fraction of the microstates of the eternal black hole classically by considering a one-

parameter family of eternal black hole solutions. All of these were glued to the boundary with

different time shifts, and we had to allow this time-shift to be exponentially large to ensure

that the corresponding states in the CFT Hilbert space spanned a subspace of exponentially

large dimension.

However, in this situation we ran into the obstruction explored in section (7.6) and also

in Appendix (A). This obstacle is as follows. Any method of obtaining the mirror modes by

analyzing classical solutions can, at most, specify these modes as functions on the classical

phase space. For example in (7.6), in each solution left-shifted by the time T , the mirrors
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were the modes of OLt+T,Ω. However, in this situation we encountered the “fat tail” of

(7.25). This “fat tail” prevents us from lifting a classical function on this large phase space

to a corresponding linear operator in the Hilbert space.

Therefore, the study of classical solutions cannot help in obtaining state-independent

mirror operators.
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