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Abstract. We deal with the solvablity and a weak formulation of nonlinear partial dif-
ferential equations (PDEs) of Black-Scholes type for the pricing of options in the presence
of transaction costs. Examples include the Hoggard-Whalley-Wilmott equation, which is
introduced to model portfolios of European type options with transaction costs based on
the idea of Leland. The cost structure gives rise to nonlinear terms. We show the existence
and the uniqueness of solutions both in the classical and the weak sense, where the notion
of weak solutions is introduced.

1. Introduction

We are concerned with the solvability and a weak formulation of nonlinear partial differential
equations (PDEs) of Black-Scholes type for the pricing of options with transaction costs.
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V = V (S, t) in (S, t) ∈ (0,∞) × (0, T )

V (S, T ) = V0(S) for S ≥ 0,

(1)

where V (S, t) denotes the option price written on the underlying asset S. The constants r and
σ stand for the risk-free interest rate and the asset volatility, respectively. The maturity data
V0(S) (≥ 0) is assumed at the beginning to fulfill V ′

0(S) → α exponentially as S → ∞ with
a nonnegative constant α. We weaken the regularity assumption on V0 later. Throughout
this paper, we assume V0(0) = V (0, t) = 0 for simplicity. That is to say, we confine ourselves
to treating the European call type options. The right hand side κF expresses the cost term
where κ (κ > 0) is a proportionality constant. The function F (Q) (Q := S2|Γ|), which
depends on the absolute value of the option gamma Γ := ∂2V/∂S2 multiplied by the square
of the asset price, is assumed to satisfy the following hypotheses.

(H1)k F (Q) is nonnegative, F (0) = 0, and uniformly Ck-class for Q ∈ (0,∞). (k = 1, 3.)
(H2) There exists a positive constant M such that∣∣∣∂F

∂Q
(Q)

∣∣∣ ≤ M for Q ∈ (0,∞).

We recall background issues concerning the equation (1). In addition to the basic log-
normal model for the asset price, it is well conceded that the celebrated Black-Scholes partial
differential equation [4, 19], namely κ = 0 in (1), is derived upon several ideal assumptions.
The list of these includes, for example [3, 13], the absence of arbitrage opportunities, the
possibility of continuous self-financing trading of the underlying asset, the constant risk-less
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interest rate as well as the stock volatility, and so on. The transaction costs associated with
trading are also excluded in the original Black-Scholes analysis, which, however, is invalid
in general; the influence of transaction costs is actually very important for practitioners.
Much attention has been paid so far to the effects of transaction costs and many substantial
researches have been undertaken. We refer to [5, 6, 11, 17, 18, 21, 24] for instance and the
references cited therein. Among others Leland [18] made a pioneering investigation, whose
central idea is to modify the dynamic hedging so that transaction costs are considered to be
charged to rehedge over a short discrete interval of time. The approach is nowadays classified
into the so-called local in time hedging strategy.

Interpreting the essence of Leland [18] in the PDE setting, Hoggard, Whalley, and Wilmott

[12] proposed the next model in which F (Q) = σ
√

2/πδtQ. To be precise
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∣∣∣∣ in (S, t) ∈ (0,∞) × (0, T )

V (S, T ) = V0(S) for S ≥ 0.

(2)

This is a typical example of (1) where δt is a non-infinitesimal fixed time-step not to be
taken δt → 0; the portfolio is considered to be revised every δt. We briefly review on the
model and the derivation of PDE in §2. We just mention that the equation (2) is claimed
as one of the first nonlinear PDEs in finance.

The principal aim of the current article is to solve (1) without assuming the convexity nor
the concavity of V in an elementary way. Although the nonlinear right hand side term is
essential in (1), its treatment is cumbersome to some degree within the theory of PDE. The
foregone literature thus customarily presupposes the convexity of V to remove the absolute
value [2, 22]. In the real world, however, this restriction is not appropriate and there are
portfolios which are not necessarily convex nor concave.

Now our first result of this paper reads as follows.

Theorem 1. Assume (H1)3(H2) and suppose κ < σ2/2M . Then for any uniformly smooth
maturity data V0(S) (≥ 0) with V ′

0(S) → α (α ≥ 0) exponentially as S → ∞, there
exists a unique classical solution V (S, t) to the equation (1), whose behavior is given by
(∂V/∂S)(S, t) → α exponentially as S → ∞.

The solution asserted in the above theorem is meant in the smooth classical sense. To be
precise, V (·, t) ∈ C2(0,∞) ∩ C([0,∞)) and V (S, ·) ∈ C1(0, T ) ∩ C([0, T ]). See for example
[1]. We also remark once again that the solution is not presumed a priori to be convex
nor concave. The condition κ < σ2/2M , on the other hand, is somewhat stringent to
applications. Roughly speaking, this requirement means that the effect of transaction costs
is small compared to the one of volatility. We come back to this point again in §5.

The method of proof is performed through an approximation scheme. Transforming into
a variant of heat equation and computing somewhat tacitly in the PDE environment, we
deduce a priori estimates independent of approximations. The variation of constants formula
coupled with the convergence argument then leads to the existence result which we want.
This part of the current article generalizes our previous accomplishments [14, 15].

The transformed equation makes it possible to discuss solutions in the weak sense. To be
specific the equation for their derivatives is expressed in the divergence form (see (13) in §4
below) and the notion of weak solutions naturally follows. As a result of this formulation,
the regularity hypothesis on V0 can be weakened and the shortcoming in Theorem 1 such as
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the assumption of smooth maturity data is remedied. Although a weak-solution approach is
adopted totally from the mathematical viewpoint, it seems to be new in the mathematical
finance and we believe that such extension is interesting in its own right and worth publishing.

To make an advance, we introduce a Hilbert space to keep our description transparent

E0 := {V ∈ L1
loc(0,∞) | ‖V ‖2

E0
:=

∫ ∞

0

V (S)2dS

S
< ∞}

E1 := {V ∈ E0 | ‖V ‖2
E1

:= ‖V ‖2
E0

+

∫ ∞

0

(
S

∂V (S)

∂S

)2dS

S
< ∞}

E−1 := E∗
1 the dual space of E1 with respect to the inner product of E0.

(3)

Furthermore we additionally introduce

E0
1 := {V ∈ L1

loc(0,∞) |S∂V

∂S
∈ E0}.

It is easy to see that E0, E1, E−1 are respectively equivalent to L2(R), H1(R), H−1(R) via
the change of variable u(x) = V (ex) = V (S) (x = log S ∈ R).

The definition of weak solution is a little involved and we defer it to the next section. Here
we just address our result in the following theorem, which is the main achievement of this
article.

Theorem 2. Assume (H1)1(H2) and suppose κ < σ2/2M . Then for any V0 − αS ∈ E0
1

(α ≥ 0), there exists a unique weak solution V (S, t) − αS ∈ C1(0, T ; E0
1) in the sense of

Definition 3 below.

Definition 3 is given in §2.
It is to be noted that for V0 ∈ E0

1 there holds S(∂V0/∂S) → 0 as S → ∞, which apparently
restricts the behavior of maturity data. However, since the linear function αS (α ∈ R) solves
the equation (1), the existence of solutions should be understood up to the addition of linear
functions. In particular, the Lipschitz maturity data V0(S) = max{S − E, 0} of vanilla call
options with exercise E enter our regime.

We further note that for V0 ∈ E0
1 , the requirement V0(0) = 0 is legitimate. Moreover we

hasten to remark that if V0 is sufficiently regular and suitably bounded, then the uniqueness
property for the Cauchy problem (4)(5) implies that our weak solution V (S, t) agrees with
the classical solution.

The organization of the paper is as follows. §2 is devoted to recalling the model, the
derivation of PDE, and the definition of weak solution. Theorems 1, 2 are proved in §3, §4,
respectively. We conclude with discussions in §5.

2. Model Equation and the Definition of Weak Solution

In this section, for completeness of our exposition and for the readers’ convenience, we first
make a short sketch of the model whose idea originates in the well known work of Leland
[18] and of the derivation of corresponding partial differential equations. We reproduce the
argument of [12, 22, 23], to which the reader should refer for further details. We then turn
our attention to the definition of weak solution for these equations.

We assume that the underlying asset price follows the random walk which is given in
discrete time by

δS = σSφ
√

δt + µSδt,
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where µ denotes the drift coefficient and φ is a random number drawn from the standardized
normal distribution. Because of the discrete world, we return to the original Bachelier-
Einstein law of the square root of time.

The reason why we introduce a non-infinitesimal fixed time-step δt is that if the costs
associated with trading are independent of the time-scale of rehedging, then infinite total
transaction costs would be resulted in as we take the limit dt → 0. Leland therefore has
proposed a modification to the usual Black-Scholes continuous analysis so that the portfolio
is now assumed to be revised every discrete δt. Here we remark that a recent nice result
of Sekine and Yano [20] is worth mentioning, where time-inhomogeneous rebalancing is
discussed.

Let Π = V −∆S denote the value of the portfolio with typical delta hedging strategy. We
consider the change δΠ in Π over a discrete time-step δt.

δΠ = σS
(∂V

∂S
− ∆

)
φ
√

δt +
(∂V

∂t
+

1

2
σ2S2∂2V

∂S2
φ2 + µS

∂V

∂S
− µ∆S

)
δt − κS|ν|.

In the computation, the effect of transaction costs is assumed to take the form κS|ν| and
has been subtracted off from δΠ, where ν is the number of shares which are bought (ν > 0)
or sold (ν < 0) at a price S. This form means that a cost is proportional to the value traded
with a constant κ depending on the individual investor. It is to be noted that the resulting
partial differential equations will then be reduced to (2). Furthermore the square of the
random variable φ should be saved in this discrete time world.

We follow the same hedging strategy as Black-Scholes concept and thus choose ∆ =
(∂V/∂S)(S, t), which has been evaluated at time t and asset S. We then compute

ν = ∆(S +δS, t+δt)−∆(S, t) =
∂V

∂S
(S +δS, t+δt)− ∂V

∂S
(S, t) =

∂2V

∂S2
(S, t)σSφ

√
δt+O(δt).

Consequently, to leading order, the expected change in the value of the portfolio becomes

E[δΠ] =
(∂V

∂t
+

1

2
σ2S2∂2V

∂S2
− κσS2

√
2

πδt

∣∣∣∣∂2V

∂S2

∣∣∣∣ )
δt,

which, by the principle of non-arbitrage, equals to the return from a risk-free deposit. Pre-
cisely stated E[δΠ] = r(V − ∆S)δt = r(V − S∂V/∂S)δt. We thus obtain

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
− κσS2

√
2

πδt

∣∣∣∣∂2V

∂S2

∣∣∣∣ = r
(
V − S

∂V

∂S

)
.

This is the Hoggard-Whalley-Wilmott equation (2).
Other transaction cost models, even of slightly more general form than (1), are also pos-

sible. We return to this issue in §5.
Now we come to the stage of introducing the definition of our weak solution for (1).

Definition 3. We say that V ∈ C1(0, T ; E0
1) is a weak solution of (1) with maturity data

V0 ∈ E0
1 if V (S, t) is a solution of the linear partial differential equation

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ rS

∂V

∂S
− rV = κF

(
e−r(T−t)

∣∣∣S∂W

∂S
− W

∣∣∣)
in (S, t) ∈ (0,∞) × (0, T )

V (S, T ) = V0(S) for S ≥ 0,

(4)

where W (S, t) satisfies the next conditions.
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(W1) W ∈ L∞(0, T ; E0) ∩ L2(0, T ; E1), ∂W/∂t ∈ L2(0, T ; E−1)
(W2) It holds that for each Z ∈ E1 and almost every 0 ≤ t ≤ T∫ ∞

0

(∂W

∂t
+ rS

∂W

∂S

)
Z

dS

S

=

∫ ∞

0

{σ2

2

(
S

∂W

∂S
− W

)
− κer(T−t)F

(
e−r(T−t)

∣∣∣S∂W

∂S
− W

∣∣∣)}
S

∂Z

∂S

dS

S
.

(5)

(W3) W (S, T ) = S(∂V0/∂S)(S) in E0.

An inspection reveals that W (S, t) = er(T−t)S(∂V/∂S)(S, t) should be the relevant relation.
It is also readily seen that the solution V (S, t) for (4) can be expressed as

V (S, t) = e−r(T−t)

∫ ∞

0

G(S/R, t)V0(R)R−1dR

− κ

∫ T

t

ds

∫ ∞

0

G(S/R, t − s)e−r(s−t)F
(
e−r(T−s)

∣∣∣R∂W

∂R
− W

∣∣∣(R, s)
)
R−1dR,

(6)

where the kernel G(S, t) is given by

(7) G(S, t) :=
1√

2πσ2(T − t)
exp

[
− 1

4

( log S + r(T − t)√
σ2(T − t)/2

−
√

σ2(T − t)/2
)2]

.

One can clearly checked that if F ≡ 0 then (6)(7) gives the expression of the solution to
the ordinary Black-Scholes equation with maturity data V0. We point out, for general F
with hypotheses (H1)(H2), that the last integral of (6) is well-defined for W with conditions
(W1)(W2)(W3).

Definition 3 involves rather complicated steps. This is partly because the equation for
their derivatives of S is in a sense natural from the standpoint of the theory of PDE. Indeed,
(W2) is the standard definition of weak solution for the equation of derivatives. We thus deal
with the weak solution for derivatives first, which makes the definition tricky. Nevertheless
our weak solution is proved to exist for a wide class of initial data.

3. Proof of Theorem 1

This section is devoted to the proof of Theorem 1.

1. We begin with adopting the change of variables

x := log S + kτ, τ :=
σ2

2
(T − t),

with k := 2r/σ2 and the prices

u(x, τ) := ekτV (ex−kτ , T − 2

σ2
τ),

so that the equation (1) is transformed into

−∂u

∂τ
+

∂2u

∂x2
− ∂u

∂x
=

2κ

σ2
ekτF

(
e−kτ

∣∣∣∂2u

∂x2
− ∂u

∂x

∣∣∣) in (x, τ) ∈ ΩT := R × (0, T )

u(x, 0) = u0(x) = V0(e
x) on x ∈ R.

(8)
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Taking into account the fact that if V solves (1) then V − αS also does, we understand
from the beginning that

V (S, t) converges exponentially to zero as S → ∞.

Therefore, slightly extending the condition V (0, t) = 0, we interpret the boundary condition
on (8) as

u(x, τ) converges exponentially to zero as x → −∞ and as x → ∞.

In other words we seek a solution u for (8) in a class of these rapidly decaying functions.

2. Now we approximate the equation (8). Let ε ∈ R (ε 6= 0) be a small parameter.
Consider

∂u

∂τ
=

∂2u

∂x2
− ∂u

∂x
− 2κ

σ2
ekτF

(
e−kτ

√
ε2 +

(∂2u

∂x2
− ∂u

∂x

)2)
in (x, τ) ∈ ΩT

u(x, 0) = u0(x) on x ∈ R.

(9)

The solution u of (9) will be denoted by the same u without involving ε if there arises no
confusion. It is easy to ascertain that we recover (8) from (9) by sending ε → 0.

3. We introduce

v(x, τ) :=
∂u

∂x
(x, τ), w(x, τ) :=

∂2u

∂x2
(x, τ),

and the solvability for v will be examined. In a sense we had better deal with the derivative
function v, which would necessitate the higher regularity on the initial condition u0. This
limitation is weakened in the next section.

After a little computation we find

∂v

∂τ
=

(
1 − 2κ

σ2

∂F

∂Q

∂v/∂x − v√
ε2 + (∂v/∂x − v)2

)(∂2v

∂x2
− ∂v

∂x

)
in (x, τ) ∈ ΩT

v(x, τ) → 0 exponentially as |x| → ∞
v(x, 0) = u′

0(x) on x ∈ R.

(10)

The solution v for (10) is provided if the equation is uniformly parabolic and the uniform
C1(R) a priori estimates hold [9].

4. The quasilinear equation (10) becomes uniformly parabolic if κ < σ2/2M . Further-
more the standard maximum principle of PDE is applied to yield a uniform estimate on v
independent of ε, namely, supΩT

|v| ≤ supR |u′
0|.

We next compute

∂(w − v)

∂τ
=

(
1 − 2κ

σ2

∂F

∂Q

w − v√
ε2 + (w − v)2

)( ∂2

∂x2
− ∂

∂x

)
(w − v)

− 2κ

σ2

{∂F

∂Q

ε2

(ε2 + (w − v)2)3/2
+ e−kτ ∂2F

∂Q2

(w − v)2

ε2 + (w − v)2

}
(∂w/∂x − w)

∂(w − v)

∂x
.

This quasilinear equation for w− v is also uniformly parabolic if κ < σ2/2M , and a uniform
estimate on w = (w − v) + v independent of ε follows by the maximum principle. Therefore
the existence of solution for v is inferred. Moreover, once the existence of such solution
v is obtained, the second derivative ∂2v/∂x2 is bounded uniformly for τ ∈ (0, T ) on every
compact subset of R and the time derivative ∂v/∂τ is continuous by the parabolic regularity.
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5. The solution u is reconstructed from v on an integration. To be specific, thanks to the
fact that the kernel of the operator ∂/∂τ − (∂2/∂x2 − ∂/∂x) is

(11) K(x, τ) :=
1√
4πτ

exp
[
− 1

4

( x√
τ
−

√
τ
)2]

,

we have from the variation of constants formula

uε(x, τ) =

∫ ∞

−∞
K(x − y, τ)u0(y)dy

− 2κ

σ2

∫ τ

0

dη

∫ ∞

−∞
K(x − y, τ − η)ekηF

(
e−kη

√
ε2 +

(∂vε

∂x
− vε

)2

(y, η)
)
dy.

(12)

Since vε and ∂vε/∂x are uniformly bounded independent of ε and ∂2vε/∂x2 is bounded on
every compact subset, we can find a sequence εj → 0 (j → ∞) such that vεj

and ∂vεj
/∂x

converge on a fixed interval (−l, l) for every τ ∈ (0, T ) by the theorem of Arzela-Ascoli.
The diagonal argument then implies that there exists a subsequence εn → 0 such that vεn

and ∂vεn/∂x converge for all τ ∈ (0, T ) on every compact subset of R. Let us denote the
limit functions of vε and ∂vε/∂x by v and w, respectively with the abuse of notation. Since
vε(x, τ) =

∫ x

−∞(∂vε/∂x)(y, τ)dy, we have w = ∂v/∂x and moreover, we infer that

v(x, τ) =

∫ ∞

−∞
K(x−y, τ)u′

0(y)dy− 2κ

σ2

∫ τ

0

dη

∫ ∞

−∞

∂K

∂x
(x−y, τ −η)F

(
e−kη

∣∣∣∂v

∂x
−v

∣∣∣(y, η)
)
dy.

Now for every compact set K ⊂ R and for any small γ > 0, there exists an l = l(K, γ)
such that

sup
x∈K,0≤τ≤T

∣∣∣2κ
σ2

∫ τ

0

dη

∫
R\(−l,l)

K(x − y, τ − η)ekηF
(
e−kη

√
ε2

n +
(∂vεn

∂x
− vεn

)2

(y, η)
)
dy

∣∣∣ <
γ

4
.

There then corresponds n0 = n0(K, γ, l) = n0(K, γ) such that for all n,m ≥ n0

sup
x∈K,0≤τ≤T

∣∣∣uεn(x, τ) − uεm(x, τ)
∣∣∣

≤ sup
x∈K,0≤τ≤T

∣∣∣2κ
σ2

∫ τ

0

dη

∫ l

−l

K(x − y, τ − η)ekη

·
(
F

(
e−kη

√
ε2

n +
(∂vεn

∂x
− vεn

)2)
− F

(
e−kη

√
ε2

m +
(∂vεm

∂x
− vεm

)2))
dy

∣∣∣ +
γ

2
< γ,

from which we assert that {uεn} converges to a solution u of (8) on every compact subset of
R by letting εn → 0 in (12). Transforming back we finally conclude that the solution for (1)
is constructed.

The uniqueness property holds true even in a weak setting, and thus we postpone the
proof to the next section.

This completes the proof of Theorem 1.

Remark 4. The proof uncovers that the sign of κ or F is actually irrelevant; we are thus able
to extend Theorem 1 so that it holds true under the condition |κ| < σ2/2M . The negative
sign induces the short positioned option. The same remark applies to the weak formulation
below.
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4. Weak formulation

The technique of proof developed in §3 brings us to think about the weak formulation of the
problem. As already outlined there, it is convenient to look at v variable; indeed we see that
the equation for v = ∂u/∂x in (8) can be written in the divergence form.

∂v

∂τ
=

∂

∂x

{∂v

∂x
− v − 2κ

σ2
ekτF

(
e−kτ

∣∣∣∂v

∂x
− v

∣∣∣)}
in (x, τ) ∈ ΩT

v(x, 0) = v0(x) for x ∈ R,
(13)

where v0(x) = ex(∂V0/∂S)(ex) now belongs to L2(R). It is to be noted that so long as we
are interested in weak solutions there is no need for approximating the absolute value; this
owes to the fact that if v ∈ H1(R) then there holds |v| ∈ H1(R). Observe [10] for instance.

We come to the point of clarifying the concept of weak solutions for (13).

Definition 5. We say that v is a weak solution of (13) if the next conditions are satisfied.

(W1)′ v ∈ L∞(0, T ; L2(R)) ∩ L2(0, T ; H1(R)), ∂v/∂τ ∈ L2(0, T ; H−1(R))
(W2)′ It holds that for each ϕ ∈ H1(R) and almost every 0 ≤ τ ≤ T

(14)

∫ ∞

−∞

∂v

∂τ
(x, τ)ϕ(x)dx = −

∫ ∞

−∞

{∂v

∂x
− v − 2κ

σ2
ekτF

(
e−kτ

∣∣∣∂v

∂x
− v

∣∣∣)}∂ϕ

∂x
(x)dx.

(W3)′ v(x, 0) = v0(x) in L2(R).
Here v0 = ∂u0/∂x ∈ L2(R) denotes initial data.

The conditions (W1)′(W2)′(W3)′ parallel to (W1)(W2)(W3) of Definition 3. It will be
ascertained by direct calculation that the relation between v and W from Definition 3 is
v(x, τ) = W (ex−kτ , T − 2τ/σ2) (k = 2r/σ2).

Grounded on this definition we show the existence of solutions.

Theorem 6. Assume (H1)1(H2) and suppose κ < σ2/2M . For any initial data v0 ∈ L2(R)
there exists a unique weak solution v in the sense of Definition 5.

Since Theorem 2 is an immediate consequence of Theorem 6 by way of the change of
variables, we are now left with the proof of Theorem 6.

1. To start with, we approximate v0 by a sequence of functions vn
0 ∈ L2(R) (n = 1, 2, · · · )

whose essential support sptvn
0 ⊂ (−n, n). Then the general existence and uniqueness

theorem of weak solutions [8] is valid; we infer that there exists a unique weak solution
vn ∈ L2(0, T ; H1

0 (−n, n)) with ∂vn/∂τ ∈ L2(0, T ; H−1(−n, n)) (n = 1, 2, · · · ) which satisfies
(14) for each ϕ ∈ H1

0 (−n, n) and almost every 0 ≤ τ ≤ T , and vn(x, 0) = vn
0 (x) in L2(−n, n).

We extend vn to be defined on the whole R by setting vn = 0 on R \ (−n, n) and we
understand that vn ∈ L2(0, T ; H1

0 (R)) with ∂vn/∂τ ∈ L2(0, T ; H−1(R)) (n = 1, 2, · · · ).
We wish to pass to limits as n → ∞ so as to build a desired weak solution on the whole

R. To justify this aim we appeal to a priori estimates.

2. Multiplying (13) by v and invoking (H1)(H2) we find

1

2

d

dτ
‖v(τ)‖2

L2 +
∥∥∥∂v

∂x
(τ)

∥∥∥2

L2
≤ 2κ

σ2
M

(∥∥∥∂v

∂x
(τ)

∥∥∥2

L2
+ ‖v(τ)‖L2

∥∥∥∂v

∂x
(τ)

∥∥∥
L2

)
.

Choosing γ (> 0) so small that 2κM/σ2 ≤ 1 − 2γ we deduce that

(15)
1

2

d

dτ
‖v(τ)‖2

L2 + γ
∥∥∥∂v

∂x
(τ)

∥∥∥2

L2
≤ (1 − 2γ)2

4γ
‖v(τ)‖2

L2 ,
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where the use of the inequality |ab| ≤ γa2 + b2/4γ was made. The differential inequality (15)
now yields

(16) max
0≤τ≤T

‖v(τ)‖2
L2 ≤ ‖v0‖2

L2e(1−2γ)2τ/2γ ,

and hence we obtain

(17)

∫ τ

0

∥∥∥∂v

∂x
(η)

∥∥∥2

L2
dη ≤ 1

2γ
e(1−2γ)2τ/2γ‖v0‖2

L2 .

Next multiplying (13) by any fixed ϕ ∈ H1(R) with ‖ϕ‖H1 ≤ 1 we calculate∣∣∣(∂v

∂τ
(τ), ϕ

)
L2

∣∣∣ ≤ (
1 +

2κM

σ2

)∣∣∣∂v

∂x
− v

∣∣∣
L2

∣∣∣∂ϕ

∂x

∣∣∣
L2

≤ 2‖v‖H1 ,

and therefore

(18)

∫ τ

0

∥∥∥∂v

∂η
(η)

∥∥∥2

H−1
dη ≤

(2

γ
+ 4τ

)
e(1−2γ)2τ/2γ‖v0‖2

L2 .

Above estimates hold for vn independently of n.

3. Our task is to show the convergence of {vn}. Since {vn} is bounded in L2(0, T ; H1(R)),
we can extract a subsequence, which is denoted by the same {vn}, such that {vn} converges
weakly in L2(0, T ; H1(R)). By the diagonal argument, we may assume that {vn} converges
strongly in L2(0, T ; L2(−l, l)) for every l > 0. Let us denote a weak limit of {vn} by v∞.

We want to prove that {vn} converges strongly to v∞ in L∞(0, T ; L2(R))∩L2(0, T ; H1(R)).
To do so, next two preliminary claims are in order.

|v∞(±m, τ)|2 ≤ 2‖v∞(η)‖L2(R\(−m,m))

∥∥∥∂v∞

∂x
(η)

∥∥∥
L2(R\(−m,m))

→ 0 as m → ∞,∫ τ

0

∣∣∣∂vm

∂x
(±m, η)

∣∣∣2dη ≤ N, where a constant N is independent of m.

(19)

For the proof we consider the point x = m only. The point x = −m is treated similarly.
Claim 1 is ascertained as follows.

|v∞(m, η)|2 = −
∫ n

m

∂

∂x
(v∞(η))2dx ≤ 2‖v∞(η)‖L2(m,∞)

∥∥∥∂v∞

∂x
(η)

∥∥∥
L2(m,∞)

,

from which we particularly deduce that
∫ τ

0
|v∞(±m, η)|2dη → 0 as m → ∞.

As to Claim 2, we see that for any M > 0 there corresponds a set AM ⊂ R with
meas|AM | ≤ (2γM)−1e(1−2γ)2τ/2γ‖v0‖2

L2 such that∫ τ

0

∣∣∣∂v

∂x
(y, η)

∣∣∣2dη ≤ M

for every y ∈ R \ AM by virtue of (17). We multiply (13) by any fixed ϕ ∈ H1(R) and
integrate it over m − l ≤ x ≤ m with 0 ≤ l ≤ lM := 2meas|AM |, where ϕ is taken to satisfy
ϕ(m) = 1 and ‖ϕ‖H1 ≤ 1. It follows that∫ m

m−l

∂vm

∂τ
(τ)ϕdx +

∫ m

m−l

{∂vm

∂x
− vm − 2κ

σ2
ekτF

(
e−kτ

∣∣∣∂vm

∂x
− vm

∣∣∣)}
(τ)

∂ϕ

∂x
dx

=
∂vm

∂x
(m, τ) − 2κ

σ2
ekτF

(
e−kτ

∣∣∣∂vm

∂x

∣∣∣(m, τ)
)

+ vm(m − l, τ)ϕ(m − l)

−
{∂vm

∂x
(m − l, τ) − 2κ

σ2
ekτF

(
e−kτ

∣∣∣∂vm

∂x
− vm

∣∣∣(m − l, τ)
)}

ϕ(m − l).
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Taking account of |vm(m − l, τ)|2 ≤ lM
∫ m

m−l
|∂vm/∂x|2dx and |ϕ(m − l)|2 = (ϕ(m) −∫ m

m−l
ϕ′dx)2 ≤ (1 +

√
lM)2, we infer that

γ2

∫ τ

0

∣∣∣∂vm

∂x
(m, η)

∣∣∣2dη ≤ 4(1 +
√

lM)2

∫ τ

0

∣∣∣∂vm

∂x
(m − l, η)

∣∣∣2dη +

∫ τ

0

∥∥∥∂vm

∂η
(η)

∥∥∥2

H−1
‖ϕ‖2

H1dη

+ 4

∫ τ

0

‖vm(η)‖2
L2dη + 4(l2M(1 +

√
lM)2 + 1)

∫ τ

0

∥∥∥∂vm

∂x
(η)

∥∥∥2

L2
dη.

(20)

Choosing l appropriately and invoking (16)(17)(18), we obtain

γ2

∫ τ

0

∣∣∣∂vm

∂x
(m, η)

∣∣∣2dη ≤ 4(1 +
√

lM)2M +
(2

γ
(2 + l2M(1 +

√
lM)2) + 8τ

)
e(1−2γ)2τ/2γ‖v0‖2

L2 .

It should be noted that although there is no explicit information on AM , we have the
estimate for the measure of AM . Therefore there does exists l ≤ lM (= 2meas|AM |) such
that

∫ τ

0
|(∂vm/∂x)(m − l, η)|2dη ≤ M in (20). We further remark that l (∈ [0, lM ]) may be

selected differently for every m.

4. Now we plug v = vn and vm into the equation (13), respectively (n > m). Subtracting
term by term and multiplying by ϕ := vn−vm, we discover the next estimate after integration
by parts. We note that vn(τ) and vm(τ) are extended to belong to H1

0 (R) and hence the
care must be paid in the computation.

1

2

d

dτ
‖(vn − vm)(τ)‖2

L2 +
∥∥∥∂(vn − vm)

∂x
(τ)

∥∥∥2

L2

=
2κ

σ2
ekτ

∫ 1

0

d

ds

{ ∫ ∞

−∞
F

(
e−kτ

(
s
∣∣∣∂vn

∂x
− vn

∣∣∣ + (1 − s)
∣∣∣∂vm

∂x
− vm

∣∣∣))∂(vn − vm)

∂x
dx

}
ds

−
{∂vm

∂x
− vm − 2κ

σ2
ekτF

(
e−kτ

∣∣∣∂vm

∂x
− vm

∣∣∣)}
(vn − vm)(τ)

∣∣∣
x=±m

≤ (1 − 2γ)

∫ ∞

−∞

∣∣∣∣∣∣∂vn

∂x
− vn

∣∣∣ − ∣∣∣∂vm

∂x
− vm

∣∣∣∣∣∣ · ∣∣∣∂(vn − vm)

∂x

∣∣∣dx

+
∑ ∣∣∣(∂vm

∂x
− 2κ

σ2
ekτF

(
e−kτ

∣∣∣∂vm

∂x

∣∣∣))
vn(±m, τ)

∣∣∣
≤ (1 − 2γ)

∫ ∞

−∞

∣∣∣∂(vn − vm)

∂x
− (vn − vm)

∣∣∣ · ∣∣∣∂(vn − vm)

∂x

∣∣∣dx + 2
∑ ∣∣∣vn ∂vm

∂x

∣∣∣(±m, τ)

≤ (1 − 2γ)
{∥∥∥∂(vn − vm)

∂x
(τ)

∥∥∥2

L2
+ ‖(vn − vm)(τ)‖L2

∥∥∥∂(vn − vm)

∂x
(τ)

∥∥∥
L2

}
+ 2

∑ ∣∣∣vn ∂vm

∂x

∣∣∣(±m, τ),

where γ is chosen as in (15). We thus obtain

1

2

d

dτ
‖(vn − vm)(τ)‖2

L2 + γ
∥∥∥∂(vn − vm)

∂x
(τ)

∥∥∥2

L2

≤ (1 − 2γ)2

4γ
‖(vn − vm)(τ)‖2

L2 + 2
∑ ∣∣∣vn ∂vm

∂x

∣∣∣(±m, τ),
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and hence, thanks to the Gronwall lemma,

‖(vn − vm)(τ)‖2
L2 + 2γ

∫ τ

0

eC(τ−η)
∥∥∥∂(vn − vm)

∂x
(η)

∥∥∥2

L2
dη

≤ eCτ‖vn
0 − vm

0 ‖L2 + 4

∫ τ

0

eC(τ−η)
∑ ∣∣∣vn ∂vm

∂x

∣∣∣(±m, η)dη

≤ eCτ‖vn
0 − vm

0 ‖L2 + 4eCT

√∫ τ

0

∑
|vn(±m, η)|2dη

√∫ τ

0

∑ ∣∣∣∂vm

∂x
(±m, η)

∣∣∣2dη,

where C := (2γ)−1(1 − 2γ)2.
We want to send n → ∞ first. Before doing that we notice that we are able to extract a

subsequence, which is still denoted by the same {vn}, such that

(21)

∫ τ

0

∑
|vn(±m, η)|2dη →

∫ τ

0

∑
|v∞(±m, η)|2dη as n → ∞.

The demonstration is deferred temporarily and we send n → ∞ first to discover

‖(v∞ − vm)(τ)‖2
L2 + 2γ

∫ τ

0

eC(τ−η)
∥∥∥∂(v∞ − vm)

∂x
(η)

∥∥∥2

L2
dη

≤ lim inf
n→∞

‖(vn − vm)(τ)‖2
L2 + 2γ lim inf

n→∞

∫ τ

0

eC(τ−η)
∥∥∥∂(vn − vm)

∂x
(η)

∥∥∥2

L2
dη

≤ eCτ‖v0 − vm
0 ‖L2 + 4eCT

√∫ τ

0

∑
|v∞(±m, η)|2dη

√∫ τ

0

∣∣∣∂vm

∂x
(±m, η)

∣∣∣2dη.

Consequently, in light of (19), we learn that {vn} strongly converges in L∞(0, T ; L2(R))∩
L2(0, T ; H1(R)).

5. We make sure of (21). We deal with the point x = m. Since for every fixed η,
|vn(m, η)|2 = |

∫ n

m
(∂vn(η)2/∂x)dx| ≤ 2‖(∂vn/∂x)(η)‖L2‖vn(η)‖L2 is bounded independent of

n and m, we select a subsequence m < n11 < · · · < n1j < · · · such that {|vn1j(m, η)|2}∞j=1

converges. Put m2 := n11. We select a subsequence m2 < n21 < · · · < n2j < · · · from
{n1j}j=1,2··· such that {|vn2j(m2, η)|2}∞j=1 converges. Put m3 := n21 and continue the proce-
dure. Define {vn}n=1,2··· = {vmj}j=1,2,··· with abuse of notation. This extraction can be made
for countable dense point {τj} ⊂ (0, T )

Now suppose (21) does not hold and there exists ε > 0 (ε ¿ 1) such that

(22) lim
n→∞

∫ T

0

|vn(m, η)|2dη −
∫ T

0

|v∞(m, η)|2dη ≥ 4ε.

Here we recall that lim infn→∞
∫ T

0
|vn(m, η)|2dη ≥

∫ T

0
|v∞(m, η)|2dη. Taking into account

that {vn} ⊂ L2(0, T ; H1(R)) has been extracted to converge strongly in L2(0, T ; L2(−l, l))
for every l > 0, there corresponds n0 such that

(23)

∫ T

0

∣∣∣‖vn(η)‖2
L2(−2m,2m) − ‖v∞(η)‖2

L2(−2m,2m)

∣∣dη ≤ ε2

T

for every n ≥ n0. By virtue of (22), there exist τj and n > n0 such that∣∣∣ ∫ τj+ε

τj

|vn(m, η)|2dη −
∫ τj+ε

τj

|v∞(m, η)|2dη
∣∣∣ ≥ 3ε2

T
,



12 NAOYUKI ISHIMURA

from which we infer that, thanks to vn(τj), v∞(τj) ∈ H1(R), there is small δ > 0 with∣∣∣ ∫ τj+ε′

τj

‖vn(η)‖2
L2(m−δ,m+δ)dη −

∫ τj+ε′

τj

‖v∞(η)‖2
L2(m−δ,m+δ)dη

∣∣∣ ≥ 2ε2

T

by choosing smaller ε′ if necessary. This is in contradiction with (23) and we conclude that
(22) is absurd.

6. The uniqueness is provided by a similar inequality as (15). To be precise, suppose v1

and v2 are two weak solutions with the same initial data constructed above, then we obtain

1

2

d

dτ
‖(v1 − v2)(τ)‖2

L2 + γ
∥∥∥∂(v1 − v2)

∂x
(τ)

∥∥∥2

L2
≤ (1 − 2γ)2

4γ
‖(v1 − v2)(τ)‖2

L2 ,

from which we see that ‖(v1 − v2)(τ)‖2
L2 ≡ 0.

The proof of Theorem 6 is thereby concluded.

Remark 7. If we adopt the following approximation scheme for (13) similarly as in §3, that
is, we deal with

∂v

∂τ
=

∂

∂x

{∂v

∂x
− v − 2κ

σ2
ekτ

(
F

(
e−kτ

√
ε2 +

(∂v

∂x
− v

)2)
− F (e−kτ |ε|)

)}
in (x, τ) ∈ ΩT

v(x, 0) = v0(x) for x ∈ R,

(24)

for a small parameter ε ∈ R (ε 6= 0). The term F (e−kτ |ε|) is for the scaling. The formula
corresponding to (14) becomes∫ ∞

−∞

∂v

∂τ
(x, τ)ϕ(x)dx

= −
∫ ∞

−∞

{∂v

∂x
− v − 2κ

σ2
ekτ

(
F

(
e−kτ

√
ε2 +

(∂v

∂x
− v

)2)
− F (e−kτ |ε|)

}∂ϕ

∂x
(x)dx.

If the initial data v0 is much regular, then the higher regularity on weak solutions can be
expected. Indeed we multiply (24) by ∂2v/∂x2 and integrate to find

1

2

d

dτ

∥∥∥∂v

∂x
(τ)

∥∥∥2

L2
+

∥∥∥∂2v

∂x2
(τ)

∥∥∥2

L2
=

(2κ

σ2

∂F

∂Q

∂v/∂x − v√
ε2 + (∂v/∂x − v)2

(∂2v

∂x2
− ∂v

∂x

)
,
∂2v

∂x2

)
L2

≤ (1 − 2γ)
(∥∥∥∂2v

∂x2
(τ)

∥∥∥2

L2
+

∥∥∥∂v

∂x
(τ)

∥∥∥
L2

∥∥∥∂2v

∂x2
(τ)

∥∥∥
L2

)
,

where γ is selected small as before in (15). We assert that

1

2

d

dτ

∥∥∥∂v

∂x
(τ)

∥∥∥2

L2
+ γ

∥∥∥∂2v

∂x2
(τ)

∥∥∥2

L2
≤ (1 − 2γ)2

4γ

∥∥∥∂v

∂x
(τ)

∥∥∥2

L2
,

and v ∈ L∞(0, T ; H1(R)) ∩ L2(0, T ; H2(R)) is demonstrated.

5. Discussions

We have established the existence and the uniqueness of solutions, both in the classical
sense and in the weak sense, to the model equation which extends the well-known Black-
Scholes and incorporates the effects of transaction costs. The solutions we constructed are
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not assumed a priori to be convex nor concave. We thus believe that the proved solvability
result is important still from the viewpoint of applications.

The existence is provided if κ < σ2/2M holds for (1). In the case of the Hoggard-Whalley-

Wilmott equation (2) this condition corresponds to 2κ
√

2/σ2πδt < 1, which means that the
proportional rate κ of costs to the traded value is relatively small, or the stock volatility σ
is relatively large, or the non-infinitesimal time-step δt of rehedging is relatively large. We
hope that these findings may shed light on the criterion of the model itself. Moreover we
note that it would be a challenging problem to discuss the equation without imposing this
condition.

The nonlinear function F in (1), which reflects the presence of transaction costs, is assumed
to depend solely on Q = S2|Γ| = S2|∂2V/∂S2|. There may be a concern that this is just a
theoretical assumption. To clarify such question we analyze other existing models. We refer
to [7, 22] for the background of these models. One is the so-called extended Leland model.
This is

(25) F (S, |Γ|) =
κ1

δt
+ σ(κ2 + κ3S)S

√
2

πδt
|Γ| =

κ1

δt
+ σ

(κ2

S
+ κ3

)√
2

πδt
Q,

where κ1, κ2 and κ3 components describe a fixed cost component, a cost proportional to
the number traded, and a cost proportional to the value traded, respectively. The apparent
singularity 1/S appears if we extract Q variable. We remark that (25) verifies hypotheses
(H1)(H2) provided κ2 = 0. Therefore our analysis does not work well for the model involving
a cost proportional to the number traded, which to some extent restricts the applicability.
However it seems that the existence result for the full model of (25) is not known.

Another one is market practice model. This is

(26) F (S, |Γ|) =
σ2S4

H0

(
κ1 + (κ2 + κ3S)

√
H0

S

)
|Γ|2 =

σ2Q2

H0

(
κ1 + (κ2 + κ3S)

√
H0

S

)
,

where H0 is a function of S, t as well as V and its derivatives. The parameters κ1, κ2 and κ3

have the same meaning as for (25). The application of our method depends on the choice of
H0. If H0 ≡ constant, then hypotheses (H1)(H2) is verified provided κ2 = 0 and additionally
Q stays bounded; the last condition is a restrictive requirement. If H0 ≡ σ2δtS4|Γ|2, then
(26) reduces to (25) under an adjustment of parameters.

Nevertheless, these two equations indicate that the form (1) is not intended just for the
mathematical sophistication. In addition if F depends explicitly on S as in (25)(26) our
procedure of handling the partial differential equation would be harder.

One advantage of employing the PDE approach in mathematical finance is that the nu-
merical computation is a common tool for the study of PDE. The situation also applies to
a wide class of problems. For the Hoggard-Whalley-Wilmott equation (2) we refer to our
accompanying paper [14], where a numerical technique for effectively computing the PDE is
pursued. For other related equations including (25), we refer to our recent publication [16].
A numerical implementation combined with the study of real world data is attractive and
this would be our future theme for research.
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