
QUARTERLY OF APPLIED MATHEMATICS

VOLUME LXXIII, NUMBER 2

JUNE 2015, PAGES 391–399

http://dx.doi.org/10.1090/qam/1383

Article electronically published on March 31, 2015

REMARKS ON THE NONLINEAR STABILITY

OF THE KURAMOTO MODEL WITH INERTIA

By

YOUNG-PIL CHOI (Department of Mathematics, Imperial College London, London SW7 2AZ,
England),

SEUNG-YEAL HA (Department of Mathematical Sciences, Seoul National University, Seoul
151-747, Republic of Korea),

and

SE EUN NOH (Department of Mathematics, Myongji University, Yongin 449-728, Republic of
Korea)

Abstract. In this short note, we present an a priori nonlinear stability estimate for

the Kuramoto model with finite inertia in �∞-norm under some a priori condition on the

size of the phase diameter. As a direct corollary of our nonlinear stability estimate, we

show that phase-locked states obtained in Choi, Ha, and Yun (2011) are orbital-stable in

�∞-norm, which means that the perturbed phase-locked state approaches the phase-shift

of the given phase-locked state. The phase-shift is explicitly determined by the averages

of initial phase and frequency distribution and the strength of inertia m.

1. Introduction. The purpose of this paper is to present an elementary and simple

proof for the nonlinear stability of the Kuramoto model with finite inertia. After Ku-

ramoto introduced a simple mathematical model for the coupled limit cycles [8] from the

two-dimensional complex Ginzburg-Landau equation, the Kuramoto model has become a

prototype model for the collective synchronization phenomena ubiquitous in real systems

ranging from physics to biology. One easy way to visualize the ensemble of an oscillator

system with inertia is to view the ensemble as the set of point rotors moving on the

circle S
1 ⊂ C1. Let xi = e

√
−1θi , θi ∈ R, be the polar coordinate of the i-th rotator’s

position, and assume that all rotors are under the effect of inertia with strength m. In
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this situation, the dynamics of the phase θi is governed by the system of the second-order

ODEs in R
N :

mθ̈i + θ̇i = Ωi +
K

N

N∑
j=1

sin(θj − θi), t > 0, i = 1, ..., N. (1.1)

Note that the R.H.S. of (1.1) is 2π-periodic; thus, the system (1.1) induces the dynamical

system on TN . However, for our purpose, we treat (1.1) as a system on the Euclidean

space RN instead of TN . Without loss of generality, we assume that the natural frequen-

cies Ωi have a zero mean:

Ωc :=
1

N

N∑
i=1

Ωi ≡ 0. (1.2)

The system (1.1) was first introduced by Ermentrout [7] as a phenomenological model

for the slow synchronization phenomena of certain biological systems, e.g., fireflies of

the Pteroptyx malaccae, and has been extensively studied in relation to the Josephson

junction array for superconductors [2, 6, 10, 14–18]. For a detailed review of mathemat-

ical and physical results, we refer to [1, 11–13]. In Choi et al. [4], the authors studied

the complete synchronization problem (see Definition 2.1) for (1.1), that is, to look for

sufficient conditions leading to the complete synchronization in terms of initial configu-

rations, inertia strength, coupling strength, etc. In fact, they analytically show that in

the case of the large inertia mK � 1 some initial phase-frequency configurations have

slower relaxation speed toward the phase-locked states than that of the Kuramoto model

without inertia, which rigorously justifies Ermentrout’s motivation for the model (1.1).

The linear stabilities of the phase-locked state to (1.1) have been studied in [3,9,11,12] in

the absence of inertia. Thus a natural follow-up question that we may ask is whether the

phase-locked states are nonlinearly stable, i.e., have robustness of phase-locked states.

This question was addressed in [5] for the Kuramoto model without inertia, and the

authors used the �1-metric as a Lyapunov functional to establish the nonlinear stability

of the phase-locked states without resorting to the linearization process.

The main result of this paper is the nonlinear stability estimate of the phase-locked

states emerging from some class initial configurations whose existence has been guaran-

teed by the result of [4]. For this, we use a phase-diameter which is equivalent to the

�∞-norm as a Lyapunov functional and derive a second-order Gronwall’s type inequality

for the phase-diameter.

This paper after this Introduction consists of three sections. In Section 2, we briefly

recall some basic definitions and mathematical structures of the system (1.1) and recall

the existence of phase-locked states from initial phase-frequency configurations. In Sec-

tion 3, we present the main result of this paper, the proof of a priori nonlinear stability

of the system (1.1). As a direct corollary of our nonlinear stability result, we obtain the

orbital stability of some class of phase-locked states. Finally, Section 4 is devoted to the

summary and discussion of our main result.
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Notation. For θ = (θ1, · · · , θN ),Ω = (Ω1, · · · ,ΩN ) ∈ RN ,

‖θ‖�p :=

⎧⎪⎪⎨
⎪⎪⎩

( N∑
i=1

|θi|p
) 1

p

, p ∈ [1,∞),

max
1≤i≤N

|θi|, p = ∞.

D(θ) := max
1≤i,j≤N

|θi − θj | and D(Ω) := max
1≤i,j≤N

|Ωi − Ωj |.

Note that D(θ) and D(Ω) denote the diameters of the phase and frequency sets respec-

tively.

2. Preliminaries. In this section, we briefly present basic definitions and recall the

second-order Gronwall’s inequality and existence of phase-locked states emerging from

the limit of dynamical solutions to (1.1).

We rewrite the system (1.1) as a system of first-order ODEs for (θi, ωi := θ̇i):

θ̇i = ωi, t > 0,

ω̇i =
1

m

(
− ωi +Ωi +

K

N

N∑
j=1

sin(θj − θi)
)
,

(2.1)

and introduce macro-variables (center-of-mass frame) and micro-variables (fluctuations

around macro-variables):

θc :=
1

N

N∑
i=1

θi, ωc :=
1

N

N∑
i=1

ωi, θ̂i := θi − θc, ω̂i := ωi − ωc.

Then, macro-variables and micro-variables satisfy

θ̇c = ωc, ω̇c = −ωc

m
, (2.2)

and

˙̂
θi = ω̂i, m ˙̂ωi = −ω̂i + Ω̂i +

K

N

N∑
j=1

sin(θ̂j − θ̂i). (2.3)

Note that the macroscopic variables (θc, ωc) are given by the following formula:

θc(t) = θc(0) +mωc(0)(1− e−
t
m ), ωc(t) = e−

t
mωc(0). (2.4)

Thus, macro-variables converge toward some constant states that are determined by m

and initial configurations:

lim
t→∞

(θc(t), ωc(t)) = (θc(0) +mωc(0), 0). (2.5)

We next recall several definitions for the phase-locked state and its orbital stability as

follows.
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Definition 2.1. (1) Let θ(t) = (θ1(t), · · · , θN (t)) be the dynamical solution of

the system (1.1). Then the dynamical solution asymptotically approaches the

completely synchronized states if and only if the transversal frequency differences

θ̇i − θ̇j go to zero as t → ∞:

lim
t→∞

|θ̇i(t)− θ̇j(t)| = 0, 1 ≤ i, j ≤ N.

(2) A phase locked solution θe to the system (1.1) - (1.2) is an equilibrium solution

to the system of ODEs, (1.1) - (1.2):

Ωi +
K

N

N∑
i=1

sin(θej − θei) = 0, θ̇ei = 0, i = 1, · · · , N.

(3) The phase locked state θe for (1.1) - (1.2) is orbital-stable in norm ‖·‖ if and only

if for any small perturbation θ0 of θe, the dynamical solution θ(t) with initial

data θ0 asymptotically converges to the phase-shift of θe in the norm ‖ · ‖:

∃ β ∈ R
N such that lim

t→∞
‖θ(t)− (θe + βIN )‖ = 0, IN := (1, · · · , 1).

Remark 2.2.

(1) When the natural frequency does not have mean zero, the phase-locked state is

a traveling wave with a constant phase velocity Ωc.

(2) The phase-locked state employed in Definition 2.1 is taken in a strong sense. We

may relax the definition of (weak) phase-locked states as follows. The dynamical

solution θ = θ(t) is (weakly) phase-locked if and only if there exist positive

constants C∗, C
∗ ≥ 0 independent of t satisfying

C∗ ≤ |θi(t)− θj(t)| ≤ C∗, t ≥ 0.

Below, we review the second-order Gronwall’s inequality and existence of phase-locked

states. Consider the second-order Gronwall’s inequality:

aÿ + bẏ + cy ≤ 0, t > 0,

y(0) = y0, ẏ(0) = y1,
(2.6)

where a > 0, b and c are constants.

Lemma 2.3. [4] Let y = y(t) be a nonnegative C2-function satisfying the differential

inequality (2.6). Then we have

y(t) ≤

⎧⎪⎨
⎪⎩

y0e
−ν1t + a

e−ν2t − e−ν1t

√
b2 − 4ac

(
y1 + ν1y0

)
, b2 − 4ac > 0,

e−
b
2a t

[
y0 +

(
b
2ay0 + y1

)
t
]
, b2 − 4ac ≤ 0,

where decay exponents ν1 and ν2 are given as follows:

ν1 :=
b+

√
b2 − 4ac

2a
, ν2 :=

b−
√
b2 − 4ac

2a
.

This lemma will be used crucially in the next section. Finally, we discuss two frame-

works which guarantee the existence of phase-locked states.

• Framework A: (Small inertia regime)
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(1) The strength of coupling K and the magnitude of inertia m satisfy

0 < D(Ω) < K, mK <
D∞

4 sinD∞ ,

where D∞ ∈
(
0, π

2

)
is the root of the following trigonometric equation:

sinx =
D(Ω)

K
.

(2) An initial configuration of (θ0, ω0) satisfies

0 < max
{
D(θ0), D(θ0) + 2mḊ(θ(t))

∣∣∣
t=0

}
< D∞.

• Framework B: (Large inertia regime)

(1) The strength of coupling K and the magnitude of inertia m satisfy

0 < D(Ω) <
π

8m
, mK >

π

8
.

(2) An initial configuration of (θ0, ω0) satisfies

0 < max
{
D(θ0), D(θ0) + 2mḊ(θ(t))

∣∣∣
t=0

}
< 4mD(Ω).

We also note that for D∞ ∈
(
0, π

2

)
,

D∞

4 sinD∞ <
π

8
.

Theorem 2.4 ([4]). Under either Framework A or Framework B, there exists a phase-

locked state θe to the system (1.1) - (1.2), and its phase-diameter is smaller than π
2 .

Remark 2.5. 1) The conditions of Framework A and Framework B are independent

of the system size N . Hence, our result can be lifted to the kinetic regime via the

thermodynamic limit.

2) Under both Framework A and Framework B, the initial phase-frequency configuration

(θ0, ω0) evolves toward the asymptotic phase-locked state (θe, 0):

Ωi +
K

N

N∑
i=1

sin(θej − θei) = 0, sup
t≥0

D(θ(t)) <
π

2
.

3. A priori nonlinear stability. In this section, we present a nonlinear stability of

the Kuramoto model with inertia in the �∞-norm.

Theorem 3.1. Let θ and θ̃ be two solutions to the system (1.1) - (1.2) satisfying the a

priori conditions:

(i) Dav
∞ := sup

t≥0

(D(θ(t)) +D(θ̃(t))

2

)
<

π

2
. (3.1)

(ii)

N∑
i=1

θi(t) =

N∑
i=1

θ̃i(t), t ≥ 0. (3.2)
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Then for any ε ∈ (0, 1
2m ), there exists a constant Λ = Λ(ε) > 0 dependent only on ε such

that

‖θ(t)− θ̃(t)‖�∞ ≤ C(θ0, θ̃0)e
−Λ(ε)t, t ≥ 0,

where C(θ0, θ̃0) is a positive constant depending only on θ0 and θ̃0.

Proof. Let θ and θ̄ be two solutions satisfying the a priori conditions (3.1) - (3.2), and

set

αi := θi − θ̃i, αM := max
1≤i≤N

αi, αm := min
1≤i≤N

αi, D(α) := αM − αm.

Then it follows from (3.1) and (3.2) that α = (α1, · · · , αN ) satisfies

N∑
i=1

αi(t) = 0, D(α(t)) < π, t ≥ 0. (3.3)

Since ‖α‖�∞ ≤ D(α), it suffice to show that D(α) decays exponentially fast to get the

desired estimate. Note that αi satisfies

mα̈i + α̇i =
2K

N

N∑
j=1

cos
(θj − θi

2
+

θ̃j − θ̃i
2

)
sin

(αj − αi

2

)
. (3.4)

• Step A (Derivation of Gronwall’s inequality for D(α)): It follows from (3.4) that

mα̈M + α̇M =
2K

N

N∑
j=1

cos
(θj − θi

2
+

θ̃j − θ̃i
2

)
sin

(αj − αM

2

)

≤
(K sin 2Dav

∞
Dav

∞N

) N∑
j=1

(αj − αM

2

)

= −K sin 2Dav
∞

2Dav
∞

αM ,

(3.5)

where we used the fact that −π < αj − αM ≤ 0 to find

N∑
i=1

αi = 0, sin
(αj − αM

2

)
≤

( sinDav
∞

Dav
∞

)(αj − αM

2

)
.

Similarly, we find

mα̈m + α̇m ≥ −K sin 2Dav
∞

2Dav
∞

αm. (3.6)

We combine the estimates (3.5) and (3.6) to find

mD̈(α) + Ḋ(α) + K̄D(α) ≤ 0, K̄ :=
K sin 2Dav

∞
2Dav

∞
. (3.7)

• Step B (Applying Lemma 2.3): We apply Lemma 2.3 for (3.7) to obtain

D(α(t)) ≤

⎧⎨
⎩

D(α0)e
−μ1t +m e−μ2t−e−μ1t√

1−4mK̄

(
Ḋ(α0) + μ1D(α0)

)
, 1− 4mK̄ > 0,

e−
t

2m

[
D(α0) +

(
1

2mD(α0) + Ḋ(α0)
)
t
]
, 1− 4mK̄ ≤ 0,

where

μ1 =
1 +

√
1− 4mK̄

2m
, μ2 =

1−
√
1− 4mK̄

2m
.
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This yields the desired result. �
Remark 3.2. 1) We briefly discuss the a priori conditions (3.1) - (3.2). In Frameworks

A and B, the phase-diameter of dynamical solutions is always less than π
2 . Thus, the

dynamical solutions in [4] satisfy (3.1). As long as

θc(0) = θ̃c(0), ωc(0) = ω̃c(0),

the condition (3.2) is satisfied.

2) For the Kuramoto model without inertia (m = 0), the nonlinear stability estimate

in the �1-norm has been established in [5], and it is also shown that the decay rate in the

large time regime is bounded not only above but also below.

3) As a direct application of Theorem 3.1, we will see that all phase-locked states

emerging from initial configurations in Frameworks A and B are unique up to phase-

shift.

Consider the collection P of all phase-locked states emerging from dynamical solutions

as an asymptotic limit, whose existence is guaranteed by Theorem 2.4. Of course, the

set P is the proper subset of all possible phase-locked states for the system (1.1) - (1.2),

and it follows that phase-locked states in P have a diameter strictly less than π
2 . As a

direct corollary of Theorem 3.1, we see that the phase-locked states θe ∈ P are orbitally

stable.

Corollary 1. Let θe and (θ0, ω0) be a phase-locked state in P and the perturbation

of (θe, 0) respectively in phase-frequency space RN × RN satisfying either Framework A

or Framework B. Then the dynamical solution θ = θ(t) asymptotically approaches the

phase-shift of θe; i.e., θe is orbital-stable:

lim
t→∞

‖θ(t)− (θe + γIN )‖�∞ = 0,

where the constant phase-shift γ is explicitly given by

γ := θc(0) +mωc(0)− θec.

Proof. We set

α(t) := θ(t)− θe.

Then its macro-variable αc(t) converges to the constant state:

lim
t→∞

αc(t) = θc(0) +mωc(0)− θec =: γ, (3.8)

and the diameter of α(t) shrinks exponentially fast as we saw in the proof of Theorem

3.1. We now combine these two facts through the triangle inequality to obtain

‖θ(t)− (θe + γIN )‖�∞ = ‖α(t)− γIN‖�∞
≤ ‖α(t)− αc(t)IN‖�∞ + ‖

(
αc(t)− γ)IN‖�∞

≤ 2D(α(t)) + ‖(αc(t)− γ)IN‖�∞ ,

where we used (3.8). This completes the proof. �
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Remark 3.3. Corollary 1 implies that a phase-locked state with the phase-diameter

D(θ) strictly less than π
2 is unique up to the phase-shift. Let θ∞ and θ̃∞ be the two

phase-locked states emerging from initial data (θ0, ω0) and (θ̃0, ω̃0) such that

D(θ∞), D(θ̃∞) <
π

2
.

Then, by the same argument as in Theorem 3.1, θ∞ and θ̃∞ are congruent in the sense

that

θ∞ − θ̃∞ =
(
θc(0)− θ̃c(0) +m(ωc(0)− ω̃c(0))

)
IN .

4. Conclusion. We presented a simple proof for the nonlinear stability of some class

of phase-locked states to the Kuramoto model with finite inertia in the �∞-norm. In

the earlier work [4], the existence of phase-locked states is established via the time-

asymptotic approach; i.e., instead of solving the above nonlinear system (1.1) directly,

the phase-locked states are obtained as an asymptotic limit of time-dependent solutions

to the system (1.1). This time-asymptotic approach can reveal the fine structure of the

phase-locked states (see [5] for the original Kuramoto model). In this paper, we have

adopted the same framework ideas employed in the aforementioned work, where the

existence of phase-locked states was only investigated, and we showed that the phase-

locked states whose existence is guaranteed by [4] are orbitally �∞-stable in the sense

that their small perturbations lead to the relative phase-shift from the original phase-

locked state. Based on this fact, we claim that the phase-locked state has in some sense a

robust structure. At present, we cannot provide a complete classification for the stability

of phase-locked states to the system (1.1), such as clear answers to the following questions:

For a given m,K and {Ωi}, how many phase-locked states exist up to phase-shift? Are

all phase-locked states orbitally stable? We leave these intriguing issues for future works

to investigate, as well as the nature of phase transitions in the Kuramoto oscillators with

finite inertia.
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