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Abstract. The goal of this article is to study the boundary layer for a flow in a channel
with permeable walls. Observing that the Prandtl equation can be solved almost exactly
in this case, we are able to derive rigorously a number of results concerning the boundary
layer and the convergence of the Navier-Stokes equations to the Euler equations. We
indicate also how to derive higher order terms in the inner and outer expansions with
respect to the kinematic viscosity ν.
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1. Introduction

The behavior of the solutions to the Navier-Stokes equations at vanishing viscosity (large

Reynolds numbers) is an outstanding open problem both in fluid mechanics and in math-

ematical analysis. In the physically realistic case of wall bounded flows, two phenomena

occur: on the one hand, inside the flow, the cascading of energy between large eddies and
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small eddies and its dissipation by viscosity; on the other hand, at the boundary and in

the boundary layer, which may be turbulent vortices are generated which drive the flow.

In this article, we are interested, in the incompressible case, in the question of how well

the Navier-Stokes equations are approximated by the corresponding Euler equations.

In mechanical engineering an abundant literature is devoted to the study of boundary

layers following the pioneering work of L. Prandtl (1905); see e.g. R. Balian and J. L. Peube

(1977), and other articles in this volume. On the mathematical side in the context of

modern functional analysis, and for incompressible fluids, there is a more limited literature.

O. Oleinik (1963) addresses the mathematical theory of the Prandtl equations themselves

(see also the more recent book O. Oleinik and V. N. Samokhin (1999)); M. I. Vishik and

L. A. Lyusternik (1957), J. L. Lions (1973) address many boundary layer issues in the

context of other areas of sciences and engineering. In his article J. L. Lions introduces the

concept of correctors, which we use; the point of view is then slightly different from the

traditional point of view in boundary layer theory.

In this article we want to report on a work in progress investigating a number of issues in

that direction (see R. Temam and X. Wang (2000), hereafter referred to as [TW] and other

articles in preparation). In [TW] we consider the case where the boundary is noncharac-

teristic; more precisely we consider the flow in a channel with permeable boundary. In this

case the Prandtl equation can be solved as we recall below, and we are able to establish

a number of convergence results of the viscous solutions to the inviscid ones. This is the

object of Section 2. In Section 3, continuing this line of thought, we study higher order

approximations, and speculate on the form of the higher order terms in an inner-outer

expansion with respect to the kinematic viscosity ν; the validity of such expansions will

be addressed elsewhere. Finally, in Section 4, we briefly discuss another important issue,

namely the stability of the boundary layer, a problem which corresponds to its actual oc-

currence in the physical reality. We emphasize the fact that with our presentation based

on the use of correctors, we do not need the technic of matched asymptotic expansions,

although we do use stretched coordinates in the boundary layer.
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2. The Prandtl type equations

We consider the Navier-Stokes equations for incompressible Newtonian fluids in a channel

with injection and suction:

∂uν

∂t
+ (uν∇)uν − ν∆uν +∇pν = f in Ω× (0, T ),

div uν = 0 in Ω× (0, T ),

uν = u0 at t = 0,

uν = vtop at z = 0,

uν = vbot at z = h.

Here Ω is the channel, Ω = (0, L1)× (0, L2)× (0, h), with periodicity assumed in x (period

L1) and y (period L2) for all involved functions.

We would assume a porous boundary, with injection at the top of the channel

vtop ·
⇀
n ≤ −β < 0 at z = h,

and suction at the bottom of the channel,

vbot ·
⇀
n ≥ β > 0 at z = 0,

where
⇀
n is the unit outward normal to ∂Ω. The usual compatibility condition∫

z=h

vtop ·
⇀
n +

∫
z=0

vbot ·
⇀
n = 0

will be understood.

These boundary conditions are sometimes referred to as non-characteristic boundary

conditions since the streamlines are transversal to the boundary.

The global existence of Leray-Hopf weak solution to the Navier-Stokes system is well-

known provided the boundary, initial and external forcing data are smooth enough. (The

existence of steady state solution is largely open though) In the two dimensional case (with

the dependence on y suppressed) the existence and uniqueness of smooth solution is easy

to derive by mimicking classical approaches, provided the data are smooth and certain

compatibility conditions are satisfied.

Our interest here is in the asymptotic behavior of the solutions of the Navier-Stokes

equations at small kinematic viscosity ν.
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A naive approach is to treat this as a regular perturbation problem and to seek for a

sequence of approximations of the form

uν ∼
∞∑

j=0

νjuj.

Inserting this into the Navier-Stokes equations, collecting terms of the same order in ν we

obtain,

∂u0

∂t
+ (u0 · ∇)u0 +∇p0 = f in Ω× (0, T ),

div u0 = 0 in Ω× (0, T ),

u0 = u0 at t = 0,

∂u1

∂t
+ (u0 · ∇)u1 + (u1 · ∇)u0 +∇p1 = ∆u0 in Ω× (0, T ),

div u1 = 0 in Ω× (0, T ),

u1 = 0 at t = 0,

∂uj

∂t
+ (u0 · ∇)uj + (uj · ∇)u0 +∇pj = ∆uj−1 −

j−1∑
l=1

(ul · ∇)uj−l in Ω× (0, T ),

div uj = 0 in Ω× (0, T ),

uj = 0 at t = 0.

In the case without physical boundary, i.e., Ω = Rn with decay at infinity or periodic

boundary condition in all directions, the validity of the asymptotic expansion can be easily

verified, at least for smooth data.

The zeroth order is exactly the Euler equations for incompressible inviscid fluids.

In the case of flow in a limited region we need to specify boundary conditions for the uj

at all orders.

If the boundary is impermeable, the boundary conditions for the uj’s are

uj · ⇀
n = 0 on ∂Ω.
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If the boundary is porous, we have to specify the whole velocity where the flow is entering

(z = h), and the normal velocity where the flow is going out (z = 0) :

u0 = v top at z = h,

u0 · ⇀
n = v bot ·

⇀
n at z = 0,

uj = 0 at z = h, j ≥ 1,

uj · ⇀
n = 0 at z = 0, j ≥ 1.

This expansion is sometimes referred to as the outer (outside of the boundary layer) ex-

pansion for uν .

Notice that, in general,
∑n

j=0 νjuj cannot match uν at the outlet boundary z = 0. Thus

such asymptotic expansions cannot be valid uniformly, in the whole domain (i.e. not up to

the boundary). Thus various boundary layer correction terms are needed (which we call

correctors) in order to obtain convergence up to the boundary. Hence we propose a new

sequence of approximations with correctors:

uν ∼
∞∑

j=0

νj(uj + θj).

Here we deviated from Prandtl’s classical approach or more generally from the matched

asymptotic approach where one does inner expansions (within the boundary layer) using

stretched coordinates on the viscous solution uν directly and do later the matching with the

outer solution. The alternative treatment we present here, the so-called corrector approach

(see Vishik and Lyusternik (1957), Lions (1973)), uses the stretched coordinate argument

later on, to compute or approximate the correctors θj.

Utilizing the stretched coordinate

Z =
z

ν
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and the ansatz of new sequence of approximation with corrector, we have formally

∞∑
j=0

νj ∂uj

∂t
+

∞∑
j=0

νj ∂θj

∂t
+

∞∑
j=0

νj

j∑
l=0

(
(u` · ∇)uj−` + (θ` · ∇)uj−`

)
+

∞∑
j=0

νj

j∑
`=0

(
(u`

τ + θ`
τ ) · ∇τ

)
θj−`

+
∞∑

j=−1

νj

j+1∑
`=0

u`
3

∂θj+1−`

∂Z
+

∞∑
j=0

νj−1

j∑
`=0

θ`
3

∂θj−`

∂Z

−
∞∑

j=1

νj∆uj−1 −
∞∑

j=1

νj∆τθ
j−1

−
∞∑

j=−1

νj ∂
2θj+1

∂Z2
+∇p = f,

div θj = 0,

where ∆τ ,∇τ , θτ , uτ represent the tangential Laplacian, tangential gradient, tangential

component(s) of θ and u respectively.

Utilizing the stretched coordinates, the incompressibility condition can be written as:

∂θj
1

∂x
+

∂θj
2

∂y
+

1

ν

∂θj
3

∂Z
= 0.

Hence 1
ν
θj
3 is expected to be bounded.

Thus, if we group terms with the same order we obtain:

At order -1:

−1

ν

(
∂2θ0

∂Z2
− u0

3

∂θ0

∂Z

)
+∇q0 = 0,

which can be further approximated by

−1

ν

(
∂2θ0

∂Z2
− u0

3|z=0
∂θ0

∂Z

)
+∇q0 = 0.

The boundary condition is given by

θ0 = 0 at z = h,

θ0
3 = 0 at z = 0,

θ0
k = −u0

k at z = 0, k = 1, 2.



REMARKS ON THE PRANDTL EQUATION FOR A PERMEABLE WALL 7

At order 0:

∂u0

∂t
+

∂θ0

∂t
+ (u0 · ∇)u0 + (θ0 · ∇)u0 + ((u0

τ + θ0
τ ) · ∇τ )θ

0

+
1

ν
θ0
3

∂θ0
3

∂Z
+ u0

3

∂θ1

∂Z
+ u1

3

∂θ0

∂Z
− ∂2θ1

∂Z2
+∇q1 = f.

Utilizing the equations for u0 we have (with the pressure term replaced by a new one if

necessary)

−∂2θ1

∂Z2
+ u0

3

∂θ1

∂Z
+∇q1 = −∂θ0

∂t
− (θ0 · ∇)u0 − ((u0

τ + θ0
τ ) · ∇τ )θ

0 − u1
3

∂θ0

∂Z
− 1

ν
θ0
3

∂θ0
3

∂Z
,

div θ1 = 0

θ1 = 0 at z = h, θ1
3 = 0 at z = 0, θ1

k = −u1
k at z = 0, k = 1, 2.

At order j (j ≥ 1):

∂uj

∂t
+

∂θj

∂t
+

j∑
`=0

(
(u` · ∇)uj−` + (θ` · ∇)uj−`

)
+

j∑
`=0

(
(u`

τ + θ`
τ ) · ∇τ

)
θj−`

+

j+1∑
`=0

u`
3

∂θj+1−`

∂Z
+

j∑
`=0

θ`
3

ν

∂θj−`

∂Z

−∆uj−1 −∆τθ
j−1 − ∂2θj+1

∂Z2
+∇qj+1 = 0.
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Utilizing the equation for uj we deduce

−∂2θj+1

∂Z2
+ u0

3

∂θj+1

∂Z
+∇qj+1 =− ∂θj

∂t
−

j∑
`=0

(θ` · ∇)uj−`

−
j∑

`=0

(
(u`

τ + θ`
τ ) · ∇τ

)
θj−` −

j+1∑
`=1

u`
3

∂θj+1−`

∂Z

−
j∑

`=0

θ`
3

ν

∂θj−`

∂Z
+ ∆τθ

j−1,

div θj+1 =0

θj+1 =0 at z = h

θj+1
3 =0 at z = 0

θj+1
k =− uj+1

k at z = 0, k = 1, 2.

These equations for correctors can be further approximated by

−∂2θj+1

∂Z2
+ u0

3|z=0
∂θj+1

∂Z
+∇qj+1 =

−∂θj

∂t
−

j∑
`=0

(θ` · ∇)uj−` −
j∑

`=0

((u`
τ + θ`

τ ) · ∇τ )θ
j−` −

j+1∑
`=1

u`
3

∂θj+1−`

∂Z

−
j∑

`=0

θ`
3

ν

∂θj−`

∂Z
+ ∆τθ

j−1 +
(u0

3|z=0 − u0
3)

ν

∂θj

∂Z
for j ≥ 1,

div θj+1 =0,

θj+1 =0 at z = h,

θj+1
3 =0 at z = 0,

θj+1
k =− uj+1

k at j = 0, k = 1, 2.

These equations for θj can be viewed as Prandtl’s type equations since they are derived

in exactly the same spirit as in Prandtl’s original work of 1905.

The well-posedness of these Prandtl type equations is straightforward. The asymptotic

behavior of θj is less obvious. We intend to prove elsewhere that, roughly speaking:

θj =

3j+1∑
k=1,l=0

Cjkl(t, x, y, z)(
z

ν
)lΦ(kz) + νCj(t, x, y, z).

Here

Φ(z) = Φ(t, x, y, z) = e−
1
ν
zu0

3|z=0 = e−
1
ν
zu0

3(t, x, y, 0),
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and the Cjkl and Cj are smooth and bounded (in various function spaces) independently

of ν provided that the data are smooth, that certain compatibility conditions are satisfied

and the inviscid problems produce unique smooth solution.

The boundary conditions for the inviscid equations (at the various orders of outer ex-

pansions) are somewhat non-conventional. The usual boundary condition associated with

inviscid flows is the so-called impermeable boundary condition uj · ⇀
n = 0 at the bound-

ary. However in our case of porous boundary, we need to specify the total velocity at the

upwind direction; otherwise the system will be under-determined. For the local in time

well-posedness of these problems one may consult, among others, the work of Antontsev,

Kazhikhov and Monakhov (1990).

3. Validity of the asymptotic expansion

In this section we give a sketch of the validity of the asymptotic expansion, or the Prandtl

type equations that we proposed in the previous section. We give the sketch for the first

term, namely θ0 only. For the 0 order case we follow in part R. Temam and X. Wang

(2000); for the 1− order case the details will be given elsewhere.

For the 0 order Prandtl type equation, we consider the adjusted difference

w0 = uν − u0 − θ0.

Notice that w0 satisfies the equation

∂w0

∂t
− ν∆w0 + (uν · ∇)w0 + (w0 · ∇)u0 + (w0 · ∇)θ0 +∇(pν − p0 − q0)

=
∂θ0

∂t
+ ν∆u0 + ν∆θ0 − (θ0 · ∇)θ0 − (θ0 · ∇)u0 − (u0 · ∇)θ0,

div w0 = 0,

w0 = 0 at z = 0, h.

Our goal is to prove that w0 is small in some sense. We employ the classical energy

method since no easy uniform estimates on the pressure (in terms of viscosity) can be

derived.
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We focus on the right-hand-side first. It can be rewritten as

∂θ0

∂t
+ ν∆u0 + ν∆θ0 − u0

3|z=0
∂θ0

∂z
− (u0

τ · ∇τ )θ
0

− (θ0 · ∇)θ0 − (θ0 · ∇)u0 − (u0
3 − u0

3|z=0)
∂θ0

∂z

=
∂θ0

∂t
+ ν∆u0ν∆τθ

0 − (u0
τ · ∇τ )θ

0 − (θ0 · ∇)θ0 − (θ0 · ∇)u0 −∇q0

− (u0
3 − u0

3|z=0)
∂θ0

∂z
.

According to the decomposition of θ0 into a boundary layer part and a regular part, we

have

θ0 = C010(t, x, y)Φ(z) + νC0(t, x, y, z)

Thus, it is easy to see that

∂θ0

∂t
− (u0

τ · ∇τ )θ
0 − (θ0

τ · ∇τ )θ
0 − (θ0 · ∇)u0 + ν∆τθ

0 + ν∆u0,

can be written in the same form, i.e., a boundary layer part of the form bounded function

times Φ and a regular part of the form ν times a bounded function.

Notice that u0
3 − u0

3|z=0 = 0 at z = 0; hence

(u0
3 − u0

3|z=0)
∂θ0

∂z
=

u0
3 − u0

3|z=0

z
z
∂θ0

∂z
could also be decomposed as a boundary layer part of the form bounded function times,

(z/ν)Φ and a regular part of the form ν times a bounded function.

For the term θ0
3

∂θ0

∂z
, notice that by the incompressibility the third component of the

boundary layer part of the 0 order corrector θ0 must be such that
C00

ν
is bounded. Thus

θ0
3

ν
is bounded. Thus θ0

3

∂θ0

∂z
could also be decomposed into a boundary layer part of the

form bounded function times Φ and a regular part of the form ν times a bounded function.

To summarize we write the right-hand-side (RHS) of the equation for the adjusted dif-

ference w0 in the form

RHS1 + RHS2,

where

RHS1 = g1(t, x, y, z)Φ(t, x, y, z),

with g1 a uniformly bounded function and

RHS2 = νg2(t, x, y, z),

with g2 a function bounded in L2 (and L∞).
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Hence the energy estimates yields, for the right-hand-side (RHS):

|
∫

Ω

RHS · w0| ≤ |
∫

Ω

g1Φw0|+ |
∫

Ω

νg2w
0|

≤ ν|g2|L2|w0|L2 + |g1|L∞ |zΦ|L2|w
0

z
|L2

≤ κν|w0|L2 + κν3/2|∂w0

∂z
|L2

(Thanks to Hardy’s inequality)

≤ ν

8
|∇w0|2L2 +

1

2
|w0|2L2 + κν2,

where κ is a generic constant depending on the data but independent of ν.

Now we go back to the left-hand-side. It is easy to see that∫
Ω

∂w0

∂t
w0 =

1

2

d

dt
|w0|2L2 ,

−ν

∫
Ω

∆w0 · w0 =ν|∇w0|2L2 ,∫
Ω

(uν · ∇)w0 · w0 =0,

|
∫

Ω

(w0 · ∇)u0 · w0| ≤|∇u0|L∞|w0|2L2 ≤ κ|w0|2L2 ,

|
∫

Ω

(w0 · ∇)θ0 · w0| =|
∫

Ω

(w0 · ∇)w0 · θ0|

≤|
∫

Ω

(w0 · ∇)w0C00Φ|+ |
∫

Ω

(w0 · ∇)w0 · νC̃0|

≤|w
0

z
|L2|∇w0|L2|C00zΦ|L|∞ + ν|w0|L2|∇w0|L2|C̃0|L∞

≤ν

8
|∇w0|2L2 + κ|w0|2L2 +

2ν

e
| C00

u0
3|z=0

|L∞ · |∇w0|2L2 .

Thus under the relative smallness of the tangential slip at the boundary with respect to

the suction i.e.

(∗) 2

e
| C00

u0
3|z=0

|L∞ ≤ 1

8
,

we have

1

2

d

dt
|w0|2L2 +

ν

2
|∇w0|2L2 ≤ κ|w0|2L2 + κν2,

w0 = uν − u0 − θ0 = 0 at t = 0,

since we do not assume boundary layer at time zero, (i.e. uν = u0 = u0 at t = 0).
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Hence under the assumption ∗ we deduce the following:

||w0||L∞(0,T ;L2(Ω)) = ||uν − u0 − θ0||L∞(0,T ;L2(Ω)) ≤ κν,

||w0||L2(0,T ;H1
0 (Ω)) = ||uν − u0 − θ0||L2(0,T ;H1

0 (Ω)) ≤ κν1/2.

This implies the validity of the Prandtl equation. For the physically more realistic uniform

in space and time estimates, we could employ an anisotropic Sobolev imbedding and utilize

a heuristic idea of better control on the tangential derivative of the velocity field than the

normal derivative of the velocity field. For more details, the reader is referred to Temam

and Wang (2000) for the two dimensional case. The three dimensional case is still unknown.

For the condition (∗), we notice that C010 is directly related to u0
τ (t, x, y, 0)− vbot,τ (t, x, y).

Also u0
τ (0, x, y, 0)− vbot,τ (0, x, y, ) = u0,τ (x, y, 0)− vbot,τ (0, x, y) = 0. Hence (∗) may be rewrit-

ten as

(∗∗) |u
0
τ |z=0 − vbot,τ

u0
3|z=0

|L∞ ≤ κ0,

and (∗∗) is true for t ≤ T∗ due to the well posedness of the inviscid problem and the fact

that u0
τ (0, x, y, 0)− vbot,τ (0, x, y) = 0. To summarize we have,

Theorem 3.1. There exists T∗ > 0 and κ > 0 depending on the data but independent of

the kinematic viscosity ν such that

||uν − u0 − θ0||L∞(0,T ;L2(Ω)) ≤ κν,

||uν − u0 − θ0||L2(0,T,H1
0 (Ω)) ≤ κν1/2,

||uν − u0 − θ0||L∞((0,T )×Ω) ≤ κν1/4.

Remark 3.1. The uniform in space and time estimate is not optimal. The optimal rate

should be ν which is clear from our formal asymptotic expansion.

4. Discussion on stability

In this section we consider the stability issue for the boundary layer. The stability issue

is intimately related to the question on whether the boundary layer derived in the previous

sections is physically relevant (i.e. if it can actually appear).

As a special example of the laminar boundary layer we notice that

v∞ =

(
U1

e−Uz/ν − e−Uh/ν

1− e−Uh/ν
, 0,−U

)
is an exact steady solution to the Navier-Stokes equation with

vtop = (0, 0,−U)
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and

vbot = (U1, 0,−U)

and

f ≡ 0,

where U1 and U(= −U3) are positive constants. The corresponding inviscid (steady)

solution is

(0, 0,−U).

Thus the relative smallness of horizontal shears with respect to the vertical suction can

be reformulated as
U1

U
≤ e

16
.

The stability of v∞ under the smallness assumption can be derived using the usual

energy method (see Ch. Doering, E. Spiegel, and R. Worthing (2000)). Indeed, let v be

the perturbation, v = u− v∞. Then v satisfies the equation

∂v

∂t
− ν∆v + (u · ∇)v + (v · ∇)v∞ +∇q = 0,

div v = 0,

v = 0 at z = 0 and h.

Multiplying the equation by v and integrating over the domain Ω, utilizing the skew

symmetry of the nonlinear term and the fact that

|
∫

Ω

(v · ∇)v∞ · v| = | −
∫

Ω

v3
U1Ue−Uz/ν

ν(1− e−Uh/ν)
· v1|

≤ |v1

z
|L2|v3

z
|L2

UU1

ν
|z2e−Uz/ν |L∞

≤ 2|∇v|2L2 ·
UU1

ν
· ν2

U2
4e−2

=
8U1

e2U
ν|∇v|2L2

≤ ν

4
|∇v|2L2 ,

provided the smallness condition holds, we have

d

dt
|v|2L2 + ν|∇v|2L2 ≤ 0,

which implies the asymptotic stability of the boundary layer.



14 R. TEMAM AND X. WANG

If the smallness condition is violated, in particular if the quantity
U1

U
is large, numerical

evidence indicates that the boundary layer is linearly unstable (see Ch. Doering, E. Spiegel,

and R. Worthing (2000)).

Another indicator of the stability of the boundary layer derived in the previous sec-

tions is the continuous dependence of the solutions on the initial data and external forcing

independent of the Reynolds number, under the smallness assumption (or short-time as-

sumption). This is not trivial even if we have the well-posedness of the Navier-Stokes

system. The usual well-posedness indicates that for each ε > 0, there exists δ > 0, such

that if the difference in initial data is less than δ, then the solutions will differ by no more

than ε within the time period [0, T ]. Usually δ depends on all data including the kinematic

viscosity and the solution that we chose. Here we show that δ can be chosen independent

of the kinematic viscosity ν provided that the time is small enough so that the relative

smallness of tangential shear with respect to the vertical suction holds.

More precisely we have, for uν , an exact solution satisfying the estimates in §3, i.e.

||uν − u0 − θ0||L∞(0,T ;L2) ≤ κν,

||uν − u0 − θ0||L2(0,T ;H1
0 ) ≤ κν1/2,

||zθ0||L∞ ≤ ν

8
,

and for any ε > 0, there exists δ > 0, independent of ν such that

||vν − uν ||L∞(0,T ;L2) ≤ ε,

provided

||v0 − u0||L2 ≤ δ,

where vν is the solution to the Navier-Stokes system with initial data v0.

We invoke energy method to prove this uniform continuous dependence result.

Let wν = vν − uν ; then we have

∂wν

∂t
− ν∆wν + (vν · ∇)wν + (wν · ∇)uν +∇q = 0,

div wν = 0,

wν = 0 at z = 0 and h.
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Multiplying the wν equation by wν , integrating over Ω and utilizing the skew symmetry

of the nonlinear term we find

1

2

d

dt
|wν |2L2 + ν|∇wν |2L2 ≤−

∫
Ω

(wν · ∇)uν · wν

=−
∫

Ω

(wν · ∇)u0 · wν

+

∫
Ω

(wν · ∇)wν · θ0

+

∫
Ω

(wν · ∇)(uν − u0 − θ0) · wν

≤|∇u0|L∞|wν |2L2

+ |w
ν

z
|L2|∇wν

L2|zθ0|L∞

+ |∇(uν − u0 − θ0)|L2|wν |2L4

≤κ|wν |2L2 +
ν

4
|∇wν |2L2 + κν1/2|wν |L2|∇wν |L2

≤κ|wν |2L2 +
ν

2
|∇wν |2L2 .

Hence we have

d

dt
|wν |2L2 + ν|∇wν |2L2 ≤ κ|w2|2L2 ,

||wν ||L∞(0,T ;L2(Ω)) ≤ e
1
2
κT ||w0||L2 ,

= e
1
2
κT ||u0 − v0||L2 .

The stability then holds by taking

δ = e−
1
2
κT ε.

Appendix

We consider solutions to the Prandtl type equation at order−1. For the sake of exposition

we consider the special case of a two dimensional flow (with y suppressed) with u0
3|z=0 = −U

(U > 0 a fixed constant). The Prandtl type equation at order −1 is

−ν
∂2θ0

∂z2
− U

∂θ0

∂z
+∇q0 = 0 in Ω

div θ0 = 0 in Ω

θ0 = 0 at z = h

θ = (−u0
1|z=0, 0) at z = 0.
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Suppose that −u0
1|z=0 has the following Fourier expansion

−u0
1|z=0 =

∑
k

bk(t)e
2kπi x/L1 .

We invoke the stream function formulation for the corrector θ0,

θ0 =
∑
k 6=0

curl (ϕk(t, z)e2kπix/L1)

+ b0(t)

(
e−Uz/ν − e−Uh/ν

1− e−Uh/ν
, 0

)

=
∑
k 6=0

(
∂ϕk

∂z
(t, z),−2πkiϕk(t, z)e2πkix/L1

)

+ b0(t)

(
e−Uz/ν − e−Uh/ν

1− e−Uh/ν
, 0

)
For k 6= 0, the ϕk’s satisfy the equations

−ν

(
∂4ϕk

∂z4
− 4π2k2

L2
1

∂2ϕk

∂z2

)
− U

(
∂3ϕk

∂z3
− 4π2k2

L2
1

∂ϕk

∂z

)
= 0,

ϕk(t, h) = ϕk(t, 0) = 0,

∂ϕk

∂z
(t, h) = 0,

∂ϕk

∂z
(t, 0) = bk(t).

The equation can be written as

∂ϕk

∂z

(
∂ϕk

∂z
+

U

ν

)(
∂ϕk

∂z
− 2πk

L1

)(
∂ϕk

∂z
+

2πk

L1

)
= 0.

In the case without resonance, i.e.
U

ν
6= ±2πk

L1

the solutions must take the form

ϕk(t, z) = bk(t)
(
Ck0 + Ck1e

2πkz/L1 + Ck2e
−2πkz/L1 + Ck3e

−Uz/ν
)

Notice that the coefficient Ck0, Ck1, Ck2, Ck3 are independent of bk(t). Assuming sufficient

regularity on u0 which translates into the smallness of bk(t) for large k and the exact formula

for the solution satisfying the boundary condition we see that∑
k 6=±

U

ν

L1

2π

curl
(
ϕk(t, z)e2πkix/L1

)
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takes the form

C0(t; x)e−U/ν z + νC̃0(t, x, z).

In the case of resonance, say U
ν

= 2πk
L1

the solution for the Fourier coefficients of the

stream function takes the form

ϕk(t, z) = bk(t)(Ck0 + Ck1e
2kπz/L1 + (Ck2 + Ck3z)e−2kπz/L1)

since k = U
ν
· L1

2π
, bk is extremely small. Thus curl (ϕk(t, z)e2πkx/L1) still satisfy the same

kind of estimates.
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