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Remarks on the quadratic orthogonal
bisectional curvature
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Abstract. We exhibit a curious link between the Quadratic Orthogo-
nal Bisectional Curvature, combinatorics, and distance geometry. The
Weitzenböck curvature operator, acting on real (1, 1)–forms, is realized
as the Dirichlet energy of a finite graph, weighted by a matrix of the cur-
vature. These results also illuminate the difference in the nature of the
Quadratic Orthogonal Bisectional Curvature and the Real Bisectional
Curvature.
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In [4,5], the author initiated a program to study the growing number of curva-
tures in complex geometry by viewing them as quadratic form-valued functions
on the unitary frame bundle. This has led to a number of developments, and
primary insight which furnished the progress on the Schwarz lemma in [4].
The purpose of the present note is to extend this program to the Quadratic
Orthogonal Bisectional Curvature (QOBC from here on):

QOBCω : FX × R
n → R, QOBCω(v) :=

1
|v|2

∑

α,γ

Rααγγ(vα − vγ)2.

We recall that the Mori [20], Siu–Yau [28] solution to the Frankel conjecture
informs us that a compact Kähler manifold with a Kähler metric ω of positive
bisectional curvature HBCω > 0 is biholomorphic to complex projective space
P

n. Mok [19] generalized this result to the case of non-negative bisectional
curvature, further indicating that a sign on the bisectional curvature is a very
restrictive assumption. A number of relaxations of the bisectional curvature
have been introduced.
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The restriction of the bisectional curvature to orthogonal pairs of tangent
vectors yields the orthogonal bisectional curvature HBC⊥

ω . The positivity of
HBC⊥

ω is certainly weaker, algebraically, than the positivity of the full bisec-
tional curvature HBCω. It was shown by Gu–Zhang [15], however, that the
Kähler–Ricci flow on a compact Kähler manifold with HBC⊥

ω ≥ 0 converges to
a Kähler metric with HBCω ≥ 0. The classification of compact Kähler mani-
folds with HBCω ≥ 0 given by Mok’s solution [19] of the generalized Frankel
conjecture applies, showing that the positivity of the orthogonal bisectional
curvature furnishes no new examples; they are all biholomorphic to a product
of projective spaces and Hermitian symmetric spaces of rank ≥ 2.

The QOBC was introduced by Wu–Yau–Zheng [30], where it was shown that
on a compact Kähler manifold supporting a Kähler metric with non-negative
QOBC, every nef class is semi-positive (c.f., [14]). Historically, however, it first
appears implicitly in the paper of Bishop–Goldberg [1] as the Weitzenböck
curvature operator (c.f., [10,11,23–26]) acting on (1, 1)–forms. In contrast with
the orthogonal bisectional curvature, the QOBC is strictly weaker than the
bisectional curvature, with an explicit example constructed in [18]. The QOBC
has been the subject of large interest in recent years (see, e.g., [6–11,17,18,21,
22,29]).

The purpose of the present short note is to describe the link between com-
binatorics, distance geometry, and the QOBC. These results are dispersed
throughout the papers [6,7,9], since the considerations here led to solutions
of problems in the fields of combinatorics and distance geometry. The papers
[6,7,9] are intended for those communities, however, and not differential ge-
ometers. The present paper is intended for this original audience.

Let us first give a formal definition of the QOBC:

Definition 1. Let (X,ω) be a compact Kähler manifold. The QOBC is the
function

QOBCω : FX × R
n → R, QOBCω(v) :=

1
|v|2

∑

α,γ

Rααγγ(vα − vγ)2,

where FX denotes the unitary frame bundle, v = (v1, ..., vn) ∈ R
n is a vector,

and QOBCω(0):=0.

To state the first theorem, let us introduce some terminology. A symmetric
matrix A ∈ R

n×n is declared to be a Euclidean distance matrix (EDM) (of
embedding dimension 1) if there is a vector v = (v1, ..., vn) ∈ R

n such that
Aαγ = (vα −vγ)2. The well-known Schoenberg criterion [27] asserts that a real
symmetric matrix with no non-zero diagonal entries (i.e., a hollow matrix) is
an EDM if and only if it is negative semi-definite on the hyperplane H =
{x ∈ R

n : xte = 0}, where e = (1, ..., 1)t. Let us remark that there are
remnants of the Schoenberg criterion in [10, Lemma 2.6], where the Kähler
form ω appears to play the role of the vector e. An EDM is, by definition,
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a non-negative matrix in the sense that each entry of the matrix is a non-
negative real number. In particular, the Perron–Frobenius theorem informs us
that the largest eigenvalue of A is non-negative and occurs with eigenvector
in the non-negative orthant. This eigenalue is often referred to as the Perron
root of A. Let δ1 ≥ δ2 ≥ · · · ≥ δn denote the eigenvalues of the EDM A. We
will assume that δ1 �= 0. From the above discussion, we know that δ1 > 0 and
δk ≤ 0 for all k ≥ 2. Define, therefore, for 2 ≤ k ≤ n, the kth Perron weight
to be the ratio rk := −δk/δ1, which is a real number lying in the interval
rk ∈ [0, 1].

Theorem 1. Let (Xn, ω) be a compact Kähler manifold with R the matrix with
entries Rαγ = Rααγγ . Let λ1 ≥ λ2 ≥ · · · ≥ λn denote the eigenvalues of R
with respect to the frame which minimizes the QOBC. Then QOBCω ≥ 0 if
and only if

λ1 ≥ r2λ2 + · · · + rnλn

holds for all Perron weights 0 ≤ rk ≤ 1.

Proof. Fix a frame which minimizes the quadratic orthogonal bisectional cur-
vature of ω. Let λ1 ≥ λ2 ≥ · · · ≥ λn denote the eigenvalues of R ∈ R

n×n

and denote by δ1 ≥ δ2 ≥ · · · ≥ δn the eigenvalues of an EDM Δ. Write
R = U tdiag(λ)U and Δ = V tdiag(δ)V for the eigenvalue decompositions of R
and Δ. Then

tr(RΔ) = tr(U tdiag(λ)UV tdiag(δ)V ) = tr(V U tdiag(λ)UV tdiag(δ))
= tr(Qtdiag(λ)Qdiag(δ))

=
∑

i,j

λiδjQ
2
ij ,

where Q = UV t is orthogonal. The Hadamard square (by which, we mean the
matrix Q ◦ Q with entries Q2

ij) of an orthogonal matrix is doubly stochastic
(see, e.g., [16]). The class of n × n doubly stochastic matrices forms a convex
polytope – the Birkhoff polytope Bn. The minimum of tr(RΔ) is given by

min
S∈Bn

n∑

i,j=1

λiδjSij .

This function is linear in S, achieving its minimum on the boundary of Bn.
The well-known Birkhoff–von Neumann theorem tells us that Bn is the convex
hull of the set of permutation matrices, and moreover, the vertices of Bn are
precisely the permutation matrices. Hence,

min
S∈Bn

n∑

i,j=1

λiδjSij = min
σ∈Sn

n∑

i=1

λiδσ(i),
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where Sn denotes the symmetric group on n letters. An elementary argument
(by induction, for instance) shows that

min
σ∈Sn

n∑

i=1

λiδσ(i) =
n∑

i=1

λiδi.

From the discussion after Definition 1, this completes the proof. �

Remark 1. The main theorem is interesting for a number of reasons. The first
is that there is an eigenvalue characterization in terms of the matrix R. Of
course, this matrix requires a frame to be fixed, but given that there are a
number of frame-dependent curvatures in complex geometry that have ap-
peared in recent years (most notably, the real bisectional curvature [31], and
the Schwarz bisectional curvatures [4,5]), this offers some insight into the re-
lationship between these curvatures. Further detail in this direction will be
discussed shortly.

The existence of an eigenvalue characterization is surprising in itself [7] since
Euclidean distance matrices are defined in a frame-dependent manner; the
class of positive matrices (i.e., matrices with positive entries) are certainly
not invariant under a change of basis. We suspect that this result (motivated
entirely by complex-geometric considerations) will have further generalizations
and applications to combinatorics and distance geometry.

The class of matrices A satisfying
∑n

α,γ=1 Aαγ(vα−vγ)2 ≥ 0 form the so-called
dual EDM cone. This is a completely elementary observation: An EDM (of em-
bedding dimension 1) is a matrix of the form Bαγ := (vα −vγ)2. Hence, we can
write

∑n
α,γ=1 Aαγ(vα − vγ)2 ≥ 0 as tr(AB) ≥ 0, from which we immediately

see the following:

Proposition 1. Let (X,ω) be a compact Kähler manifold. Then QOBCω ≥ 0 if
and only if, with respect to the frame which minimizes the QOBC, the matrix
R lies in the dual EDM cone.

The above result, albeit elementary, is important, in that it gives us the ap-
propriate language to speak when considering the QOBC. It also allows us to
exploit the results of distance geometry and combinatorics to say something
about the QOBC. For instance, using Dattorro’s dual EDM cone criterion
[12,13], we have:

Theorem 2. Let δ : Rn → Sn
diag be the operator mapping a vector v ∈ R

n to
the diagonal matrix diag(v). Then a real symmetric matrix A lies in the dual
EDM cone if and only if δ(Ae) − A is positive-semi-definite. In particular,

QOBCω ≥ 0 ⇐⇒ δ(Re) − R ∈ PSD.
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Remark 2. Recall that the real bisectional curvature RBCω of a Hermitian
metric ω was introduced by Yang–Zheng [31] as follows:

RBCω : FX × R
n → R, RBCω(v) :=

n∑

α,γ=1

Rααγγvαvγ .

The real bisectional curvature is clearly similar in appearance to the QOBC.
The above theorem, however, indicates that they are in fact opposite in the
following sense: The condition that RBCω > 0 translates to the matrix R

being positive-definite. Let PD denote the cone of positive-definite matrices,
and let EDM denote the cone of Euclidean distance matrices. The PD cone is
self-dual, while the EDM cone is not self-dual, and moreover, from Theorem 2,
the intersection of these cones is trivial:

PD ∩ EDM = {0}.

Hence, the real bisectional curvature (corresponding to R ∈ PD) is opposite
to the QOBC (corresponding to R ∈ EDM∗) in the sense that the dual cones
intersect trivially.

Combinatorics and distance geometry

Let us conclude by describing the curious link with combinatorics and distance
geometry. Indeed, let G be a finite weighted graph (with possibly negative
weights) with vertex set V (G) = {v1, ..., vn}. Let A ∈ R

n×n be the adjacency
matrix specifying the weighting. The Dirichlet energy for a weighted graph
(G,A) is defined by

E(f) :=
n∑

α,γ=1

Aαγ(f(vα) − f(vγ))2,

where f : V (G) → R is a function defined on the vertices of G.

Theorem 3. Let (X,ω) be a compact Kähler manifold. Then QOBCω ≥ 0 is
equivalent to the non-negativity of the Dirichlet energy of every weighted graph
(G,A) with G a finite graph with n vertices and A given by the matrix R =
(Rαγ).

Remark 3. Recall that the QOBC first appears in the paper of Bishop–Goldberg
[1] as the Weitzenböck curvature operator (c.f., [23–26]) acting on real (1, 1)–
forms. In other words, if Δg denotes the Bochner Laplace operator, and Δd

denote the Laplace–Beltrami operator, acting on real (1, 1)–forms, their differ-
ence realizes the QOBC. What is curious, is that the above theorem indicates
that the difference of these Laplace operators is the (discrete analog of the)
Dirichlet energy associated with the curvature. We hope that those more ex-
perienced in the discrete theory can give further insight in this direction.
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