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KOICHI IWATA AND HIROSHI MIYAZAKI

1. A. H. Copeland [2]" investigated the problem of finding an H-structure
of a CW-complex with two non-trivial homotopy groups. In the course of
his study, an interesting result is obtained which combine the Eilenberg-
MacLane invariant and the Whitehead product of a CW-complex whose non-
trivial homotopy groups are of dimensions z and 27 — 1 (n > 1)(cf. Proposi-
tion 7 of [2]).

The arguments through his paper are true for a connected CW-complex
Y with the following properties :

1) the product Y X Y is a C W-complex whose cells are of the form E” X E*
for p-cell E* and g-cell E* of Y,

2) for any integer m there exists a CW-complex X D Y such that X
satisfies the property 1) and the inclusion map induces isomorphisms 7;(X)
~a(Y) for 1 <i<m and n(X) =0 for i = m.

In his papar, it is assumed that Y is a connected locally finite CW-
complex. But this may be replaced by a weaker assumption that Y is a
connected countable CW-complex®. For, if Y is a connected countable CW-
complex, then, by Theorem (1.9) of [5], Y has the property 1). On the other
hand, by Theorem 13 in §9 of [7], Y is of the same homotopy type as a
locally finite simplex Y . Hence Y’ is connected and so countable®. Therefore,
using the simplicial approximation theorem we may easily prove that the
elements of 7(Y)=m,(Y") for each ¢ are countable. Thus we can construct
a countable CW-complex X DY such that #(X)=~=y(Y) 1 =<i<m) and
7(X) =0 ( = m). Since X is countable, its has the property 1). Thus pro-
perties 1) and 2) are satisfied for any connected countable CW-complex.

In § 2 we shall prove that Proposition 7 of [2] is also true for any CW-
complex and so for any space whose first two non-trivial homotopy groups
are of dimensions z and 272 — 1(n > 1).

In § 3, combining this proposition with results on H(II, n) due to Eilen-
berg-MacLane [3], we shall give results on the realizability of a given homo-

1) Numbers in brackets refer to the references at the end of the paper.
2) The fact that a connected locally finite CW-complex is countable is noticed in p. 223 of [7].
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morphism 7": IIQ II — G as the Whitehead products in spaces of types K(II,
n; G,2n—1) with n =2, 3, 4, 5.

2. Let Y be an arcwise connected space which has the first two non-
trivial homotopy groups II and G in dimensions n and m with 1 <z < m.
Such a space is said to be of the type K(II, n; G,m ;...... )or KII,n; G,
m; k... ), where k € H"*(I, n ; G) is the Eilenberg-MacLane invariant
of Y. As usual, by a space of the type K(II, n) we shall mean a space X
such that 7,(X)=1II, »y(X)=0 for ¢==#, and it will be denoted by K(II, n).

Let IT and G be abelian groups. Let ¥*, pf, p¥: H”(II, n; G) > H™
(IT + II, n; G) be the homomorphisms induced by the maps V¥, p., p,: II
+ IT — II defined by

Y(a, b)=a+0b,  pla, b)=a, pla, b)=0

for a, b € 1I.

Let ®: H™(II + 1I, n ; G)—> Hom(II & II, G) be the homomorphism
determined by the Kiinneth formula.

We shall refer Proposition 7 of [2], i. e.,

PROPOSITION 1. Let Y be a countable CW-complex of the type K(I,
n; G, 2n—1; k;...... ). Then the Whitehead product W: IIQI — G in
Y is given by
W = @*(¥y* — pf — pk.
We shall prove the following

PROPOSITION 2. Let Y be any space of the type K(II, n; G, 2n — 1,
k;...... ). Then the Whitehead product W: I1 QII - G in Y is given by

W =0 (v* — pf — pHk.

Since W, @°%, ¥* p¥, py are natural, Proposition 2 may be easily proved
by Proposition 1 and the following lemmas.

LEMMA 1. Let Y and Y, be spaces of the types K1, n; G, m; K;...... )
and K(II,, n; Gy, m; Kyj;...... ) respectively. For a map h: Y,—>Y we
have relation

k= g%k,
where f: I, = Il and g: Gy, — G are homomorphism induced by h, and
f*:H™{, n; G)—> H"'{, n; G),
g¥: H"'(,, n; Gy,)— H"'(Iy, n; G)

are homomorphisms induced by f and g, respectively.
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PROOF. Let X be a space obtained from Y by attaching i-cells (i =m
+ 1) such that m(X)=~=y(Y), 1<i<m and m(X) =0, i=m. Let k' €
H™YX, Y; G) be the first obstruction to retracting X onto Y. Then k =
7*k’, where j*: H"(X,Y ; G)—> H™'(X ; G) is the homomorphism induced
by the inclusion map, and H™'(X; G) is identified with H™"{I, n; G)
under the natural isomorphism. Let X,, ky and ji be similar to X, k" and j .

The map h: Y,— Y has an extension h: X, — X, and we have Ak’
= g¥k;, where

RY: H™Y(X,Y ; G)—> H"' (X, Yy; G),
?ﬁl H™(X,, Y, ; Gy) > H"'(X,, Yo ; G)

are homomorphisms induced by % and g.
In the following diagram, commutativities hold :

h¥ g*
H™Y(X,Y; G) —H"(X,, Yy; G)« H™"(X,, Yy; G)
7 gt s
1 R* g% |
H"(X; G)—— H"'(X,; G)e———H"'(X,; G).

Therefore, since h* = f*, g% = g* we have
¥k = WK = Rk =jtgtk = g¥itks = 9%k,
i e., 'k = ¢¥k,. q. e. d.

LEMMA 2. Let Y be a CW-complex of the type K1, n; G, m, k;...... )
and abelian groups 1l,, G, and homomorphisms f: y,—1I, g: G,— G be
given. Let a cocycle ky € Z"'(M,, n; G,), such that f*k = g%k, for some
cocycle k belonging to K, be given, where f*: Z"V (I, n; G) —> Z™' (M, n; G),
9% : Z" My, n ; Go) — Z™ Iy, n ; G) be homomorphisms induced by f and
9. Then there exist a CW-complex Y, of the type KIly,n; Go,m ; Ky ;...... )
and a map h: Y,— Y which induces f and g, where K, is the cohomology
class of k.. Moreover, if I1,, G, are countable groups, then Y, may be chosen
to be a countable CW-complezx.

PROOF. We shall consider a CW-complex |K(G, m + 1)| which is the
geometric realization of the Eilenberg-MacLane complex K(G, m + 1). Let E
be the space of paths in |K(G, m + 1)| terminating in the unique O-cell
of |K(G, m + 1)| with the fibre map p: E— |K(G, m + 1)| and the fibre
K(G, m). Let b € Z"'(G, m + 1; G) be the basic cocycle and b € H™*'
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(G, m + 1; G) be its cohomology class. By Theorem 5.1 of [4], there exists
a c.s.s. map A: KT, n) = K(G, m + 1) such that A*(6) = k, where A* de-
notes the cochain map induced by N. Then M\ defines a map |A|: |KII, »)|
— |K(G,m + 1)| and |A| induces a space Y and maps ¢, F such that the
diagram

F
Y —E

q ?

Al

{ 3
| K(II, n)| — | K(G, m + 1)]

is commutative and Y’ is a fibre space over |K(II, n)|. Since |K(II, n)| is a
space of the type K(II, n) and |A|*(b) =k, Y is a space of the type K(II,
n; Gom; k... ). (cf. Proof of Proposition 9 of [2]). Therefore the geometric
realization |S(Y")| of the singular complex of Y  is also a space of the type
K, n; G,m; k... ). Hence |S(Y')| and Y are of the same homotopy
type and so there exists a map

hi: |S(Y)| =Y

which induces the identities on homotopy groups.
Similarly we shall consider the diagram

F,
Yy —E,

do Do

4 )
| K(IT,, n)] —|K(G,, m + 1)]
where p: K(II,, n) - K(Gy, m + 1) is a c.s.s. map such that u*(b,) = &, for
the basic cocycle b, € Z"*(Gyp, m + 1 ; G,). The space Y, is also of the type
K1, n; Gy, m; Kkoj...... ).

The homomorphisms f and ¢ induce c.s.s. maps K(II, n)— K(II, n)
and K(Gy, m + 1) = K(G, m + 1), and these maps are denoted again by f
and ¢ respectively. Then |¢|: |K(G,. m + 1)| —» |K(G, m + 1)| induces a
map ¢: E,— E such that pog = |g]|op,.

Since ¢*b = g¥b,, by f*k = g¥ky,, we have
AWFY*b = (f*N)b = f*k = g*hko
= g*u*(bo) = w*g¥b = w*g*b = (gu)*b,
i e, )b = (gm)*b.
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Therefore, by Theorem 5.1 of [4], we know that Nf = gu, hence |A|c]|f]|
= |g|o|m|. Therefore we can define a map

ho: Yo— Y
by h(r, 5) = (| F1(), [9](s)) for r € |K(IL, n)|, s € E, (pfs) = |u|()).

Then we have a commutative diagram :

g9
| F, hy F !
E,« Y, Y’ —E
Dy 9 q ‘ p
! m ! |f] ! A }
K(G,, nlz + I)+—K({I,, n) —K({1, n) —>K(G,Tm + 1.
lg]

Therefore it is easily seen that hy induces the homomorphisms f and ¢ on
homotopy groups. Thus if we put Y, =|S(Yy)| and h = h,o|h,|, then Y, and
h have the required properties, where ho: S(Y;)— S(Y') is the c.s.s. map
induced by 4.

If I, and G, are countable groups, then by Theorem (5.1) of [1], we
know that the minimal subcomplex M of S(Y;) is countable. Therefore |M|
and h||M| have the required properties. q. e. d.

LEMMA 3. Let II, G be abelian groups and we assume thar Il is coun-
table. For any element kK € H™"'(Il, n ; G) there exist a countable subgroup
G, C G and an element ko € H™' (Il n; Gy) such that k = g%k, where
g%: H™"'(II, n; Go) = H"(I, n; G) is the homomorphism induced by the
inclusion map G, C G.

PROOF. By the universal coefficient theorem H™''(II, » ; G) = Hom
(Hn (11, n), G) + Ext (H,(II, n) G), hence we have k = k; + Kk, for some
k, € Hom (H,.,(II, n), G) and k, € Ext (H,(II, n), G). Since II is countable,
the complex K(II, n) is countable, hence H,(II, »n) for each 7 is a countable
group. Hence G, = k,(H,,.,(TI, n)) is countable.

Next, we shall consider an exact sequence

0—> RS> F HI, n)— 0,

where F' is a free group. Since H,(II, n) is countable, we may assume that
F and also R are countable. By the definition of Ext,

Ext (Hx(II, n), G) = Hom (R, G)/i*Hom (F, G),
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hence we can choose an element @ € Hom (R, G) which represents k,. Then
a(R) = G, is countable. Hence Gy, = G, U G, is countable and it is obvious
that there exists an element k, € H""'(Il, n ; G,) such that k = ¢*k,.

q. e d.

3. Let II, G be abelian groups. Then for integers n, m with 1<n<m
and for each element k € H™* (II, n; G) there exists a space of the type
KI, n; G, m; k;...... ). Therefore, by Proposition 2, in order that a given
homomorphism W: II @ II — G is realizable as the Whitehead product in a
space of the type KII, n; G, 2n—1;...... ) it is necessary and sufficient
that W e @*(Y* — pf — pH)H"(I,n; G). For n = 2,3,4,5, ®@*(Y* — pt —pl)
H*(II, n; G) are computable and we have the following

THEOREM 1. In order that a given homomorphism W: I QI —G is
realizable as the Whitehead product in a space of the type K1, n; G, 2n
—1;..... ) for n =2 or 4, it is necessary and sufficient that there exists a
map n: II - G such that n(zx) = n(— z), and Wiz Qy) = n(z + y) — n(x)
— 5(y) for any z, y € 1L

THEOREM 2.2 In order that a given homomorphism W: I QI — G
is realizable as the Whitehead product in a space of the type KII, n; G,
2n—1;...... ) for n =3 or 5, it is necessary and sufficient that W(x & x)
=0 for any x € 1L

PROOF OF THEOREM 1. We shall consider the following commutative
diagram which is seen in the proof of Theorem 21.1 of [3]:

61, v 03¢ &1
I(II,) & TYIL,) —H(I,, n) & H(l,, n)
g Ty (n: even)
! 2 L
P(Hl + Hg) b—————'—')-H(Hl + Hg, 7’1).

If we restrict to the subgroups of degree 4 and if we put n = 2, this
diagram gives the following commutative diagram :

v
F4(H1) + P4(Hz) + II, ® Hz—_*Ha(Hn 2) + H4(Hz, 2) + 11, ® II,
g o
4 6y 4
F4(H1 + HZ) _%HA(HI + Hi!’ 2):

3) Theorem 2 for n=3 covers Theorem 8 of [6].
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where T',(IT,) ® 1, H(I1,, 2) & Hy(II,, 2) and T'\(II,) etc. are naturally identi-
fied with T',(II,), H,(II,, 2) and II, etc. respectively. And under these identi-
fications, ¢ and ¥ are defined by

9v(x)) = vz, 0),
1 9(74(.)’)) = 7,0, ¥), (z € II,, y € II,)
9z & y) = vz, y) — vz, 0) — 7,0, ),
61, v on I'(11)),
V=16, on I',(II,),
identity on II, & II,.

By Theorem 18.4 and Theorem 21.1 of [3], ¢ and ¥ are onto isomorphisms.
Let :: I, II, > H(II,,2) + H(1,,2) + II, ® I, and 7: II, & II,-»T',II,)
+ I'(IT,) + I, @ II, be the inclusion maps. Then the composition homomor-
phism zosry induces the homomorphism

Hom (fomry): Hom (H,(II, + II,, 2), G) » Hom (II, ® II,, G).
Since H(II, 2) = 0, by the universal coefficient theorem we have
H4(H1 + II,, 2; G)= Hom (HA(HI + II,, 2), G),

and if we put II = II, = II,, then Hom (¢o7,) is ®* in Proposition 2.
Thus, from the above diagram and the naturality of 6, we have the following
commutative diagram :

Hom (4,)
H\II, 2; G) *Hom (T'(II), G)

Y — pt — pF ¥v* —pt—pr

Hom (6,)
H"(H—i—H 2; G)=Hom(H,(II +11,2), G)—-—>H0m T,adI + 1I), G)

Hom () Hom (¢)

Hom (W) |
Hom (H4(H 2) + H(II, 2) + T®II, G)——Hom (T(II) + T(IT) + TR, G)

Hom (z) \ / Hom ()

\Hom (TIQ1I, G)/

where ¥, p,: T'(IT + II) - T',(IT) are homomorphisms induced by V¥, p;, and
Y* = Hom (¥), pf = Hom (%,).
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Therefore we have
(" — pf — p1)
= Hom (go7)o(¥* — p* — p*)oHom (6,).
Since 6, is an onto isomorphism, we can identify HII, 2; G) with Hom
(I'(II), G) under the isomorphism Hom (4,). Then we have
O*(¥* — pt — pt) = Hom (goi)o(P* — pF — pY).
Thus, for £ € Hom (T',(IT), G) and z, y € II we have
[@*(Y* — pf — pDk](x Ky)
= [Hom (goi)o(¥* — pf — pHkz ® »)
= kyz + ) — kyix) — ky(y).
Therefore, if we put 7(x) = ky,(x), then we have
[O*(¥* — o7 — pDEkIx R y) = n(x + y) — n(x) — n(y),
and since y(z) = v(— x). 7{x) satisfies the condition 5(z) = 7(— z).
Conversely, let 7: II @ II—- G be a given homomorphism and if T(xz&y)
= n(x + y) — n{x) — n{y) for some map n: II - G such that n(z) = 9(— z),
then T(x @ (y + 2)) = T(x ®y) + T(x ® =) implies the relation
e +y+2)— 9y +2) = 9z + z) — 9oz + y)
+ n(z) + 7(y) + n(z) = 0.
Therefore, there exists a homomorphism k: T',(II)—~ G such that &y,(x) = n(z).
Hence ®*(¥* — pf — p)k = T. Thus the proof for n = 2 is complete.
By Theorems 24.1, 24.2 and 27.3 of [3]

6;: I ~ H,(II, 4),
6s: T(IT) + TI/31I =~ H(II, 4),
¢°: HII, 4; G)=~Hom (,II, G/2G)
+Hom (I'(TI), G) + Hom (I1/3I1, G).
But it is easily seen that @*(Yr* — pf — p¥) is trivial on the first and third
summands of H¥II, 4; G). Therefore the proof for » = 4 is reduced to the
above proof for n = 2. Thus the proof of Theorem 1 is complete.

PROOF OF THEOREM 2. The proof is similar to that of Theorem 1, and
so we shall sketch the proof. We shall consider an isomorphism

g: AIT) + A(IT,) + IT, ®H2 — A(IT, + I1,) I =1, = I1,)
defined by
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gz A z) = (z, 0) A\ (£, 0),
9y Ny) =00, ) A, y),
Iz ®y)=(x, )N, y)

for z, ' € I, y, y’ € II,.
This isomorphism is the restriction of ¢ on the subgroup of degree 4 which
is defined in Theorem 19. 2 of [3].

Let 7: II, I, > A,(II,) + A,(II,) + II, @ II, be the inclusion map.

Then, by the similar argument with that in the proof of Theorem 1 we know
that

O*(Y* — pf — pHHY(L, n; G)
= Hom (gei)o(Y* — pf — p)oHom (A(TI), G)

for n =3 or 5.
Since A (II) is II & IT modulo the diagonal, this proves Theorem 2.
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