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REMARKS ON THE ROOT-CLUSTERING OF A POLYNOMIAL
IN A CERTAIN REGION IN THE COMPLEX PLANE*

By E. I. JURY and S. M. AHN (University of California, Berkeley)

Abstract. A general formulation for the root clustering of a polynomial is given.
An attempt has been made to answer an open question raised by Kalman.

Introduction. Since 1852, when Hermite first established the connection between
the number of the roots of a polynomial in an arbitrary half-plane and the signature
of a certain quadratic form, the root-clustering problem has been investigated by many
mathematicians, physicists and engineers. Recently Kalman [1] showed a general
formulation which includes all the previously known results as particular cases. His
formulation applies to the region r in the complex plane given by

T = {2 G C | \y(z)\2 - |5(2)|2 > 0}

where y(z) and o(z) are two arbitrary polynomials with complex coefficients and deg y +
deg 5 > 0.

He showed that the criteria can be expressed by rational functions of the coefficients
of the given polynomial and their complex conjugates by purely algebraic way. An
entirely different approach was employed for the same region r by Jury and Ahn [2],
where the form of positive definite matrix was shown explicitly. Furthermore, they
generalized the Lyapunov equation, showing that the positive definite matrix satisfies
a certain matrix equation and that the elements of this matrix are rational functions
of the coefficients of the given polynomial and their complex conjugates.

Kalman [1] raised an open question as to whether r is the largest class of the region
in the complex plane for which the criteria can be described by only rational functions
of the coefficients of the polynomial. It must be noted that T includes half planes,
circles, and hyperbolas but not ellipses and parabolas. In [3], Howland obtained the
matrix equation for a more generalized region than F. However, he showed only that
for a particular positive definite hermitian Q, there exists a positive definite hermitian
H (see Eq. (2)). In other words, the uniqueness of II for any given Q has not been shown
for the region he chose, thus leaving the same question on the rationality left open.

Here we show that the criteria for the ellipses and parabolas can also be described
by rational functions of the coefficients and their complex conjugates. The region
described here does not encompass T in [2],

Let
4>(a, /3) = C00 + C0i|6 + Co2/32 + C10a + Cna/3 + Cwa

where Cn + (7n < 0, G = {2 £ C | Re <t>(z, z) > 0}, A £ C"Xn, , i — 1, 2, • • • , n,
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are the eigenvalues of A, and 0 includes half-plane, circles, hyperbolas, ellipses, and
parabolas.

Theorem. Let

<p(Xi , X,) + $(X,- , X.) 5^ 0, V X, , X,- £ i, j = 1, 2, • • • , n. (1)

Under this condition, X, £0,i = 1,2, n, if and only if for all positive definite her-
mitian Q £ CnX", there exists a unique positive definite hermitian II £ C"x" such that

(Coo + Cm)H + (C„, + Cia)A*H + (C02 + C20)(A*)2H + (C10 + C01)HA

+ (C„ + Cn)A*HA + (C20 + C02)/M2 = Q, (2)

where * denotes the complex conjugate transpose. Furthermore, the elements of H
are rational functions of the elements of A and A*.

Proof. "Only if": let xK £ C" be the eigenvector corresponding to the eigenvalue
Xt ; then

(<£(Xjc, \r) -f- <?(X«-, Xk))xk*Hxk = xk*QxK ■

"If": Eq. (2) is equivalent to n linear equations, whose n2 X n" coefficient matrix
has

</>(Xi , X,) "I- ̂ (X,- , X^), ij j 1, 2, • ,ti

as its eigenvalues [4], By hypothesis, Eq. (2) has a unique solution H whose elements
are rational functions of the elements of A and A*. We first prove that there exists a
positive definite H0 £ C"Xn and a positive definite Q„ £ CnX" which satisfy Eq. (2).

Let J be the Jordan form of A; then there exists a nonsingular P £ C"x" such that

PAP'1 = A + U

where A is diagonal and all the elements of U are either 0 or 1 with all non-zero elements
located on the diagonal above the main diagonal. For some small 5 > 0, define the
nonsingular matrix D by

D = diag (1, 8"1, 5"2, • • • , S"'-1').

Then

DPAP-'D = A + 8U.

Now define H0 = diag (Re <t>(\i, X,), Re </>(X2, X2) • ■ • , Re </>(Xn, X„)). Then Q0 defined
by Eq. (2) is positive definite by Gershgorin's theorem [4], For arbitrary positive de-
finite Q £ CnXn let Qt = IQ + (1 — t)Q0, where 0 < t < 1. Clearly Q, is positive definite.
Eq. (2) has a unique solution H, £ C"Xn for Q = Q, . The eigenvalues of II, are real
and vary continuously with t. Hence if we prove that II, never becomes singular, we
are done. Let

H, = Ht
0

0

0
we substitute H = H, in Eq. (2) and arrive at a contradiction to the fact that Q is
positive definite using the hypothesis Cn + Cn < 0. Q.E.D.

Exam-pie 1 (Ellipse). Let fi) = -2a/3 — a + 1. A £ CnX" has all its eigen-
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values inside the ellipse 3x2 + y2 — 1 < 0 if and only if for all positive definite hermitian
Q £ CnX" there exists a unique positive definite hermitian H £ C"x" such that

2H - (A*)2H - 4A*ffA - HA2 = Q

and the elements of# are rational functions of the elements of A and A*.
Proof. We have only to show that (1) holds, that is, all Xi = Xi + iyx and X2 =

x2 + iy-i belonging to the ellipse satisfy

-4X^2 - Xi2 - X22 + 2 ^ 0.

Suppose the equality holds; then Xi(2y2 — yi) = x2{2yx — y2) and

4x^2 + tyiy2 + — Vi + x2 - y2 - 2 = 0. (3)

Let
xx/x2 = (2yi - y2)/(-yi + 2y2) = k (4)

Simple calculation shows k is well defined. Substituting (4) into (3), we obtain

-5k2 + 4& + 1 2 , 57c2 - 4fc - 1
(2 + fc)2 2/2 + Ifc5 + 4fc + 1 < ° (5)

and
k2 + 4fc — 5 2 i — k2 — 4fc + 5 „ n

(2 + fe)2 2/2 + ~k2 + 4fc + 1 < °" (6)

In the region fc < — 5 and A; > —0.5, (5) and (6) contradict to each other. In the region
— 5 < k < —0.5, y2 > 1, which is also a contradiction.

Example 2 (Parabola). Let <£(a, fi) — a2 + 2a — a/3; then the parabolic region is
given by y2 < z and the matrix equation is

HA2 - 2A*HA + (A*fH + 2HA + 2{A*)2H = Q.
A proof similar to that given to Example 1 follows.

Conclusion. Needless to say, root-clustering problems are amongst the oldest ones in
mathematics and still are extensively investigated. We have answered the open question
raised by Kalman in a negative way. Hence the question still remains open "What is
the largest class of regions in the complex plane where the criteria can be expressed by
the rational functions of only the coefficients and their complex conjugates of the given
polynomial?" We believe that additional constraints are needed for enlarging the regions
in this paper or in the previous papers [1, 2],
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