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’1

Let A -t i + V (x) be a Schrodinger operator on an (arbitrary) open set

(2 C R
m

, where V e L
~~~

((2 ) is a complex valued function. We consider the

“maxim al ” realization of A in under Dirichiet boundary condition,

that is

D(A) {u e H
~
((2); Vu e r4 U2) and -t~u + Vu E L

2 (fl) } .

When (2 = we also consider the operator rj 

~ 
[ -

with domain

D(A
1
) (u e L

2
((2); Vu E L

~~~
a2) and -t~u + Vu e L

2
(c2)) .

A special case of our main results is:

Theorem: Let m > 3; assume that the function max{-Re V,0) belongs to

L
”(12) + L

m/’2
((2) and also to L~

m
~
#2)4

~~((2) for same c > 0. Then A (reap. A
1
)

is closable and i + X (reap. + X ) is m-accre tive for some real constant X .

APIS ($05) Subject Classifications: 35Jl0, 47B44

Key Words Schrodinger operator , Complex potentials , m-accreti ve operator
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SIGNIFICANCE AND EXPLANATION

• _ _

Schr~~ inger operators of the fotm A — —
~~~ 
+ V (x) , where 

~~ 
is the

Lap lacian and V is a scalar potential , arise in quantt~ mechanics and other

areas . Delicate questions concern ing what dcmtain should be assigned to A

zmist be settled in orde r to have a good theory . These question s are answered

here for a very general class of potentials V which may even have cc~~p1ex

values .
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R~~ARXS ON THE SCHR8DINGER OPERATOR WITH SINGULAR COMPLEX POTENTIALS

Maim Brezis
1
’
3 

and Tosio Kato2’4

1. Introduction

Let A - —
~~ + V(x) be a Schr~dinger operator on an (arbitrary) open set C) C

— 
where V C L~~~

(C)) is a complex valued function. We consider the “max imal” realization

of A in L2 (C)) under Dirichlet boundary condition, that is

D(A) — {u e 
~~

(Q) ; Vu l  L~~~~
(Q) and —Au + Vu C L

2
(fl) }

When C) a we also consider the operator

A
1

— -8 + V

with domain

D(A
1

) — fu I L
2

(f l) ;  Vu I L
~~~~~(Q) and —Au + Vu I L

2
(fl)}

We state now cor main results (see Theorems 3.1 and 3.2) in a special case.

Theorem: Let a > 3; assume that the function max ( -Re V .0) belongs to L” ( C)) +

and also to L
/ 2 )4 E

(C)) for some £ > 0. Then A Creep. A
1

) is closable and A + A

(resp. + A) is a—accretive for some real constant A.

We emphasize the fact that maxiRe v .0) and lay could be arbitrary functions

in L
1 

(C)).
b c

Our methods rely on some measure theoretic arguments and standard techniques of

DsGiorgi-Moser-St~~~acchj a type , related to the weak fo rm of the maximum principle .

Th. distributional inequality

• A lul > Re (Au sign 1

proved in (31 plays a crucial role. We also use a result from Cl) concerning a property

of Sobolev spaces.

In order to describe our method in a simple case we begin in section 2 with real

valued potentials. The main results in Section 2 are essentially known (see (3 1 . (41 . (81 ) -

except perhaps for Theorem 2 • 2 when a ‘ 4.

1
Dept. de Math~~aeiqu.s, Universit~ Paris VI, 4 p1. Jussieu , 75230 Paris 05. Prance.

of Mathematics, University of California, Berkeley, CA 94720.
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In Section 3 we turn to the case of complex potentials. Scbrodinger operator s with

complex potentials have been studied by NelsOn (61 . His results were extended in (51 .

Here we allow more qeneral singularities.

We thank Professors R. Jensen and B. simon for useful suggestions and discussion s

(with the first author) .
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2. Real valued potentia ls

Let C) be an (arbitrary) open subset of and let H — — L
2 ( CJ,~~) .  Let 

:•

q I L~~~(C)) be a real valued function. Set

— aax(q,O) , q~ — max (-q,O)

Assume

(1) q I L (0) +

with

a
when m > 3

p > l  when m — 2

p l  when a — i .

Consider the operator A defined in H by

A — —A + q(x)

with

0(A) — (u I H~~( Q) ,  qu I L~ ,0
(C)) and -Au + qu I L

2
(C)))

• The main results are the following:

• Theorem 2.1. A is self-adjoint and A + A
1 

is a—accretive for some real constant A
1
.

Furthermore u,v I D(A) imply q~u~
2 
I L

1(C)), qIvl
2 
e L

1
(C)) and

(2) (M.v) — f gradu grad + J qu;
When C) - we also consider th. operator A

1 
defined in H by

with

D(k
1
) — (u • L

2 (D) ; qu I L
~00

U)) and -Au + qu I L
2 U)) )

Only when a — 3 or a — 4 we will make the additional assumption:

(3) q I  Lr rn ) with p — ~j  when a — 3  and p — 2  when m — 4 , foz .c~~

arbitrarily small £ > 0

Nor, precisely we assume that for each x
0 
• ,

m ther. exists a neighborhood U of 11
0

and some £ > 0 (depending on z
o

) such that q I ~~~~ (U).

Theorem 2.2: Under the asm~~~tions (1) and (3), A
1 

— A.

• —3—
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Our first lesma is well known :

L e a  2.1: Assume (1). Then for every £ > 0, there exists a constant ~ such tha t

I q 1u 1
2 

c lI gradull
2

2 
+ A

~
llu 11

2
2 

Vu I H~~~
))

In particular

f q~~u l
2 

~. 
llgradu Il

2
2 

+ A
111uH

2

2 
Vu e

Proof : Write q — q
1 

+ q
2 

with q
1 
• L”(C)) and q2 I L~ 

(C)) . Then for each k > 0

we have

I ~ luI~ 
~~~~~~~~~~~ + f (q

2
j~ u~

2 
+ k f l u l

2

L L (~ q
2~ >k 1 (~ q

2~ <k 1

< (ll~ ll. + k)11u11
2
2 ~

1
~2

h1 lIu l I
2
t

with 

L L TYtI
~
q
2~
>k]) L

p t

* * 1 1
In case m > 3 we find t — 2 where 2 is the Sobolev exponent, that is —

~ 
— - —

2
By the Sobole , imbedding theorem we have

c c)~gradu H~~ 
Vu I H~~(C))

When m — 2 we find 2 < t < • and it is known that

j ~ 

< C (
~~gradu fl 2 

+ h u h 2) Vu I H~
(C) )

When a — 1 we find t — and it is known that

lull . 2 
+ Hull 2) Vu I

We reach the conclusion of Lasma 2.1 in all the cases by choosing k large enough so that

2i i II
C iiq 2 i~ ‘ C .

I. ( q
2~>k3)

Bumark 2.l~ As.u~~ t1on (1) is used in all the results of this paper only through

L a  2.1 aM it may in f act be weakened to a “locally uniform IF-condition” :

(1’) hI~~hI • 0 as r . 0 uniformly in y I C)

IF(fl flB~(y) )

.4..
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where

— {x I pm ; 
~ 

— 

~
l ~ 

r)

Indeed let p ~ !) (P
a
) with supp ~ C 5r~

0
~ 

and 
~~~ 2 

1. Then. writing

~y
(X) — P (x - 

~
i) .

—- 

j  q~~~~
2 

— j  dy J qiu~ 1
2 

~~. 
I 11q 11 

~ 
Ih up 11

2
8

L ( B (Y) ) ~ I

Here flq
~~J ~ 6 for any small 5 by (1’) if r is chosen small. So

ZY(B~ (y ) )

I q 1u1 2 
~ 

6 f lk1P
~

hl
2
tdY < C6 f lI~ rad (u

~~ 11
2

2dY

< 2C6 f ( Ih.~~9radu lI
2

2 
+ flu gradp~~~

2
2

)dy

— 2C6 (
~~gradu~~

2

2 
+ C

~
fl u f l

2

2
)

Choosing 6 so that 2C6 — £ .  one gets the conclusion of Lesma 2.1. Such a locally

uniform IF—condition was used by Simader (7) .

We recall a result of [11 which will be used in the proof of Theorem

Leema 2.2: Let T I R
1
W ) (~ L~~~(R ) and let u I H

~
(C)) be such that a.e. on C)

ReT • u > f

for some real Valued function f I L
1 ((H . Then Re T U I I

1 
(C)) and

Re (T ,u) — f ReT . U

where (T ,u) denote. the Heraitian scalar product in the duality between H
1

(fl) and

The proof of Theorem 2.1 is divided into 4 steps.

8te~ j :  A + A is onto for A A
l
. Set q~ 

— min(q ’,n) : by a Theorem of Lax-l4ilgraa

there exists a uni que function u
5 
I H~ (Q) which satisfie s

(4) —Au + (q - q )u
5 

+ Au — f

(l)~~~ us of this sort of lemea in this contex t was suggested by 14. Crandall.

—5—
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(Note that by Le ma 2.1 the sesquilinear form I g u  is continuous on H~ ( f l ) ) .

Multiplying (4 ) by u we f ind  a constant C independent of n such that

(5) 11u 11 1
< c ,

, +  2
(6) j % I U I  < C .

Choose a subsequence denoted again by U such that U . U weakly in H~ (C)) and

u • u a.e. on C) . It follows from Faton ’s Lesma and (6) that q’ I u I
2

I L
1

UH .  We

deduce that qu I L~ ~~ indeed

q~~u~ < 4q~clul
2 

+ 3.) I L
1OC

IC))

q l u ~ ~.4q (Iul
2 
+ 1) I I4~~~

li))

We pass now to the limit in (4) and prove that -Au + qu + Au • f in D’ (C)) . It suffices

to show that

(q - q)u~ qu in L
~~~

(fl) .

For this purpose we adapt a device due to W. Strauss (93 and extensively used in the

study of strongly nonlinear equatio ns . In view of Vita li’s convergence theorem, it

suffices to verify that given w ~~ C) , then YE > 0, 36 > 0 such that E C w and

I si  < 6 imply 
/ 

q
~ 

- q h I u ~ I < £ for all n. But for every R ~ 0 we have

+ 1 +  1 2

%lu~l <~~~ %(R + ~ ( U (

and thus, by (6).

!qlu ~l < 4 r c f q
I
+~~~c

We fix R large enough so that I and then 6 > 0 so small that 
~ 

f q
~ 

C C. We

11

proceed similar ly with q I u ,j .

Step 2: A + A  is accretive. Let U I D ( A ) and set T .qu .  Since

T I  H
1

U�) A 14 (Q) and

R. Tm — q~u~
2 

> -q huh
2 

I L
1(C))

it follows from L a  2 .2 tha t q I u I
2 

I L1 and

, 2
Re(T u) — j qIul

4

- 
—

~~
- - —

— 
- — -~~~~~—----- --—-————- -- --—-———----———--—-—-- - -~- --------—
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But qu - Au + Au and so

Re (Au ,u >  — f Igradu i
2 

— I qIu I
2

Since Au I I
2 

((2 ) we have in fact

R.(Au ,u) — f gradu~
2 

+ f q~u~
2 

—A
1 J u i

2

by Lesma 2.1.

Step 3: u I 0(A) implies qlu I
2 
I L

1
(Q) and (2) holds. We have just seen in Step 2

• that u 1 0(A) implies q~u~
2 
I 1

1
(C)). Now let u.v I D(A) and set T — qu. We h*ve

T I H (C )) A 1
1 ((2) and
b c

Re T 1. — Re qu; > - 
~ I q I  h u h

2 
- ~ I q J i v I

2 
11( C))

and therefore

Re (Tv ) — f Re quv

Thus

• Re(Au ,v) - Re f gradu grady — Re f qu;

Changing u into in we find

(Au ,v) - I gradu grad; + J guy

• Step 4: A is self—adj oint. Indeed A + A
1 

is a—accretive and sy~~etric. Therefore

A + A
1 

is self—adj oint and so is A.

Proof of Theor~~ 2.2: Clearly A C A
1

. Let u I D(A
1

) and set f — A
1
u + Au with some

A A
1
. Let u I D(A) be the unique soluti:n of

Au + Au - f

Vs have

* 1 a 

A1
(u — u ) +  A (u — ~~~~~ 0

Since (u - u ) I L
1

(P ) and A (u — u ) I L
100

(P ) we may apply L~~~a A in (3] to

conclude that

* * — _* a
L f u - u h > R e (A (u—u) sign ( u-u ) ]  in D’ (1t),

and thos in D ’(P
m) we find

• * — *A lu — u I > Re((q + A) lu — u I) > (—q + A )Iu — u
Using the next l~~~a we conclude that u — U (and hence D (A

1
) - D (A)).

—7—
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Lesma 2.3: Assume (1) and (3). Let V I L2 (P
m

> be a real valued function with

q v  I L~~~(R
m
) satisfying

- q v  + Ày < 0 in D ’ (s
m )

with some A > A
1
. Then v ‘ 0 a.e. ~~

The proof of Lesma 2.3 relies on the following crucial result. Since we shall

need it in Section 3 for a general domain ( 2 C  P”~ 
we work now again in (2.

Theorem 2.3: Assume (1). Let g I L
2

U2) ‘ L°’U)) and let 4 , 1  H~~(C)) be the unique

solution of

(7) - A 4 , — q 4 , + A 4 , — g  in C) ( A > X
1
)

Then

a) g > 0 a.e. on C) implies 4, > 0 a.e. on 17;

b) ( i l  f l  1P (fl)

• Proof of Theorem 2.3: a) Multiplying (7) by -* we find

I grad *
_ 1 2 

— I q t * 1
2 

+ A J I .
_

1
2 

<

and thus 4’ — 0.

b) We have to consider only the case m > 3 (when m < 2, 4, I H~ (C)) implies

$1 fl 1
P

(Q) )

2~p<

We can always assume that g > 0 a... on C) so that 4, > 0 a.e. on C). We truncate

q by — min(q ,k) and define •k 
to be the unique solution of

I H~ (5))

- 

~~~~~~~~~~~~~~~~~~~~~~ in (7.

It is clear that •k ~+ $ weakly in R~ (Q) as k -
~ 

— . We shall prove that f or every

p 1  (2, —), 
k
1 IF(Q) -

~~~

(8) 1 k 11
1
p 

C C
~(hi9ih 2 + u g h .)

where C is independ ent of k , but it dep nds on q through the use of Lesma 2.1.

For simplicity we drop now the subscript k on •k 
and write

(9) - A $ - q * + A ~~ .g .

V 

—B—

__________________________________ 
•- -  — -_______________________________________

— - _~~~~~~~~~~~~~~~~
• - 

_
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Set 4, — m i n ( 4 , ,n) and let 2 < p 
~ 

; since (~, ) P~~ I H~~(r? ) we can mu l t i p ly  (9)

by ( 4 , )
P 1  

and we get

(p — 1) ~ (4, )P~
2
~grad ~ I 2 

< f g ( 4 , ) P l  
+ f q~ (4 ,)P + f kn~~~~P

[~P~nJ

that is

4 (P ; 1) f Igrad 4,
p/2

1
2 

~ I~ II p hl~~hI ; + f q ( 4 , ) P 
+ kn

l ) l

~~. hl
~

lI II4 ,,II 
p— i 

+ dIgrad4,
~

’2 IJ
2

2 
+ A 1~* 

11P + k f ( P
• L~ L~ I L~ [(,>n ]

by Lesmia 2.1 (here f 4,
~ 

is possibly in f i n i t e ) .  Choosing ~ > 0 small enough (for
[4,>nI

2(p — 1)
example £ 

2 
) we see that

p

J Igrad 4,
p/2

1
2 

< c  ~~~~~~ + + k f (~l
~ L~ IF (4 ’>n)

where C is independent of k and n. Using Sobolev ’s inequality we find

(10) 
11* 

iP2 ”~ 
~ cp{IIglI p + hi. lI

~ 
+ k .

Assuming now that 4, I 1
P (17) and passing to the limit in (10) as n -

~ 
we obtain

that 4, e 1
p2 /2 (17) and

+ 114 ,11 1

Iterating this process from p — 2 we obtain finally for every p 1 (2, )

~
4dl 

~ ~
C
~

(ll9li 
2 
+ hi

~
11 ,i

I I I

More precisely we have proved (8) . The conclusion of Theorem 2 .3  follows since (1
k ~ *

weakly in H~~
((2 ) as k - — .

Proof of L a  2.3: By assumption q v  1 140
(~~m ) and

J v(-&p - q p  + Ap) < 0 Y~ I D~ (R m)

An easy density argu ment (smoothing by convolution) shows that

(11) J v(-hp - + Ap ) ‘ 0 Vp I fl
2 (~~m) A 1

.
(~~m
) supp p compact, p > 0 a.e.

-9-
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Fix g I D~ (P m) and let 
~k 

I R
l
(~~

m
) be the unique solution of

(12) 
~~~ 

— 
‘
~k~ k 

+ A(,
k 

— g in

We know by Theorem 2.3 that ‘1
~k 

> 0 a.e.

~k 
I f l  1P(~~

m
) with IkIk il ~ 

C
2<p

~~ IF ~

and also Igrad 
~~~ 2 

< C. In addition we derive from (12) that
I 

~k 
~ H

2
(B
m
) A

Fix C l  D~
(
~~~

) satisfying C C X )  — 1 for l x i  < 1 and set C~
(x) — C (~~

) .  In (11)

we choose ~ — 4,
kCn 

Note that by ( 12)

—tIP - q~
p + A

~ 
— Cn9 - 

~~~~~~ 
- 2gradC grad*

k — — ~~

and therefore

f v~~g < -
~~~ 

+ + f V~~ 1~~(q - q;)

First we fix n and let k -
~ 

— . We distinguish two cases :

a) m > 5 ,

b) m < 5.

a) When m > 5 we have q - — 0 in 1
rn/l2 (~~m

)~ Let p e (2 , —) be such that

— + — + — 1; we have
2 m p 

I f  vC~ *~~(~ - 

~~
) I ~ lIvil 2 li*~iI

1~
iiC

fl

(
~ 

- 

~~ “1
m/2 

+ 0

Consequently

C C
j vC g < —

~~ 
+ —

n

b) When at < 5 we use the assumption (3) (or (1)): q I 1atl’2+t (~~at ) with some e > 0.

It follows from (12) that 4,
k 

remains bounded in W~~,~~(R
at

) for saute q > (when

a ‘ 2) as k -
~~~~~~

. We conclude that * remains hounded in L (p
at

) as k -e —
— k b c

(in case at — 1, is bounded in I
”(P) since it is bounded in 0

7
(P’)). Therefore

I v~~ 4,~~(q - 

~~ 
-. 0 as k -+ —

since II C v(q — q
~

) fl -, 0 by the dominated convergence theorem (recall that
n

—10—
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1wm
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q v  I 1~~~
0

(p
at

) ) •  In both cases we f ind

f v ~~g 5 . .
~~~+ C

~ Y n .

As n we see that

fv ~~~o V g I

and therefore v < 0 a.e.  on

Remark 2.2: The conclusion of Lesma 2.3 fails in p 3 and in p
4 

if we do not assu

(3). Ancona (personal cosmunication) has constructec in P
3 

and in P
4 

fu nctions

q I 1
mI’2

(~~
m
) and u I 1

m/m_2
(~~
.
) A 12(P

m
) such that

- A u — q u + u — 0  in D

with ii~~ ii m/2 as small as we please and u * 0.
I
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3. ~omp1ex 
potentials

Let (2 be an (arbitrary ) open subset of Pa’. Assume q(x)  and q’ (xl are real

valued functions such that q.q’ I 
‘4oc

~~ 
and set

V(x)  — q(x) + iq’( x ) .

We assume

(13) either q ’ e L
~~~

(17) or q I 1
(rn /2 )+ c

U)) when m > 2 ,

for some arbitrarily small e > 0. Define

A — b + V ( x )

with

0(A) — {u I R~ (fl) ; Vu I 
oc~~~ 

and -Au + Vu £ 12 (17) 1

The main results are the following

Theorem 3.1: Assume (1) and (13). Then A is closable in L
2

U2) and A + A
1 

is

m—accretive. In addition u I D(A) implies that u I ft~ U 2 ) ,  q I u I
2 
I 11 ( 17) and

(14) Re(Au,u) — f lgradu i
2 

+ I q i u I
2

Remark 3.1: In case we assume

(15) Iq (x) I < Mq~(x) + h (x)  for a.e. x I (2

with )t I 1
’(m+2) 

(17) and m > 3 then A is closed in L
2 (C) ) . (Note that (15) corresponds

essentially with the assumption made in (51). Indeed let u~ e 0(A) be such that

u u  in L 2 (C)) and Au~ -, f in L
2

(S7) . It follows from Lemma 2.1 and (14) that

u -, u in N~~(Q) and lQu~ ‘ ?
~~u in L

2
U)). From (15) we deduce easily that

Vu I L~~~
(fl) and that -Au + Vu — f in D ’ ( C ) ) . Therefore u I D(A) and Au - f .

When ~ — we consider also the operator A
1 

defined in t
2 (ta) by

A
1

— - A + V ( x )

with

0(A
1

) — (u I L2 (P B) ;  Vu I 1 4 (~
m ) and —Au + Vu I L

2 (P
at ))

Theorem 3 . 2 :  Assume (1) , (3) and (13) . Then A
1 

is closable and — 
~~~
.

In the proof of Theorem 3 • 1 we shall use the following
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_____Lemma 3.1: Let v I H
~~

( 17) be a real valued function. Assume (1) and

- q v  + Ày 0 in D’ (17)

with A > A
1
. “~‘en v < 0 a.e. on (2 .

Proof of Lemma 3.1: We have, for every *D I D (17)

f grady grad~ - f qvv + 7 f vsc < 0 .

Now we use the fact (pointed out by G. Stampacchia) that D ( 1 7 )  is dense in

{u E H
~ U2); u ~ 0 a.e. on 17) for the H

1 
norm~~~ to derive that

+ 

f grady grad~ - f q v ~ + A I w < 0 W I H
~ (17). ~ > 0

Chøos].ng P = v we obtain

~~~~
, + , 2  t + 2  , + 2

J~~ gradv ) — j q ~~v + A j i v  < 0

and therefore =

The proof of Theorem 3.1 is divided into five steps .

Step 1: R (A + A ) D 1
2

(17) A 1 ((2 ) for A > A
1
.

Indeed let f I L
2
(17) A 1 (17) and let u I H~ (17) be the unique solution of

(16) —Au + V U + Au — f
n

where V = - q + 1q and

n if q > n

q
, — q’ if Iq ’l < n

-n if q ’ < - n .

The existence of u
n 

follows from a theorem of L.ax—Milgr asi . Multiplying (16) by u

we find

( 17) - h u l l  1 
< C

H

(18) f q~ I u i
2 

< C

W lndeed let u I H1(fl ) with u > 0 a.e . on C) : let u I D ( C) )  be such that u -, U

in H
1( C ) ) .  We claim that Iu~ l 

, lu l  — u in H
1

( 17) because i l l u  
~ 1 

— iiu , h1 1 
and

• hun t ‘ h u h  weakly in H
1 (C) ) . On the other hand Iu~ I can be smoothed by convolution and for

fixed n , P c*IU n h -e h u h  in H
1

( C)) as £ -e 0.

-

~~~~~ 
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On the other hand we have

A I U I > Re [Au sign 
~~1 in D ’( ( 7 )

which leads to

—A lu l — q i u
~l + A l u l < jfj in D ’ U) )

Let * 
1 U~ ((2) be the solution of

(19) —Aip — q
~~

, + A~j, — i f ?

It follows from Lemma 3.1 that

(20) l u l  < (, a .e. on 17

By Theorem 2.3 we know that * I L~~(17) for every p e  (2 , — ) .  We extract a subsequence,

denoted again by U such that u -e u weakly in H~~U2) , u -’u a.e. on (2. We see as in

the proof of Theorem 2.1 (Step 1) that (q
~ 

— q ) u  -e qu in L~~~~
((2) . Therefore we have

only to verify tha t q u -e q ’u in L~~~~(17) . We distinguish two cases :

a) q ’ I LrE U2)

- (m/2)+c
b) q I L

i

Case a) From (20) we deduce that u ~~ u in every IF space . 2 < p < and so

q,,u -e q ’u in L
~o

((2 ) •  

m —
Case b) Since q * I t~,,~ ((2 ) for some q > 

~~~~, 
it follows from (19) that * I L1

((2).

We deduce from the dominated convergence theorem that q u  -
~ 

q ’u in L~~~~
((2 ) .

Step 2: A + A
1 

is accretive. Let U I D( A ) and set T = Vu. We have

T I H
1

(fl ) A t
1 

(C)) and
b e

Re T . u — qiui
2 

~~. 
-q 1u i 2 I

It follows from Lemma 2.2 that q i u l
2 
I 1

1
(C)) and

I qh u h
2 

— Re (T ,u )  — Re (Au + Au,u>

Therefore

(21) Re (Au ,u) — f Igredu)2 + 5 g i u) 2 
> —A 1 5 lu )

2 
-

Step 3: D(A) is dense in 12
(Q) . Given f I L2(fl) A L”(fl) we solve for large n

the equation

(22) u + ~~~ Au f .

-14-
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We shall prove that U — f in 12 (17) as n -, “— and as a consequence D( A) is dense

in 1
2

U2) BY (21 ) we have

f iu
~I

2 
+ 
~ 

f gradu~~
2 

+ I f qiu~I
2 

— R e (f , u ) -

In particular we deduce that

(23) lint sup flu 
~ 2 ~ - 

h f Ii 2
I I

(24 ) 1 j  q’ju 2 
< c

(25) 1. f gradu l
2 

< C -

Next we hav e (as in the proof of Step 1)

- 1 M u ?  - ~ ~~lu,~i I I~ ! in D ’( 1 7 )

On the other hand let 
* 

e H~~
((2 ) be the solution of

- q (  + 7* = if I

U

for some fixed A > A . Since lu I > A a for n > A , we deduce from Lemma 3.1 that1 n —  n —

(1 a.e. Choose a subsequence , denoted again by u such that U — u weakly in

I -
~ 0 s.c. (this is possible since I U + 0 in 1

2
(17)). For every

~ I D ( C) )  we have

(26) f u ~~~ - 1 f u A ~~ + 1 f v u~~~ = f f ~

We claim that 
~ 5 Vu~~ -, 0 as n -

~ ~~~
. Indeed by (24) and (25) we have

~~

- if  q
~u~~~ < and 

~~

- if  q u ~~~ ~

Thus we have only to verify that I f q ’u~~ — 0. We distinguish two cases:

a) if q I I4~~
2)4

~~(17), we have * 
I L

~~~~
(17) and we deduce from the dominated convergence

theorem that I f q u ~~ -* o~

b) if q ’ I Lr1(C)) we use the fact that < 4, I LP (Q) for every 2 < p ~ —

to deduce that -
~~~ 

-. 0 in 1P (Q) and so I f q u  -e 
~~
.

— 15—
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In all the cases , we derive from (26) that

f u ~~~= f f ~ W e D

and consequently u = f. We conclude using (23) that u — f in 1
2

( 17) .

Step 4: A is closable and A + A
1 

is m—accretive. This is a Standard fact ,  see e.g.

Theorem 3.4 in 12 ) .

Step 5: U I  0(A) implies that UI  H~
( 17) , q iu i

2
€ L

1
(Q) and (14) .

We al ready know (Step 2) that V I D (A)  implies q i y l
2 

1 1
1

( 17) and

(27) Re (Av ,v) f Igradv i
2 

+ I q I v ~
2

Now let u I D(A) and let u 1 0(A ) be such that u — u. Au — Au. It follows from

(27) applied to v — U — u~ that U -
~ 

u in H~~
((2 ) I q~Iu~ 

- u i
2 

-
~ 

0 (since u

is a Cauchy sequence in H~ (c2) and in 12 ( 17) with weight q ’ ) .  In particular

qiu 2 
I 1

1
(17) and (14) holds.

Proof of Theorem 3.2: C1:arly A C A
1
. Now let u I D(A

1
) and let A > A

1
. Set

f — A
1

u + Au, and let u be the uniqu: solution of

Au + A u  — f  -

* * 2 m *
Thus , there exists a sequence u -e u in L (P ) with u I D(A) and

* * 2 mAu + A u  f -~~f in L ( P ) .
n n n

In particular we have

* *
A ( u — u ) + A ( u  - u ) — f  - f

i n  n n

and therefore

-A t u
~ 

— u) - q
_
hu
* 

— U I  + A~ u — ul 
~~
. lf

~ 
— 

~i in D1 (R
at
)

* at 1 mWe deduce from L~~~ a 2.3 that lun 
- u l  < 4, a.e. on P where 4, I H (P ) is

the solution of

—A *~ 
— q *~ 

+ 24 ,
n ‘~~n 

— 

~i -

Hence 11 * 1) 1 -e 0 and in particular u* 
— u .e 

~ in 1
2
(~

at
) It follows that u u,

that is A
1

C A .  We have A C A
1 

C A and therefor e A
1 

is closable with A
1 

— A.
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2
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) }  .

0 b c

When ~ = we also consider the operator

with domain

D(A
1
) = {u E L
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(
~
); Vu e L~~~~

(c) ) and -Etu + Vu e L
2
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A special case of our main results is:

Theorem: Let m > 3; assume that the function max{-Re v ,o} belongs to

L (
~
?) + L

m/2
(~) and also to L~

m
~
’2)4

~~(c2) for some c > 0. Then A (resp. A
1
)

is closable and A + A (resp . A
1 

+ A)  is m-accretive for some real constant A.
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