```
AD-A063 978 WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER F/G 12/1
```

REMARKS ON THE SCHROEDINGER OPERATOR WITH SINGULAR COMPLEX POTE--ETC (U)
AUG 78 H BREZIS, T KATO DAAG29-75-C-0024
UNCLASSIFIED MRC-TSR-1875 DAAG29-75-C-0024
NL

a wal.

Mathematics Research Center University of Wisconsin-Madison 610 Walnut Street Madison, Wisconsin 53706

August 1978
(Received June 7, 1978)

Approved for public release
 Distribution unlimited

Sponsored by
U. S. Army Research Office
P. O. Box 12211

Research Triangle Park
North Carolina 27709

National Science Foundation
Washington, D. C. 20550

UNIVERSITY OF WISCONSIN－MADISON

（10）Haim／Brezis\％${ }^{2}$ Q nd Tosio／Kato $\% 4$
（9）Technical summary depot， 18775
（11）Aug 78
abstract（12） 2 р
Let $A=-\Delta+V(x)$ be a Schrödinger operator on an（arbitrary）open set $\Omega \subset R^{m}$ ，where $V \in L_{l o c}^{l}(\Omega)$ is a complex valued function．We consider the ＂maximal＂realization of A in $L^{2}(\Omega)$ under Dirichlet boundary condition， that is

$$
D(A)=\left\{u \in H_{0}^{1}(\Omega) ; V u \in L_{l o c}^{1}(\Omega) \text { and }-\Delta u+V u \in L^{2}(\Omega)\right\}
$$

When $\Omega=R^{m}$ we also consider the operator
$A_{1}=-\Delta+V$
（14）MRC－TSR－1875
with domain

$$
D\left(A_{1}\right)=\left\{u \in L^{2}(\Omega) ; V u \in L_{l o c}^{1}(\Omega) \text { and }-\Delta u+V u \in L^{2}(\Omega)\right\}
$$

A special case of our main results is：
Theorem：Let $m \geq 3$ ；assume that the function $\max \{-\operatorname{Re} V, 0\}$ belongs to $L^{\infty}(\Omega)+L^{m / 2}(\Omega)$ and also to $L_{\text {Doc }}^{(m / 2)+\varepsilon}(\Omega)$ for some $\varepsilon>0$ ．Then A（resp．A_{1} ） is closable and $\bar{A}+\lambda$（resp．$\overline{\mathbb{A}}_{1}+\lambda$ ）is m－accretive for some real constant λ ．

AMS（MOS）Subject Classifications：35J10，47B44
Key Words：Schrödinger operator，Complex potentials，m－accretive operator
Work Unit Number 1 （Applied Analysis）
（15）DAAG29－75－ट－$\varnothing \varnothing 24$, NSF－MとS 76 －064655
${ }^{1}$ Dept．de Mathématiques，Université Paris VI， 4 pl．Jussieu， 75230 Paris 05，France． ${ }^{2}$ Dept．of Mathematics，University of California，Berkeley，CA 94720.
Sponsored by
3）the United States Army under Contract No．DAAG29－75－C－0024；
4）the National Science Foundation under Grant No．MCS76－04655．

Schrodinger operators of the form $A=-\theta^{\prime}+v(x)$, where Δ is the Laplacian and v is a scalar potential, arise in quantum mechanics and other areas. Delicate questions concerning what domain should be assigned to A must be settled in order to have a good theory. These questions are answered here for a very general class of potentials V which may even have complex values. N

The responsibilities for the wording and views expressed in this descriptive summary lies with MRC, and not with the authors of this report.
page -i

REYARKS ON THE SCHRÖDINGER OPERATOR WITH SINGULAR COMPLEX POTENTIALS

$$
\text { Haïm Brezis }{ }^{1,3} \text { and Tosio Kato }{ }^{2,4}
$$

1. Introduction

Let $A=-\Delta+V(x)$ be a Schrödinger operator on an (arbitrary) open set $\Omega \subset R^{m}$, where $v \in L_{\text {loc }}^{1}(\Omega)$ is a complex valued function. We consider the "maximal" realization of A in $L^{2}(\Omega)$ under Dirichlet boundary condition, that is

$$
D(A)=\left\{u \in H_{0}^{1}(\Omega) ; V u \in L_{l o c}^{1}(\Omega) \text { and }-\Delta u+V u \in L^{2}(\Omega)\right\}
$$

When $\Omega=\mathbf{R}^{m}$ we also consider the operator

$$
A_{1}=-\Delta+v
$$

with domain

$$
D\left(A_{1}\right)=\left\{u \in L^{2}(\Omega) ; V_{u} \in L_{l o c}^{1}(\Omega) \text { and }-\Delta u+V u \in L^{2}(\Omega)\right\}
$$

We state now our main results (see Theorems 3.1 and 3.2) in a special case.
Theorem: Let $m \geq 3$; assume that the function $\max \{-\operatorname{Re} V, 0\}$ belongs to $L(\Omega)+L^{m / 2}(\Omega)$ and also to $L_{l o c}^{(m / 2)+\varepsilon}(\Omega)$ for some $\varepsilon>0$. Then A (resp. A_{1}) is closable and $\bar{A}+\lambda$ (resp. $\bar{A}_{1}+\lambda$) is m-accretive for some real constant λ.

We emphasize the fact that $\max \{R e V, 0\}$ and $\operatorname{Im} V$ could be arbitrary functions in $\mathrm{L}_{10 \mathrm{l}}^{1}(\Omega)$.

Our methods rely on some measure theoretic arguments and standard techniques of DeGiorgi-Moser-Stampacchia type, related to the weak form of the maximum principle.

The distributional inequality

$$
\Delta|u| \geq \operatorname{Re}[\Delta u \operatorname{sign} \bar{u}]
$$

proved in [3] plays a crucial role. We also use a result from [1] concerning a property of Sobolev spaces.

In order to describe our method in a simple case we begin in Section 2 with real valued potentials. The main results in Section 2 are essentially known (see [3], [4], [8]) except perhaps for Theorem 2.2 when ≤ 4.
${ }^{1}$ Dept. de Mathématiques, Université Paris VI, 4 pl. Jussieu, 75230 Paris 05, France. ${ }^{2}$ Dept. of Mathematics, University of California, Berkeley, CA 94720.
Sponsored by
3) the United States Army under Contract No. DAAG29-75-C-0024;
4) the National Science Foundation under Grant No. MCS76-04655.

In Section 3 we turn to the case of complex potentials. Schrödinger operators with complex potentials have been studied by Nelson [6]. His results were extended in [5]. Here we allow more general singularities.

We thank Professors R. Jensen and B. Simon for useful suggestions and discussions (with the first author).
2. Real valued potentials

Let Ω be an (arbitrary) open subset of R^{m} and let $H=L^{2}=L^{2}(\Omega, E)$. Let q e $L_{l o c}^{1}(\Omega)$ be a real valued function. Set

$$
q^{+}=\max (q, 0), \quad q^{-}=\max (-q, 0)
$$

Assume
(1)

$$
q^{-} \in L^{\infty}(\Omega)+L^{p}(\Omega)
$$

with

$$
\left\{\begin{array}{lll}
p=\frac{m}{2} & \text { when } & m \geq 3 \\
p>1 & \text { when } & m=2 \\
p=1 & \text { when } & m=1
\end{array}\right.
$$

Consider the operator A defined in H by

$$
A=-\Delta+q(x)
$$

with

$$
D(A)=\left\{u \in H_{0}^{1}(\Omega) ; q u \in L_{l o c}^{1}(\Omega) \text { and }-\Delta u+q u \in L^{2}(\Omega)\right\}
$$

The main results are the following:
Theorem 2.1. A is self-adjoint and $A+\lambda_{1}$ is m-accretive for some real constant λ_{1}. Furthermore $u, v \in D(A)$ imply $q|u|^{2} \in L^{1}(\Omega), q|v|^{2} \in L^{1}(\Omega)$ and
(2)

$$
(A u, v)=\int \text { gradu gradev}+\int q u \bar{v} .
$$

When $\Omega=R^{m}$ we also consider the operator A_{1} defined in H by

$$
A_{1}=-\Delta+q(x)
$$

with

$$
D\left(\lambda_{1}\right)=\left\{u \in L^{2}(\Omega) ; q u \in L_{l o c}^{1}(\Omega) \text { and }-\Delta u+q u \in L^{2}(\Omega)\right\}
$$

Only when $m=3$ or $m=4$ we will make the additional assumption:

$$
\begin{align*}
& q^{-} e L_{l o c}^{p+\varepsilon}(\Omega) \text { with } p=\frac{3}{2} \text { when }=3 \text { and } p=2 \text { when }=4 \text {, for some } \tag{3}\\
& \text { arbitrarily small } \varepsilon>0 \text {. }
\end{align*}
$$

More precisely we assume that for each $x_{0} \boldsymbol{R}^{\mathbf{m}}$ there exists a neighborhood 0 of x_{0} and some $\varepsilon>0$ (depending on x_{0}) such that $q^{-} \cdot f^{p+c}(v)$.

Theorem 2.2: Under the assumptions (1) and (3), $\lambda_{1}=A$.

Our first lemma is well known:
Lemen 2.1: Assume (1). Then for every $\varepsilon>0$, there exists a constant λ_{ε} such that

$$
\int q^{-}|u|^{2} \leq \varepsilon\|g r a d u\|_{L^{2}}^{2}+\lambda_{\varepsilon}\|u\|_{L^{2}}^{2} \quad \forall u \in H_{0}^{1}(\Omega)
$$

In particular

$$
\int q^{-}|u|^{2} \leq\|g r a d u\|_{L_{2}^{2}}^{2}+\lambda_{1}\|u\|_{L_{2}^{2}}^{2} \quad \forall u \text { e } H_{0}^{1}(\Omega)
$$

Proof: Write $q^{-}=q_{1}+q_{2}$ with $q_{1} \in L^{\infty}(\Omega)$ and $q_{2} \in L^{p}(\Omega)$. Then for each $k>0$ we have

$$
\begin{aligned}
& \int z^{-}|u|^{2} \leq\left\|q_{1}\right\|_{L}\|u\|_{L^{2}}^{2}+\int_{\left[\left|q_{2}\right|>k\right]}\left|q_{2}\right||u|^{2}+k \int_{\left[\left|q_{2}\right| \leq k\right]}|u|^{2} \\
& \leq\left(\left\|q_{1}\right\|_{L}+k\right)\|u\|_{L^{2}}^{2}+\left\|q_{2}\right\|_{L} p_{\left(\left[\left|q_{2}\right|>k\right)\right)}\|u\|_{L}^{2} t
\end{aligned}
$$

with

$$
\frac{1}{p}+\frac{2}{t}=1
$$

In case $m \geq 3$ we find $t=2^{*}$ where 2^{*} is the Sobolev exponent, that is $\frac{1}{2^{*}}=\frac{1}{2}-\frac{1}{m}$. By the Sobolev imbedding theorem we have

$$
\|u\|_{\mathrm{L}}{ }^{t} \leq c\|g r a d u\|_{L^{2}} \quad \text { vue } H_{0}^{1}(\Omega)
$$

When $m=2$ we find $2<t<\infty$ and it is known that

$$
\|u\|_{L^{t}} \leq c\left(\|g r a d u\|_{L^{2}}+\|u\|_{L_{2}^{2}}\right) \quad \forall u \in H_{0}^{1}(\Omega)
$$

When $m=1$ we find $t=\infty$ and it is known that

$$
\|u\|_{L} \infty \leq c\left(\|g r a d u\|_{L^{2}}+\|u\|_{L^{2}}\right) \quad v u \in H_{0}^{1}(\Omega)
$$

We reach the conclusion of Leama 2.1 in all the cases by choosing k large enough so that

$$
c^{2}\left\|q_{2}\right\|_{L} p_{\left(\left\{\left|q_{2}\right|>k\right]\right)}<\varepsilon
$$

Remark 2.1: Assuaption (1) is used in all the results of this paper only through
Lema 2.1 and it may in fact be weakened to a "locally uniform L^{P}-condition":
(1)

$$
\left\|q^{-}\right\|_{L} p_{\left(\Omega \cap_{B_{r}}(y)\right)} \rightarrow 0 \text { as } r \rightarrow 0 \text { uniformily in } y \in \Omega \text {. }
$$

where

$$
B_{r}(y)=\left\{x \in \mathbf{R}^{m} ;|x-y| \leq r\right\} .
$$

Indeed let $\varphi \in \square_{+}\left(\mathbb{R}^{m}\right)$ with supp $\varphi \subset B_{r}(0)$ and $\|\varphi\|_{L^{2}}=1$. Then, writing $\varphi_{y}(x)=\varphi(x-y)$,

$$
\int q^{-}|u|^{2}=\int d y \int q^{-}\left|u \varphi_{y}\right|^{2} \leq \int\left\|q^{-}\right\|_{L^{p}\left(B_{r}(y)\right)}\left\|u \varphi_{y}\right\|_{L} t^{2} d y .
$$

Here $\left\|q^{-}\right\|_{L^{2}\left(B_{r}(y)\right)} \leq \delta$ for any small δ by (1^{\prime}) if r is chosen small. So

$$
\begin{aligned}
\int q^{-}|u|^{2} & \leq \delta \int\left\|u \varphi_{Y}\right\|_{L^{2}}^{2} d y \leq c \delta \int\left\|\operatorname{grad}\left(u \varphi_{Y}\right)\right\|_{L^{2}}^{2} d y \\
& \leq 2 C \delta \int\left(\left\|\varphi_{Y} g r a d u\right\|_{L^{2}}^{2}+\left\|u \operatorname{grad}_{Y^{2}}\right\|_{L^{2}}^{2}\right) d y \\
& =2 C \delta\left(\|g r a d u\|_{L^{2}}^{2}+c_{r}\|u\|_{L^{2}}^{2}\right) .
\end{aligned}
$$

Choosing δ so that $2 \mathrm{C} \delta=\varepsilon$, one gets the conclusion of Lemma 2.1. Such a locally uniform $\quad L^{p}$-condition was used by Simader [7].

We recall a result of [1] which will be used in the proof of Theorem 2.1 ${ }^{(1)}$. Lemma 2.2: Let $T \in H^{-1}(\Omega) \cap L_{l o c}^{1}(\Omega)$ and let $u \in H_{0}^{1}(\Omega)$ be such that a.e. on Ω

$$
\operatorname{ReT} \cdot \bar{u} \geq f
$$

for some real valued function $f \in L^{1}(\Omega)$. Then Re $T \cdot \bar{u} \in L^{1}(\Omega)$ and

$$
\operatorname{Re}(T, u)=\int \operatorname{Re} T \cdot \bar{u}
$$

where (T, u) denotes the Hermitian scalar product in the duality between $H^{-1}(\Omega)$ and $H_{0}^{1}(\Omega)$.

The proof of Theorem 2.1 is divided into 4 steps.

Step 1: $A+\lambda$ is onto for $\lambda>\lambda_{1}$. Set $q_{n}^{+}-\min \left(q^{+}, n\right)$; by a Theorem of Lax-Milgram there exists a unique function u_{n} e $H_{0}^{1}(\Omega)$ which satisfies

(4)

$$
-\Delta u_{n}+\left(q_{n}^{+}-q^{-}\right) u_{n}+\lambda u_{n}=f
$$

${ }^{(1)}$ The use of this sort of lemma in this context was suggested by M. Cranial.

(Note that by Lemma 2.1 the sesquilinear form $\int \mathrm{q}^{-} \mathrm{uv}$ is continuous on $H_{0}^{1}(\Omega)$). Multiplying (4) by \bar{u}_{n} we find a constant C independent of n such that

$$
\begin{equation*}
\left\|u_{n^{\prime}}\right\|_{H^{1}} \leq c, \tag{5}
\end{equation*}
$$

(6)

$$
\int q_{n}^{+}\left|u_{n}\right|^{2} \leq c
$$

Choose a subsequence denoted again by u_{n} such that $u_{n} \rightarrow u$ weakly in $H_{0}^{1}(\Omega)$ and $u_{n} \rightarrow u$ are. on Ω. It follows from Paton's Lemma and (6) that $q^{+}|u|^{2} e L^{1}(\Omega)$. We deduce that qu $\in \mathrm{L}_{10 \mathrm{c}}^{1}(\Omega)$; indeed

$$
\begin{aligned}
& q^{+}|u| \leq \frac{1}{2} q^{+}\left(|u|^{2}+1\right) e L_{10 c}^{1}(\Omega), \\
& q^{-}|u| \leq \frac{1}{2} q^{-}\left(|u|^{2}+1\right) e L_{10 c}^{1}(\Omega) .
\end{aligned}
$$

We pass now to the limit in (4) and prove that $-\Delta u+q u+\lambda u=f$ in $D^{\prime}(\Omega)$. It suffices to show that

$$
\left(q_{n}^{+}-q^{-}\right) u_{n} \rightarrow q u \text { in } L_{l o c}^{1}(\Omega)
$$

For this purpose we adapt a device due to W. Strauss [9] and extensively used in the study of strongly nonlinear equations. In view of Vitali's convergence theorem, it suffices to verify that given $\omega \propto \Omega$, then $V \varepsilon>0,3 \delta>0$ such that $E C \omega$ and $|E|<\delta$ imply $\int_{E}\left|q_{n}^{+}-q^{-}\right|\left|u_{n}\right|<\varepsilon$ for all n. But for every $R>0$ we have

$$
q_{n}^{+}\left|u_{n}\right| \leq \frac{1}{2} q_{n}^{+}\left(R+\frac{1}{R}\left|u_{n}\right|^{2}\right)
$$

and thus, by (6),

$$
\int_{E} q_{n}^{+}\left|u_{n}\right| \leq \frac{1}{2} R \int_{E} q^{+}+\frac{1}{2 R} c .
$$

We fix R large enough so that $\frac{C}{R}<\varepsilon$ and then $\delta>0$ small that $R \int_{E} q^{+}<\varepsilon$. We proceed similarly with $q^{-}\left|u_{n}\right|$.
Step 2: $A+\lambda_{1}$ is accretive. Let $u \in D(A)$ and set $T=q u$. Since $T \in H^{-1}(\Omega) \cap \mathrm{L}_{10 c}^{1}(\Omega)$ and

$$
\operatorname{Re} \bar{u}=q|u|^{2} \geq-q-|u|^{2} e L^{1}(\Omega)
$$

it follows from Leman 2.2 that $g|u|^{2} e L^{1}$ and

$$
\operatorname{Re}(T, u)=\int q|u|^{2}
$$

But $q u=A u+\Delta u$ and so

$$
\operatorname{Re}\langle A u, u\rangle-\int|g r a d u|^{2}=\int q|u|^{2}
$$

Since Au $\mathrm{L}^{\mathbf{2}}(\Omega)$ we have in fact

$$
\operatorname{Re}(A u, u)=\int|g r a d u|^{2}+\int q|u|^{2} \geq-\lambda_{1} \int|u|^{2}
$$

by Lemma 2.1.
Step 3: $u \in D(A)$ implies $q|u|^{2} \in L^{1}(\Omega)$ and (2) holds. We have just seen in $S t e p 2$ that $u \in D(A)$ implies $q|u|^{2} \in L^{1}(\Omega)$. Now let $u, v \in D(A)$ and set $T=q u$. We have $T \in H^{-1}(\Omega) \cap L_{10 c}^{1}(\Omega)$ and

$$
\operatorname{Re} T \cdot \bar{v}=\operatorname{Re} q u \bar{v} \geq-\frac{1}{2}|q||u|^{2}-\frac{1}{2}|q||v|^{2} \text { e } L^{1}(\Omega)
$$

and therefore

$$
\operatorname{Re}(T, v)=\int \operatorname{Requv}
$$

Thus

$$
\operatorname{Re}(A u, v)-\operatorname{Re} \int \text { gradu grad} \bar{v}=\operatorname{Re} \int q u \bar{v}
$$

Changing u into in we find

$$
(A u, v)=\int \operatorname{gradu} \operatorname{grad} \bar{v}+\int q u \bar{v} .
$$

Step 4: A is self-adjoint. Indeed $A+\lambda_{1}$ is m-accretive and symmetric. Therefore $A+\lambda_{1}$ is self-adjoint and so is A.

Proof of Theorem 2.2: Clearly $A \subset A_{1}$. Let $u \in D\left(A_{1}\right)$ and set $f=A_{1} u+\lambda u$ with some $\lambda>\lambda_{1}$. Let $u * D(A)$ be the unique solution of

$$
\lambda u^{*}+\lambda u^{*}=f .
$$

We have

$$
\lambda_{1}\left(u-u^{*}\right)+\lambda\left(u-u^{*}\right)=0 .
$$

Since $\left(u-u^{*}\right) \in L_{l o c}^{1}\left(R^{m}\right)$ and $\Delta\left(u-u^{*}\right)$ e $L_{l o c}^{1}\left(R^{m}\right)$ we may apply Lemma A in [3] to conclude that

$$
\Delta\left|u-u^{*}\right| \geq \operatorname{Re}\left[\Delta\left(u-u^{*}\right) \operatorname{sign}\left(\bar{u}-\bar{u}^{*}\right)\right] \text { in } D^{\prime}\left(R^{m}\right)
$$

and thus in $D^{\prime}\left(\mathbb{R}^{m}\right)$ we f ind,

$$
\Delta\left|u-u^{*}\right| \geq \operatorname{Re}\left((q+\lambda)\left|u-u^{*}\right|\right] \geq\left(-q^{-}+\lambda\right)\left|u-u^{*}\right|
$$

Using the next leman we conclude that $u=u *$ (and hence $\left.D\left(\lambda_{1}\right)=D(A)\right)$.

Lemma 2.3: Assume (1) and (3). Let $v \in L^{2}\left(R^{m}\right)$ be a real valued function with $q^{-} v \in L_{l o c}^{1}\left(R^{m}\right) \quad$ satisfying

$$
-\Delta v-q^{-} v+\lambda v \leq 0 \text { in } D^{\prime}\left(R^{m}\right)
$$

with some $\lambda>\lambda_{1}$. Then $v \leq 0$ a.e. on R^{m}.
The proof of Lemma 2.3 relies on the following crucial result. Since we shall need it in Section 3 for a general domain $\Omega \subset \boldsymbol{R}^{m}$ we work now again in Ω. Theorem 2.3: Assume (1). Let $g \in L^{2}(\Omega) \cap L^{\infty}(\Omega)$ and let $\psi \in H_{0}^{1}(\Omega)$ be the unique solution of

$$
\begin{equation*}
-\Delta \psi-q^{-} \psi+\lambda \psi=g \quad \text { in } \quad \Omega \quad\left(\lambda>\lambda_{1}\right) \tag{7}
\end{equation*}
$$

Then
a) $g \geq 0$ a.e. on Ω implies $\psi \geq 0$ a.e. on Ω;
b) $\psi \in \bigcap_{2 \leq p<\infty} L^{p}(\Omega)$.

Proof of Theorem 2.3: a) Multiplying (7) by $-\psi^{-}$we find

$$
\int\left|\operatorname{grad} \psi^{-}\right|^{2}-\int \mathrm{q}^{-}\left|\psi^{-}\right|^{2}+\lambda \int\left|\psi^{-}\right|^{2} \leq 0
$$

and thus $\psi^{-}=0$.
b) We have to consider only the case $m \geq 3$ (when $m \leq 2, \psi \in H_{0}^{1}(\Omega)$ implies $\psi \in \bigcap_{2<\mathrm{p}<\infty} \mathrm{L}^{\mathrm{p}}(\Omega)$).
$2 \leq p<\infty$
We can always assume that $g \geq 0$ a.e. on Ω so that $\psi \geq 0$ a.e. on Ω. We truncate q^{-}by $q_{k}^{-}=\min \left(q^{-}, k\right)$ and define ψ_{k} to be the unique solution of

$$
\left\{\begin{array}{c}
\psi_{k} \in H_{0}^{1}(\Omega) \\
-\Delta \psi_{k}-q_{k}^{-} \psi_{k}+\lambda \psi_{k}=g \text { in } \Omega .
\end{array}\right.
$$

It is clear that $\psi_{k}+\psi$ weakly in $H_{0}^{1}(\Omega)$ as $k \rightarrow \infty$. We shall prove that for every $p \in[2, \infty), \psi_{k} \in L^{p}(\Omega)$ and
(8)

$$
\left\|\psi_{k}\right\|_{L^{p}} \leq c_{p}\left(\|g\|_{L^{2}}+\|g\|_{L^{\infty}}\right)
$$

where C_{p} is independent of k, but it depends on q^{-}through the use of Lemma 2.1 . For simplicity we drop now the subscript k on ψ_{k} and write
(9)

$$
-\Delta \psi-q_{k}^{-} \psi+\lambda \psi=g
$$

Set $\psi_{n}=\min (\psi, n)$ and let $2 \leq p<\infty$; since $\left(\psi_{n}\right)^{p-1} \in H_{0}^{1}(\Omega)$ we can multiply (9)
by $\left(\psi_{n}\right)^{p-1}$ and we get

$$
\left.(p-1)!\left(\psi_{n}\right)^{p-2} \operatorname{grad} \psi_{n}\right|^{2} \leq \int g\left(\psi_{n}\right)^{p-1}+\int q_{k}^{-}\left(\psi_{n}\right)^{p}+\int_{[\psi>n]} k n^{p-1} \psi .
$$

that is

$$
\begin{aligned}
& \frac{4(p-1)}{p^{2}} \int\left|g r a d \psi_{n}^{p / 2}\right|^{2} \leq\|g\|_{L^{p}}\left\|\psi_{n}\right\|_{L^{p}}^{p-1}+\int q^{-}\left(\psi_{n}\right)^{p}+k n^{p-1} \int_{[\psi>n]} \psi \\
& \leq\|g\|_{L} p^{p}\left\|\psi_{n}\right\|_{L}^{p} p^{p-1}+\varepsilon\left\|g r a d \psi_{n}^{p / 2}\right\|_{L^{2}}^{2}+\lambda_{\varepsilon}\left\|\psi_{n}\right\|_{L}^{p} p+k \int_{[\psi>n]} \psi^{p}
\end{aligned}
$$

by Lemma 2.1 (here $\int_{\{\psi>n\rfloor} \psi^{p}$ is possibly infinite). Choosing $\varepsilon>0$ small enough (for example $\varepsilon=\frac{2(p-1)}{p^{2}}$) we see that

$$
\int\left|\operatorname{grad} \psi_{n}^{p / 2}\right|^{2} \leq c_{p}\left[\|g\|_{L^{p}}^{p}+\|\psi\|_{L^{p}}^{p}+k \int_{[\psi>n]} \psi^{p}\right]
$$

where C_{p} is independent of k and n. Using Sobolev's inequality we find
(10)

$$
\|\psi\|_{L^{p}}^{p} / 2 \leq c_{p}\left[\|g\|_{L^{p}}^{p}+\|\psi\|_{L^{p}}^{p}+k \int_{[\psi>n]} \psi^{p}\right]
$$

Assuming now that $\psi \in \mathrm{L}^{\mathrm{p}}(\Omega)$ and passing to the limit in (10) as $\mathrm{n} \rightarrow \infty$ we obtain that $\psi e L^{p 2^{*} / 2}(\Omega)$ and

$$
\|\psi\|_{L} p 2^{*} / 2 \leq c_{p}\left[\|g\|_{L} p+\|\psi\|_{L} p\right] .
$$

Iterating this process from $p=2$ we obtain finally for every $p \in[2, \infty)$

$$
\|\psi\|_{L} p \leq c_{p}\left[\|g\|_{L^{2}}+\|g\|_{L^{\infty}}\right]
$$

More precisely we have proved (8). The conclusion of Theorem 2.3 follows since $\psi_{k} \rightarrow \psi$ weakly in $H_{0}^{1}(\Omega)$ as $k \rightarrow \infty$.
Proof of Lemma 2.3: By assumption $q^{-} v \in L_{l o c}^{1}\left(R^{m}\right)$ and

$$
\int v\left(-\Delta \varphi-q^{-} \varphi+\lambda \varphi\right) \leq 0 \quad \omega \in D_{+}\left(R^{m}\right)
$$

An easy density argument (smoothing by convolution) shows that
(11) $\int v\left(-\Delta \varphi-q^{-} \varphi+\lambda \varphi\right) \leq 0 \quad \psi_{\varphi} \in H^{2}\left(R^{m}\right) \cap L^{\infty}\left(R^{m}\right)$, supp φ compact, $\varphi \geq 0$ a.e. .

Fix $g \in D_{+}\left(R^{m}\right)$ and let $\psi_{k} \in H^{l}\left(R^{m}\right)$ be the unique solution of

$$
\begin{equation*}
-\Delta \psi_{k}-q_{k}^{-} \psi_{k}+\lambda \psi_{k}=g \text { in } R^{m} \tag{12}
\end{equation*}
$$

We know by Theorem 2.3 that $\Psi_{k} \geq 0$ a.e.

$$
\Psi_{k} \in \bigcap_{2 \leq p<\infty} L^{p}\left(R^{m}\right) \text { with }\left\|\psi_{k}\right\|_{L} p \leq c_{p} \text {, }
$$

and also $\|$ grad $\psi_{k} \|_{L^{2}} \leq C$. In addition we derive from (12) that

$$
\psi_{k} \in H^{2}\left(R^{m}\right) \cap L_{l o c}^{\infty}\left(R^{m}\right)
$$

Fix $\zeta \in D_{+}\left(R^{m}\right)$ satisfying $\zeta(x)=1$ for $|x| \leq 1$ and set $\zeta_{n}(x)=\zeta\left(\frac{x}{n}\right)$. In (11) we choose $\varphi=\psi_{k} \zeta_{n}$. Note that by (12)

$$
-\Delta \varphi-q^{-} \varphi+\lambda \varphi=\zeta_{n} g-\left(\Delta \zeta_{n}\right) \psi_{k}-2 \operatorname{grad} \zeta_{n} \operatorname{grad} \psi_{k}-\zeta_{n} \psi_{k}\left(q^{-}-q_{k}^{-}\right)
$$

and therefore

$$
\int v \zeta_{n} g \leq \frac{C}{n^{2}}+\frac{C}{n}+\int v \zeta_{n} \psi_{k}\left(q^{-}-q_{k}^{-}\right)
$$

First we fix n and let $\underline{k} \rightarrow \infty$. We distinguish two cases:
a) $m \geq 5$,
b) $m<5$.
a) When $m \geq 5$ we have $q^{-}-q_{k}^{-} \rightarrow 0$ in $L_{l o c}^{m / 2}\left(R^{m}\right)$. Let $p \in[2, \infty)$ be such that $\frac{1}{2}+\frac{2}{m}+\frac{1}{p}=1 ;$ we have

$$
\left|\int v \zeta_{n} \psi_{k}\left(q^{-}-q_{k}\right)\right| \leq\|v\|_{L^{2}}\left\|\psi_{k}\right\|_{L} p\left\|\zeta_{n}\left(q^{-}-q_{k}\right)\right\|_{L^{m / 2}} \rightarrow 0
$$

Consequently

$$
\int v \zeta_{n} g \leq \frac{c}{n^{2}}+\frac{c}{n}
$$

b) When $m<5$ we use the assumption (3) (or (1)): $q^{-} \in L_{l o c}^{m / 2+\varepsilon}\left(R^{m}\right)$ with some $\varepsilon>0$. It follows from (12) that ψ_{k} remains bounded in $w_{l o c}^{2, q}\left(R^{m}\right)$ for some $q>\frac{m}{2}$ (when $m \geq 2$) as $k \rightarrow \infty$. We conclude that ψ_{k} remains bounded in $L_{10 c}^{\infty}\left(R^{m}\right)$ as $k \rightarrow \infty$ (in case $m=1, \Psi_{k}$ is bounded in $L^{\infty}(R)$ since it is bounded in $H^{1}(R)$). Therefore

$$
\int v \zeta_{n} \psi_{k}\left(q^{-}-q_{k}^{-}\right) \rightarrow 0 \text { as } k+\infty
$$

since $\left\|\zeta_{n} v\left(q^{-}-q_{k}^{-}\right)\right\|_{L^{1}} \rightarrow 0$ by the dominated convergence theorem (recall that

$$
\begin{aligned}
& \left.q-v \in L_{l o c}^{1}\left(R^{m}\right)\right) . \quad \text { In both cases we find } \\
& \qquad \int v \zeta_{n} g \leq \frac{c}{n^{2}}+\frac{c}{n} v_{n} .
\end{aligned}
$$

As $n \rightarrow \infty$ we see that

$$
\int v g \leq 0 \quad v g \in D_{+}\left(R^{m}\right)
$$

and therefore $v \leq 0$ a.e. on \mathbf{R}^{m}.
Remark 2.2: The conclusion of Lemma 2.3 fails in R^{3} and in R^{4} if we do not assume (3). Ancona (personal communication) has constructea in \mathbf{R}^{3} and in \mathbb{R}^{4} functions $q^{-} \in L^{m / 2}\left(R^{m}\right)$ and $u \in L^{m / m-2}\left(R^{m}\right) \cap L^{2}\left(R^{m}\right)$ such that $-\Delta u-q^{-} u+u=0$ in D^{\prime}
with $\left\|q^{-}\right\|_{L^{m / 2}}$ as small as we please and $u \neq 0$.

3. Complex potentials

Let Ω be an (arbitrary) open subset of \mathbf{R}^{m}. Assume $q(x)$ and $q^{\prime}(x)$ are real valued functions such that q. $q^{\prime} \in L_{l o c}^{1}(\Omega)$ and set

$$
v(x)=q(x)+i q^{\prime}(x)
$$

We assume
(13)

$$
\text { either } q^{\prime} \in \mathrm{L}_{10 c}^{1+\varepsilon}(\Omega) \text { or } q^{-} \in \mathrm{L}_{10 c}^{(m / 2)+\varepsilon}(\Omega) \text { when } m \geq 2 \text {, }
$$

for some arbitrarily small $\varepsilon>0$. Define

$$
A=-\Delta+V(x)
$$

with

$$
D(A)=\left\{u \in H_{0}^{1}(\Omega) ; V u \in L_{l o c}^{1}(\Omega) \text { and }-\Delta u+V u \in L^{2}(\Omega)\right\} \text {. }
$$

The main results are the following
Theorem 3.1: Assume (1) and (13). Then A is closable in $L^{2}(\Omega)$ and $\bar{A}+\lambda_{1}$ is m-accretive. In addition $u \in D(\bar{A})$ implies that $u \in H_{0}^{1}(\Omega), q|u|^{2} \in L^{1}(\Omega)$ and

$$
\begin{equation*}
\operatorname{Re}(\bar{A} u, u)=\int|g r a d u|^{2}+\int q|u|^{2} . \tag{14}
\end{equation*}
$$

Remark 3.1: In case we assume

$$
\begin{equation*}
\left|q^{\prime}(x)\right| \leq M q^{+}(x)+h(x) \text { for a.e. } x \in \Omega \tag{15}
\end{equation*}
$$

with $h \in L_{l o c}^{2 m /(m+2)}(\Omega)$ and $m \geq 3$ then A is closed in $L^{2}(\Omega)$. (Note that (15) corresponds
essentially with the assumption made in (5]). Indeed let $u_{n} \in D(A)$ be such that
$u_{n} \rightarrow u$ in $L^{2}(\Omega)$ and $A u_{n} \rightarrow f$ in $L^{2}(\Omega)$. It follows from Lemma 2.1 and (14) that
$u_{n} \rightarrow u$ in $H_{0}^{1}(\Omega)$ and $\sqrt{q^{+}} u_{n} \rightarrow{ }_{q^{+}}^{u}$ in $L^{2}(\Omega)$. From (15) we deduce easily that
$V u \in L_{l 0 c}^{1}(\Omega)$ and that $-\Delta u+V u=f$ in $D^{\prime}(\Omega)$. Therefore $u \in D(A)$ and $A u=f$.
When $\Omega=R^{m}$ we consider also the operator A_{1} defined in $L^{2}\left(R^{m}\right)$ by

$$
A_{1}=-\Delta+V(x)
$$

with

$$
\begin{aligned}
& D\left(A_{1}\right)=\left\{u \in L^{2}\left(R^{m}\right) ; V u \in L_{l o c}^{1}\left(R^{m}\right) \text { and }-\Delta u+V u \in L^{2}\left(R^{m}\right)\right\} . \\
& \text { Theore 3.2: Assume (1), (3) and (13). Then } A_{1} \text { is closable and } \overline{A_{1}}=\bar{A} .
\end{aligned}
$$

In the proof of Theorem 3.1 we shall use the following

Lemma 3.1: Let $v \in H_{0}^{1}(\Omega)$ be a real valued function. Assume (1) and

$$
-\Delta v-q^{-} v+\lambda v \leq 0 \text { in } D^{\prime}(\Omega)
$$

with $\lambda>\lambda_{1}$. Then $v \leq 0$ are. on Ω.
Proof of Lemma 3.1: We have, for every $\varphi \in D_{+}(\Omega)$

$$
\int \text { gradv grad } \varphi-\int q^{-} v \varphi+\lambda \int v \leq 0
$$

Now we use the fact (pointed out by G. Stampacchia) that $D_{+}(\Omega)$ is dense in $\left\{u \in H_{0}^{1}(\Omega) ; u \geq 0\right.$ a.e. on $\left.\Omega\right\}$ for the H^{1} norm ${ }^{(1)}$ to derive that

$$
\int \text { gradv grad } \varphi-\int q^{-} v \varphi+\lambda \int v \leq 0 \quad \psi \in H_{0}^{1}(\Omega), \varphi \geq 0 .
$$

Choosing $\varphi=\mathrm{v}^{+}$we obtain

$$
\int\left|\operatorname{gradv}{ }^{+}\right|^{2}-\int q^{-}\left|v^{+}\right|^{2}+\lambda \int\left|v^{+}\right|^{2} \leq 0
$$

and therefore $\mathbf{v}^{+}=0$.
The proof of Theorem 3.1 is divided into five steps.
Step 1: $R(A+\lambda) \supset L^{2}(\Omega) \cap L^{\infty}(\Omega)$ for $\lambda>\lambda_{1}$.
Indeed let $f \in L^{2}(\Omega) \cap L^{\infty}(\Omega)$ and let $u_{n} \in H_{0}^{1}(\Omega)$ be the unique solution of
(16)

$$
-\Delta u_{n}+v_{n} u_{n}+\lambda u_{n}=f
$$

where $v_{n}=q_{n}^{+}-q^{-}+i q_{n}^{\prime}$ and

$$
q_{n}^{\prime}=\left\{\begin{array}{ccc}
n & \text { if } & q^{\prime}>n \\
q^{\prime} & \text { if } & \left|q^{\prime}\right| \leq n \\
-n & \text { if } & q^{\prime} \leq-n
\end{array}\right.
$$

The existence of u_{n} follows from a theorem of Lax-Milgram. Multiplying (16) by \bar{u}_{n} we find
(17)
(18)

$$
\begin{gathered}
\left\|u_{n}\right\|_{H^{1}} \leq c \\
\int q_{n}^{+}\left|u_{n}\right|^{2} \leq c
\end{gathered}
$$

(1) Indeed let $u \in H_{0}^{l}(\Omega)$ with $u \geq 0$ ace. on Ω; let $u_{n} \in D(\Omega)$ be such that $u_{n} \rightarrow u$ in $H^{1}(\Omega)$. We claim that $\left|u_{n}\right| \rightarrow|u|=u$ in $H^{2}(\Omega)$ because $\left\|u_{n} \mid\right\|_{H^{1}}=\left\|u_{n}\right\|_{H^{1}}$ and $\left|u_{n}\right| \rightarrow|u|$ weakly in $H^{1}(\Omega)$. On the other hand $\left|u_{n}\right|$ can be smoothed by convolution and for fixed $n, \rho_{\varepsilon} *\left|u_{n}\right| \rightarrow\left|u_{n}\right|$ in $H^{1}(\Omega)$ as $\varepsilon \rightarrow 0$.

On the other hand we have

$$
\Delta\left|u_{n}\right| \geq \operatorname{Re}\left[\Delta u_{n} \operatorname{sign} \overline{u_{n}}\right] \text { in } D^{\prime}(\Omega)
$$

which leads to

$$
-\Delta\left|u_{n}\right|-q^{-}\left|u_{n}\right|+\lambda\left|u_{n}\right| \leq|f| \text { in } D^{\prime}(\Omega) \text {. }
$$

Let $\psi \in H_{0}^{1}(\Omega)$ be the solution of

$$
\begin{equation*}
-\Delta \psi-q^{-} \psi+\lambda \psi=|f| \tag{19}
\end{equation*}
$$

It follows from Lemma 3.1 that

$$
\begin{equation*}
\left|u_{n}\right| \leq \psi \text { a.e. on } \Omega . \tag{20}
\end{equation*}
$$

By Theorem 2.3 we know that $\psi \in L^{p}(\Omega)$ for every $p \in[2, \infty)$. We extract a subsequence, denoted again by u_{n} such that $u_{n} \rightarrow u$ weakly in $H_{0}^{1}(\Omega), u_{n} \rightarrow u$ a.e. on Ω. We see as in the proof of Theorem 2.1 (Step 1) that $\left(q_{n}^{+}-q^{-}\right) u_{n} \rightarrow q u$ in $L_{l o c}^{1}(\Omega)$. Therefore we have only to verify that $q_{n}^{\prime} u_{n} \rightarrow q^{\prime} u$ in $L_{l o c}^{1}(\Omega)$. We distinguish two cases:
a) $q^{0} \in L_{l o c}^{1+\varepsilon}(\Omega)$,
b) $q^{-} \in L_{l o c}^{(m / 2)+\varepsilon}(\Omega)$.

Case a) From (20) we deduce that $u_{n} \rightarrow u$ in every L^{p} space, $2 \leq p<\infty$ and so $q_{n}^{\prime} u_{n} \rightarrow q^{\prime} u$ in $L_{10 c}^{1}(\Omega)$.
Case b) Since $q^{-} \psi \in L_{l o c}^{q}(\Omega)$ for some $q>\frac{m}{2}$, it follows from (19) that $\psi \in L_{l o c}^{\infty}(\Omega)$. We deduce from the dominated convergence theorem that $q_{n}^{\prime} u_{n} \rightarrow q^{\prime} u$ in $L_{l o c}^{1}(\Omega)$.
Step 2: $A+\lambda_{1}$ is accretive. Let $u \in D(A)$ and set $T=V u$. We have
$T \in H^{-1}(\Omega) \cap \mathrm{L}_{\mathrm{loc}}^{1}(\Omega)$ and

$$
\operatorname{Re} T \cdot \bar{u}=q|u|^{2} \geq-q-|u|^{2} \in L^{1}(\Omega)
$$

It follows from Lemma 2.2 that $q|u|^{2} \in L^{1}(\Omega)$ and

$$
\int q|u|^{2}=\operatorname{Re}\langle T, u\rangle=\operatorname{Re}\langle A u+\Delta u, u\rangle
$$

Therefore
(21)

$$
\operatorname{Re}(A u, u)=\int|g r a d u|^{2}+\int q|u|^{2} \geq-\lambda_{1} \int|u|^{2}
$$

Step 3: $D(A)$ is dense in $L^{2}(\Omega)$. Given $f \in L^{2}(\Omega) \cap L^{\infty}(\Omega)$ we solve for large n the equation
(22)

$$
u_{n}+\frac{1}{n} A u_{n}=f
$$

We shall prove that $u_{n} \rightarrow f$ in $L^{2}(\Omega)$ as $n \rightarrow \infty$ - and as a consequence $D(A)$ is dense in. $L^{2}(\Omega)$. By (21) we have

$$
\int\left|u_{n}\right|^{2}+\frac{1}{n} \int\left|\operatorname{gradu}_{n}\right|^{2}+\frac{1}{n} \int q\left|u_{n}\right|^{2}=\operatorname{Re}\left(f, u_{n}\right)
$$

In particular we deduce that
(23)
(24)
(25)

$$
\begin{gathered}
\underset{n \rightarrow \infty}{\lim \sup }\left\|u_{n}\right\|_{L^{2}} \leq\|f\|_{L^{2}} \\
\frac{1}{n} \int q^{+}\left|u_{n}\right|^{2} \leq c \\
\frac{1}{n} \int\left|\operatorname{gradu}_{n}\right|^{2} \leq c .
\end{gathered}
$$

Next we have (as in the proof of Step 1)

$$
\left|u_{n}\right|-\frac{1}{n} \Delta\left|u_{n}\right|-\frac{1}{n} q^{-}\left|u_{n}\right| \leq|f| \text { in } D^{\prime}(\Omega) \text {. }
$$

On the other hand let $\psi \in H_{0}^{1}(\Omega)$ be the solution of

$$
-\Delta \psi-q^{-} \psi+\lambda \psi=|f|
$$

for some fixed $\lambda>\lambda_{1}$. Since $\left|u_{n}\right| \geq \lambda\left|\frac{u_{n}}{n}\right|$ for $n \geq \lambda$, we deduce from Lemma 3.1 that $\left|\frac{u_{n}}{n}\right| \leq \psi$ a.e. Choose a subsequence, denoted again by u_{n} such that $u_{n} \rightarrow u$ weakly in $L^{2}(\Omega), \frac{1}{n} u_{n} \rightarrow 0$ are. (this is possible since $\frac{1}{n} u_{n} \rightarrow 0$ in $L^{2}(\Omega)$). For every
φ e $D(\Omega)$ we have
(26)

$$
\int u_{n} \bar{\varphi}-\frac{1}{n} \int u_{n} \Delta \bar{\varphi}+\frac{1}{n} \int v u_{n} \bar{\varphi}=\int f \bar{\varphi}
$$

We claim that $\frac{1}{n} \int V u_{n} \bar{\varphi} \rightarrow 0$ as $n \rightarrow \infty$. Indeed by (24) and (25) we have

$$
\frac{1}{n}\left|\int q^{+} u_{n} \bar{\varphi}\right| \leq \frac{C}{\sqrt{n}} \text { and } \frac{1}{n}\left|\int q^{-} u_{n} \bar{\varphi}\right| \leq \frac{c}{\sqrt{n}} .
$$

Thus we have only to verify that $\frac{1}{n} \int q^{\prime} u_{n} \bar{\varphi} \rightarrow 0$. We distinguish two cases:
a) if $q^{-} \in L_{10 c}^{(m / 2)+\varepsilon}(\Omega)$, we have $\psi \in L_{10 c}^{\infty}(\Omega)$ and we deduce from the dominated convergence theorem that $\frac{1}{n} \int q^{\prime} u_{n} \bar{\varphi} \rightarrow 0$;
b) if $q^{\prime} \in L_{l o c}^{1+\varepsilon}(\Omega)$ we use the fact that $\left|\frac{{ }_{n}}{n}\right| \leq \psi \in L^{p}(\Omega)$ for every $2 \leq p<\infty$ to deduce that $\frac{u_{n}}{n} \rightarrow 0$ in $L^{p}(\Omega)$ and so $\frac{1}{n} \int q^{\prime} u_{n} \bar{\varphi} \rightarrow 0$.

In all the cases, we derive from (26) that

$$
\int u \bar{\varphi}=\int f \bar{\varphi} \quad \psi \varphi \in D
$$

and consequently $u=f$. We conclude using (23) that $u_{n} \rightarrow f$ in $L^{2}(\Omega)$.
Step 4: A is closable and $\bar{A}+\lambda_{1}$ is m-accretive. This is a standard fact, see egg. Theorem 3.4 in [2].

Step 5: $u \in D(\bar{A})$ implies that $u \in H_{0}^{1}(\Omega), q|u|^{2} \in L^{1}(\Omega)$ and (14).
We already know (Step 2) that $v \in D(A)$ implies $q|v|^{2} \in L^{1}(\Omega)$ and

$$
\begin{equation*}
\operatorname{Re}(A v, v)=\int|g r a d v|^{2}+\int q|v|^{2} \tag{27}
\end{equation*}
$$

Now let $u \in D(\bar{A})$ and let $u_{n} \in D(A)$ be such that $u_{n} \rightarrow u$, $A u_{n} \rightarrow \bar{A} u$. It follows from (27) applied to $v=u_{n}-u_{m}$ that $u_{n} \rightarrow u$ in $H_{0}^{1}(\Omega)$ and $\int q^{+}\left|u_{n}-u\right|^{2} \rightarrow 0$ (since u_{n} is a Cauchy sequence in $H_{0}^{1}(\Omega)$ and in $L^{2}(\Omega)$ with weight q^{+}). In particular $\mathrm{q}|\mathrm{u}|^{2} \in \mathrm{~L}^{1}(\Omega)$ and (14) holds.

Proof of Theorem 3.2: Clearly $A \subset A_{1}$. Now let $u \in D\left(A_{1}\right)$ and let $\lambda>\lambda_{1}$. Set $f=A_{1} u+\lambda u$, and let u^{*} be the unique solution of

$$
{\bar{A} u^{*}}^{*}+\lambda u^{*}=\mathbf{f}
$$

Thus, there exists a sequence $u_{n}^{*} \rightarrow u^{*}$ in $L^{2}\left(R^{m}\right)$ with $u_{n}^{*} \in D(A)$ and

$$
A u_{n}^{*}+\lambda u_{n}^{*}=f_{n} \rightarrow f \quad \text { in } \quad L^{2}\left(R^{m}\right)
$$

In particular we have

$$
A_{1}\left(u_{n}^{*}-u\right)+\lambda\left(u_{n}^{*}-u\right)=f_{n}-f
$$

and therefore

$$
-\Delta\left|u_{n}^{*}-u\right|-q^{-}\left|u_{n}^{*}-u\right|+\lambda\left|u_{n}-u\right| \leq\left|f_{n}-f\right| \text { in } D^{\prime}\left(R^{m}\right)
$$

We deduce from Lemma 2.3 that $\left|u_{n}^{*}-u\right| \leq \psi_{n} \quad$ a.e. on $\quad R^{m}$ where $\psi_{n} \in H^{1}\left(R^{m}\right)$ is the solution of

$$
-\Delta \psi_{n}-q^{-} \psi_{n}+\lambda \psi_{n}=\left|f_{n}-f\right|
$$

Hence $\left\|\psi_{n}\right\|_{H^{1}} \rightarrow 0$ and in particular $u_{n}^{*}-u \rightarrow 0$ in $L^{2}\left(R^{m}\right)$. It follows that $u *=u$, that is $A_{1} \subset \bar{A}$. We have $A \subset A_{1} \subset \bar{A}$ and therefore A_{1} is closable with $\overline{A_{1}}=\overline{A_{1}}$.

REFERENCES

[1] H. Brezis and F. Browder, Sur une propriété des espaces de Sobolev, C. R. Acad. Sc. Paris (1978).
[2] T. Kato, Perturbation theory for linear operators, 2nd edition, Springer (1976).
[3] T. Kato, Schrödinger operators with singular potentials, Israel J. Math. 13 (1972), p. 135-148.
[4] T. Kato, A second look at the essential selfadjointness of the Schrödinger operator, Physical Reality and Mathematical Description, D. Reidel Publishing Co. (1976),
p. 193-201.
[5] T. Kato, On some Schrödinger operators with a singular complex potential, Ann. Sc. Norm. Sup. Pisa Ser. IV, 5 (1978), p. 105-114.
[6] E. Nelson, Feymman integrals and the Schrödinger equation, J. Math. Phys. 5 (1964), p. 332-343.
[7] C. Simader, Bemerkungen über Schrödinger-Operatoren mit stark singularen Potentialen, Math. Z. 138 (1974) , p. 53-70.
[8] B. Simon, Essential self-adjointness of Schrödinger operators with positive potentials, Math. Ann. 201 (1973), p. 211-220.
[9] W. Strauss, On weak solutions of semilinear hyperbolic equations, Ann. Acad. Bras. Cienc. 42 (1970), p. 645-651.

20. ABSTRACT - cont'd.

$$
D(A)=\left\{u \in H_{0}^{1}(\Omega) ; V u \in L_{l o c}^{1}(\Omega) \text { and }-\Delta u+V u \in L^{2}(\Omega)\right\} .
$$

When $\Omega=R^{m}$ we also consider the operator

$$
A_{1}=-\Delta+V
$$

with domain

$$
D\left(A_{1}\right)=\left\{u \in L^{2}(\Omega) ; V u \in L_{l o c}^{1}(\Omega) \text { and }-\Delta u+V u \in L^{2}(\Omega)\right\}
$$

A special case of our main results is:
Theorem: Let $m \geq 3$; assume that the function $\max \{-\operatorname{Re} V, 0\}$ belongs to $L^{\infty}(\Omega)+L^{m / 2}(\Omega)$ and also to $L_{l o c}^{(m / 2)+\varepsilon}(\Omega)$ for some $\varepsilon>0$. Then A (resp. A_{1}) is closable and $\bar{A}+\lambda$ (resp. $\bar{A}_{1}+\lambda$) is m-accretive for some real constant λ.

