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Remarks on the Symmetries of Planar Fronts

F. AICARDI

ABSTRACT. A frontis the projection on the plane of a legendrian immer-
sion of a circie in the space of the contad elements of that plane. 1 analyse the
symmetries of a generic front with respect to the group generated by the invo-
lutions reversing the orientation of the plane, the orientation of the preimage
dicte and tSe coorientation of the contact plane.

1. GENERIC FRONTS

A planar frontis tlie projection to R2 (with coardinates x, y) of a
legendrian curve. A legendrian curve is the image of a C’-immersion
of S’ in the space M3 (with coardinates x, y, «mod2r) for cooriented
fronts, (modir) for noncooriented fronts) of the contact elements of the
plane, with its natural contact structure

(cos4’)dz + (sin#)dy = O (1)

We cali such an immersion of S1 into M3 an L-:mmerszon
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Ihe front is coorient cd, if the contact element is cooriented, i.e. if
a choice of one of two halfplanes into which it divides the tangent plane
is made. We shall consider now the ceoriented fronts, and M3 will be
the space of the ceoriented contact elements.

The front is oriented if the preimage circie S’ is oriented.

A generic front may have as singularities only the ordinary double
points and the semicuhical cusp points.

Examples. See fig.1.

II

2’

Fig. 1
Oriented legendrian curves and their oriented and cocriented fronts

3?o any oriented legendrian curve in the space of cooriented contact
elements of the plane one associates two integer numhers: tite índex and
the Maslov índex (see [1]). Both these indices can be calculated in
terms of the front of the legendrian curve.

Theorem 1. [1] TIte índex i of an oriented legendrian curve in tIte
space M3 is equal to tIte total angle (divided by 2w) of tIte rotation of tIte
coorienting normal vector of íts front when tIte point of tIte front makes
a fuil turn along it.

Legendrian cttrves

fronts
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TIte Maslov índex ji of a generic oriented legendrian curve is equal
to tIte difference between tIte nurnber ji+ ofpositive cusps and tIte number
pr of negative cusps of its front: ji = —

A cusp of an oriented and cooriented front is called positive if the
coorienting normal vector at the ciisp point belongs to the halfplane
bounded by the tangent une at the cnsp and containing the cusp brandi
with the orientation going away from the cusp point.

Remarks (important) 1) Tite sign of the angle of rotation of the
normal vector does not depend on tite front coorientation, ¡mt depends
on the orientation of the plane. llence tIte sign of tIte índex does not
depend on tIte front coorientation and changes when tIte orientations of
tIte plane or of tIte frontis cItanged.

2)The sign of a cusp citanges when one changes either tite orien-
tation or tite coorientation of tite front, but does not depend on tite
orientation of tite plane. llence tIte Maslov índex changes íts sígn when
tIte orientation or tIte coorientation of tIte front is changed and it is
independent of tIte orientation of tIte plane.

Examples. See fig. 2

-a.

Fig. 2
Twa fronts with titeir indices i and ji.

.=2 p=2 í=—2 ~i=2
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2. FRONT CLASSES AND SYMMETRY CLASSES

A froní class is a class of L-immersions having generic fronts np to
orientations preserving diffeomorphisms preserving tite orientations of
the plane and of tite preimage circie.

Consider a group O acting on tite space of L-immersions.

Definition 1. A front class [y] is cailed 0-invarianí if [ay] = [y]

Example. Let C~ be tite group of tite eudideans motions 1» the
plane. Any front class is 03-invariant.

Let T (T from Turn) (T — 9 ‘< S’ ) tite group of tite rotations of
the plane and of tite rotations of tite preimage círcie.

Remark. Every front class is invariant witit respect to tite group
T.

Theorem 2. If tIte front class [y] is invarianí with respect to tIte
symmetry group H, tIten ihere ezisí a front y. E [ji] so thai ff y. E Ty.,
i.e. for any element It of H ihere exist an element r in T so thai

h y,=r y.. (2)

Titis titeorem is stated in [2] witit no proof for sorne special finite
symmetry gronps H.

We first consider tite classification of oriented and cooriented fronts
in tite oriented plane up to the diffeomorpitisms of tite plane and of the
preimage circle preserving tIte orientations. The ftont being coariented,
these diffeomorphisms preserve aiso tite coorientation.

Let fl~ be tite space of immersions of tite oriented circie into tite
space of tite cooriented contact elements of tite oriented plane witit fixed
índex i and Maslov índex ji, and A

1¡i¡ I~l tite corresponding space if only
tite absolute values of the indices are fixed. la titis second space, consider
tite action of tite following involutions:

Involution E: it reverses tite orientation of the plane.

Involution a: it reverses tite arientatian of tite preimage circie.



Reniarks on the Symmetries of Planar Fronú 359

Involution e: it revenes the coorientation of the front.

We represent an element of AIjj¡¡,11 as the graph of tite appllcation
of tite circie into M

3, i.e. as a curve -~ llving in tite space 9 x M3 witit
coordinates

t(mod2ir), x(t), y(t), «t)(mod2ir).

Ihe action of an element r(a,e> of T on an L-immersion, i.e. tite
rotation of the preimage circle of an angle a and tite rotation of an angle
O in the plane (x, y) is titus represented by the following transformation
of ~‘ into 1’:

t’ =t+a
= (cos6)x — (sinO)y ()

y’ = (cos6)y + (sin6)x
= ~+ e

Moreover tite involutions E, a and e acting on tite front classes can
be represented witit tite following matrices acting on the immersions
respectively:

involution E:
a=(~ 2 2 Si (4)

involution a: 2 (5)

involution e: 43 ~‘ ~ (6)
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Titese involutions generate a commutative group RO (Reversing
Orientations) of order 8, whose elements coincide with their inverse ones.
They are denoted by

1, a, b, c, ab, ac, bc, abc.

Let H be tite symrnetry group RO or a subgroup of RO. We want
find the classes invariant under tite action of tite symmetry group H.
Hence, using titeorem 2, we search for a solution (5ff,r~) of tite system
of equations

h< ~ = T~ ‘7jj (7)
where It1 are tite generators of tite group fi and r~ are particular elernents
of the group T. II such a solution exists, titen tite front class containing
y~ will be tite requested H-invariant class.

1=2 p=
2 i=—2 p=2 í=—2 ~2 1=2 p=—2

[y] ¡ay] ¡by] ¡cyJ

[abcy] ¡bey] ¡acy] [ab-y]

Fig. 3
Tite eight asymmetric classes

360
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Definition 2. We cali asymmetríc class a front class whicit is nat
invariant by any subgroup of RO different frorn tite identity.

Tite action of RO an an asymmetric class of .Nj1¡,¡~1 transforms it
into 8 different asymmetric classes, with different values of tite signs of
tite nanzero indices.

Example. See fig. 3.

Definition 3. We cali simply symmetric c¡ass a front class witicit
is invariant anly with respect to a subgroup of arder twa of RO.

Every element p of RO different from the identíty 1 generates a
subgroup of RO of order 2. We denote by R(~) this snbgraup, by [yp]
tite class invariant only with respect to R(~), by $ tite curve, solution
of equation (7), and by y,, its correspanding front. Tite action of RO on
a simply symmetric class transfarm it into 4 different simply symmetric
classes in

Definition 4. We cali supersyrnmetric class a front class wldcit is
rnvaríant with respect to a subgroup of arder faur of RO.

Two elernents pi and p2 of RO different from tite identity 1 gen-
erate a subgroup of RO of arder 4 (1, pi, Pí, p1p2). We denote
by R(,,1)(~2) this subgroup, by [y,,1,,,2]its invariant class, by ~P1,P2 tite
curve, salution af equatian (7) and by y,,,,,,2 its corresponding frant. Tite
adían of RO on this class transforms it into 2 different supersymrnetric
classes in AIIiUIMI

Theorem 3. 1) There are no ínvariant classes under the action
of tIte entire group RO. U) TIte front classes invariant with respect to
tIte subgroups R<4>, R<c» R(0b), R(00), R(bC>, R(abc), R(a)(bc), R(~)(~b),

are not void. They are usted in tIte following table, where tIte
solutions of eq. (7) for every subgroup are shown in tIte identities in tIte
second column.
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Numbe, Space
of mv. cl. of mv. cl.

R<a> = (1,a)

R(c) (I,c)

R(ab) (I,ab)

aya = T,r,O ya

= fl,~00 ‘i’c (~)

alñab = T00 j’ab

R(ac) = (1, ac)

= (1,bc)

R(abc~ (1~, abc)

R(a),(bc> =
(1, a, bc, abc)

=
(1, c, ab, abc)

R(ab)(bc> =
(1, ab, bc, ac)

acyac = rr,o yac

bc5b0 = ~o,o Ybc

abc$26~ = T0,o yabc

aya,bc = rro y~,&
bCj’a,bc = ro,o y0,b~

cy0,0b = Tr+ú a yc,ab C~)
ab f job = TO,O ~

ab¶ab,bo = Tr,O yab,bc
bc Yab,bc = ro,0 y0b,b0

4 go,0

4 go,IttI

~
2

2

2 Ko,o

(9 a = (2n + 1)~ (symmetry of order p even,), or a = 2nr (sym-
p

rnetry of order p odd).

Proof. Consider tite subgroup R(b) (1, b). Tite solution of tite
equation (7) far tite symmetric front y~ daes not exist. According to
thearem 2, titere are not R(ú)-invariant front classes. It fallaws that
also tite graup RO cannot itave invariant classes, because titey wonld be
symrnetric witit respect to titis subgraup R(b).

Tite otiter subgroups of RO of arder twa itave invariant classes.
Indeed, according to titearem 2, tite equation (7) has salutians in tite
farms shown in tite table. Such solutions are unique, in tite sense that

Subg.oup Identities Exaxnples

in flgg.

4, 5

6, 7

8, 9

10, 11

12, 13

14, 15

16, 17

18, 19

20, 21
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in every simply symrnetric class [y,,] there exist an element y,, which
satisfies tite correspanding identity sitawn in tite secand column. Tite
simply symmetric fronts explicitly satisfy respectively:

the frant ya satisfles:

—x(t)
y(t)

= x(t + ir)
= y(t + ir)
= «t + ir)

(8)

A simply symmetric
Fig.4

front y0 witit i = O and ji = 2
tite front y~ satisfles:

—x(t) = (cosa)x(t + ir + a) — (sina)y(t + ir + a)
—y(t) = (cosa)y(t + ir + a) + (sina)x(t + ir + a) (9)

where a = (2n+ 1)~ (symmetry of arder p even), ar a = ~ (syrnmetry
of arder p odd). An example of no rotation symmetry, i.e. tSe case p = 1
(a = 2s’rn) is shown in flg. 6. An example of rotation symmetry (p = 2)
is shown in flg.22

y

2’
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1=0 p=2 1=0 p=—2

= kml &i 1 a67~I

IbctI = Iabcy cl’ [acj’~j

Eig.5
Tite four R(

0)-invariant c]asses in JVo,j~q

fI’
¿=0

4,

1
2’

t+r

Fíg .6
A simply symrnetric frant Yc witit i = 2 and ji = O

364
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¿=2 ¡¿=0 i=—2 ¡¿=0

[Ye] = [C7c] jfry — [bcy.,1

[ab-ya]= [abc-y al’ [acy~]

Fig.7
Tite four R<0>-invari ant classes in

the front y4~ satisfles:

—x(—t) = x(t)
y(—t) = ¡4t)

=

365

(10)
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=0

4’

1

Fig.8
A simply symmetric front y0~ witit i = 1 and ji = O

¿=1 ¡¿=0 i=—1 ¡¿=0

[‘rab]= [a67~bi I”l’ab] [b~&I

[Cl’eb] = [abc-y4,,] [oc-yaz,]= ¡bey.,,]

Fig.9
Tite faur R(<g)-invariant classes in

366
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4’) = x(t + ir)

= y(t + ir)

Fig.1O
A simply symmetric front ~ witit z = O and ji = O

¿=0 ¡¿=0

[ticTac] ¡ay0~] =

~ [abcy0~] faby.~1 = [bcy.~]

Fig. 11
The faur R<4~>-invariant classes in X0,0

tite front yac satisfles:

367

y

(11)

Mt
2’
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tite front Ybc satisfles:

—x(—t) = x(t)
—y(—-t) = y(t)

= «t)

Fig.12
A simply symmetric frant y~. witit i = O and ji = 2

¿=0 ¡¿=2 1=0 ¡¿=—2

= cl’

[abjr,,~)= frey

Fig.13
Tbe faur R(&c)-invariant classes in J%fo,j1q

(12)

y

2’
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the front y4~0 satisfles:

x(—t) =

—y(—t) =

=

= 0]

Fig .14
A simply symmetric front yabc witit i = 1 and ji = 2

4,g
2’

~=1 ¡¿=2 ¿=1 ¡¿=—2 ¿=—1 ¡¿=2 .=—1 ¡¿=—2

[l’az,cI= [abt70,,~J ICl’abcJ = [ab~ya¿,<.J [aya&] = [bcy4z,c] [bTaz,c] = [oc-y,,,0]

Fig.15
The faur R(4b0>-invariant classes in

369

(13)
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Cansider now the suhgraups of arder fon.

Subgrollps R(0),(b), R(b),<c), R<óy,(4c-) cannot itave invariant cias-
ses, because their invariant classes would also be invariant with respect
ta R(b), which does not have invariant classes.

The subgroup R(<,),(0> = (1, a, c, ac) has no invariant classes.
Tite equation (7) has no solution, indeed tite supersymmetric front would
satisfy both (8) and (11), which are incompatible.

The other subgroups of RO of order 4 itave invariant classes. Ihe
solutians of eq. (7) are shown in the table, i.e. the supersymmetric
fronts satisfy respectively:

tSe front ya,be satisfles:

—x(t) = x(t + ir)
y(t)=y(I+w) (14)

= #~ + ir)

and
—x(—t) = x(I)

y(t) (15)
=

y

t+r t
2’

—t

Fig. 16
A supersymmetric frant Ya,bc witit i = O and ji = 2.
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1=0 ¡¿=2 ,=0 p=—2

¡l’a.bc] = [oya,bc] = (bcy,,,,~J = [abcy.,,,~] [bya,z,c] = [tibTa,bc] = [e-yaz,
0] = [oc-y,

Fig.17

Tite 2 R(0>,(b0)-invariant classes in

tite front y0,0~ satisfles:

—x(t) = (cosa)x(t + ir + a) — (sina)y(t +
= (cosa)y(t + ir + a) + (sina)x(t +

«t) = «~ + ir + a) + a

where a = (2n+14 (symrnetry of orderpeven), ora
of arder ji odd).

and
= xQ)
= y(t)
= «t)

Zm (symmetry

(17)

371

ir + a)
ir + a) (16)
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In flg. 18 examples of tite case of no rotation symmetry (p = 1) and of
rotation symmetry (p = 2) are given. An example of tite case p = 3 is
shown in flg. 22.

—t

t+gr

p=1

y

2’

•1/

2’

p=2

Fig.18
Supersymmetric fronts yc,ab witit ji = O, i = O and ji = O, i = 1

Fig.19
Tite 2 R(c>,(abyinvariant classes in
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tite front 7ab,bc satisfles:

x(t + ir)

y(t + ir)
= tQ + ir)

—x(—t) =

—y(—t) =

#—t) =

x(t)
y(t)

Fig.20
A supersymmetric front Yab,bc with i = O and ji = O

Fig.21
Tite 2 R(0b>,(b0>-invariant classes in fo,0

ami

(18)

(19)

y

1=0 ¡¿=0

[a-,az, ,z,eJ= [byaz, ,z,~] = [<yaz,,z,c] = ¡abc-,,z,,z,0]Ll’.b,b~] =[aby.z,,z,~] = ¡bc-y4,, z,c] = [aci’0z,z,~J
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3. ROTATION SYMMETRLES

Definition. A planar front y 18 called p-syrnmetric if

y = Ta,/3y

where fi = ~ a = ±fi
y

Proposition. Every p-symrnetric front (p > 1) belongs to one of
tIte 4 foflowing symmetry classes:

Proof. Tite índex i of ap-symmetric front is i = p x i, where 2iri~
is tite total ratatian angle of tite normal vector along a p-th part of tite
front (for example in tite interval [t,t + fi] of tite preimage circie). By
hypathesis «~) = «t+fi)±fi(modulo 2w) so titat 2iri~ = «t+fi)—~(t)
cannat be zero.

Titus tite symmetries allowed are titose witit index dífferent from
zero. For every type of such symmetríes we gíve examples ín flg. 22.

4. OTHER TYPES OF CLASSIFICATION

The aboye dassiflcation conta.ins less refined classiflcatíons.

For example, we can consider tite classíflcation problem witen tite
front class is taken up to diffeomorphisms not necessarlly preserving tite
aríentation of tite circie. Tite answer la titus given by tite aboye table,
where the element b is everywere substituted by tite ídentity. Tite quo-
tient group (1, a, c, ac) has in this case one invariant class, corresponding
of caurse to the supersymmetric class [yc,ab] = [y0b,b0]

Remark. lii alt sucit less refined classiflcations, ah subgrouips itave
invariant classes.
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Fig.22
p-symmetric fronts wíth their RO-symmetries

Example. The involution a considered in [1,2] acting on tite C1
ímrnersions of the circle into the plane (the coorientation defined by tite
normal vector being not considered) itas invariant classes.

The classiflcation “np to the citange of an orientation” can be also
seen as a classífication forgetting sucit oríentation. Hence tite quotient
group (1, a,b, ab) acts also on planar nonorientable fronts witit semí-
integer índex (í.e. with an odd number of cusps), witich can be defined
as projections onto tite plane of legendrian immersions of 5’ into tite
space of non oriented contact elements of tite plane M3 — PT~R2 (witere

—* M3 is tite double covering.)

[7461

o
p==6 j~=5

(labe]

p=3

[l’c,az,1

p=3p=2
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5. DLVERTISSEMENT

Associate to every smootit segment of a oriented and cooriented
front in tite oriented plane a sign s in tite following way: if tite pair
(orienting tangent Vector, coorienting normal vector) defines tite positive
orientation of the plane (x,y), titen s = 1, otiterwise s = —1.

Tite sign citanges at every cusp of tite front.
Define now the length 1 of afront as tite algebraic sum of the lengths

of tite píeces witit titeir signs. We have associated to the front a real
number ¡ (its lengtit).

Remark. The sign of 1, if there are cusps, is not an invariant of
the front class (see flg.23)

= —1

Fig. 23

2 fronts of tite same front class and opposite values of the sign of ¿
However lis invariant in every T-class. The analysis of symmetries,

by titeorem 2, is inade inside T-classes, so titat we use tite number ¡ as
an invariant.

Ihe sígn fofa front citanges for ah tite involutions E, a and e. Titis
means titat tite fronts whicit are ínvariant with respect to tite snbgroups
14a), R(b), fi(0) ami R<0ó~> itave all ]ength zero, ami titose whicb are
invariant for tite other ones can itave positive or negative lengths.

We visualize tite symmetries of tite group RO acting on tite fronts
using a cube (see fig. 24): tite 8 vertices of tite cube represent an asym-
metric front witlx index i, Maslov index ~¿¿aud lengtb ¡ under tite action
of tite 8 elements of RO.

s=I

¿>0 ¡<0
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Fig. 24
Tite cube of the symmetries RO

Tite cube belongs to 3-dimensional space with coordinates (1, ji, i)
so that different values correspaud to every vertex.

Tite planes ¡ = O , ji = O and i = O represent tite fronts invaríant
under tite action of tite subgroups of order two R(080), R(4b) and R(b~)
respectively (tite action is the reflection on titese planes).

The rotations by an angle ir around the 3 principal axes represent
tite other 3 subgroups of order two: R(<,) (i = 0,1 = O), R(c) (ji = 0,! =
O), and Rcoc> (i = 0,ji = O).

Tite principal axes represent the fronts invariant under tite action
of tite subgroups of order four. Every axis is in fact ínvariant under the

R< a,,)
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rotation around ítself and under Ihe reflection witit respect to tite planes
containing it.

Remark. In titis scheme tite subgroups R(b) and R(4,0>, which itave
no ínvariant classes, leave invariant only the origin.
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