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REMARKS ON THE TREATMENT OF 

HETEROGENEOUS CATALYSIS 

By 

Jura HORIUTI *) 

Summary 

The mass action law successfully applied to homogeneous elementary reactions (or steps 

for short) was shown applicable to heterogeneous steps only in unexpectedly limited cases 

on account of the quantum-mechanically inferable interaction among adsorbed species. In 

case of an appreciable interaction, especially when it varies, e. g. with change of concen­

trations in question, the rate of step could only be reasonably dedt:ced from the statistical 

mechanics of the whole mass of interacting species which IS usually macroscopic and in 

thermal equilibrium.7 ,S) The rate equation thus deduced is called the generalized rate 

equation, which includes the rate equation of the absolute rate theory,I.2) applicable along 

with the mass action law, as its special case. 

The generalized rate equation was illustrated and the critical state of a step was located 

for contrasting the generalized rate equation with the absolute rate theory,l,2) The rates 

of the Langmuir-Hinshelwood and Rideal mechanisms were derived as functions of concen­

trations of reactants in gas phase by the mass action law, on the one hand, and by the 

generalized rate equation ignoring the interaction among adsorbates, on the other hand. 

The functional forms obtained in the respective cases were identical as otherwise generally 

demonstrated and their comparison revealed the statistical mechanical contents of kinetic 

constants involved in the former derivation, directing toward the incorporation of interaction. 

The incorporation of interaction was exemplified systematically as follows with the 

catalytic mechanism of hydrogen electrode reaction, where the recombination of hydrogen 

adatoms determined the rate. 

First, the mass action law was applied as usual assuming that (1) the activity of hydrogen 

adatom, It, was proportional to its covered fraction, 8 (IJ), in analogy to the activity of dilute 

gas proportional to its concentration and that (2) no interaction existed among adsorbates 

inclusive of hydrogen atoms in the critical state. We then have T=(RT/F)a In i+,I/ar; =2 

throughout, where i+,l is the forward unidirectional current density proportional to the 

rate of recombination and r; the overvoltage of hydrogen electrode reaction. This conclusion 

conflicted with observation of T around 0.5 which has long been taken the leading ground 

against the catalytic mechanism. 

Second, the assumption II) was left off on the ground that the activity of IJ IS pro­

portional to 8(IJ)/(1-8(IJ)) rather than to O(IJ) in case of exclusive occupation of a site by 

*) Research Institute for Catalysis, Hokkaido Univ., Sapporo, Japan. 
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one Ii as seen from the Langumuir adsorption isotherm derived from the same premise. 

Staying yet with assumption (2), , was found 2 at low 1) but decreased steadily with increase 

of 1) down to 0; T stayed however around 0.5 only for a few tens m V in contrast with for 

several hundreds m V as observed. 

Third, the exchange repulsions among adsorbates were taken into account approximating 

the repulsive potential as proportional to 8 (Ii) (proportional approximation), thus leaving off 

both the above assumptions; T was thus found around 0.5 for about 200 m V.3l 

Fourth, the proportional approximation was examined as regards the situation that the 

repulsive potential increased with approach of adsorbates so rapidly that nearest neighbours 

appeared with far less probability than 8 (IJ) assumed in the proportional approximation. 

Conclusion was that a sufficient accuracy was securable by treating the repulsions of the 

first nearest neighbours discretely but those of further neighbours by the proportional 

approximation.15l 

Fifth, the repulsive potential was determined as 1.5 times the exchange repulsion6l by 

comparing adsorption isotherms derived by the above procedure with observed ones, in 

conformity with Toya's theoretical conclusion4l that the exchange repulsion was reinforced 

by the energy elevation of IJ due to shortage of conduction electrons caused by crowd of 

IJ'S.4 l ,calculated on this basis remained a proper fraction for ca. 500 m V range of 1) in 

accordance with experiment. 

,=2 was deduced from the catalytic mechanism at extremely low 1) by every approxi­

mation mentioned above, whereas, =0 at extremely high 1) was inferred by every but the 

first approximation as seen above. That T = 2 or 0 at the respective extremity was experi­

mentally verified.16· 19 l 

Introduction 

It is fairly usual to deal with kinetics in terms of the mass action law 

or of the appropriate rate constant of each constituent elementary reaction of 

the overall reaction in question; elementary reactions are called steps for 

short in what follows. The mass action law has thus hitherto been suc­

cessfully applied to homogeneous steps and extended, perhaps habitually, to 

heterogeneous steps, which constitute heterogeneous catalyses. The set of 

particles involved in a step is called its system, the state of the system prior 

or posterior to the occurrence of step the initial or final state of the system 

and the system in the respective state the initial or final system respectively. 

The mass action law applies and hence the appropriate rate constant is 

actually constant at constant temperature in case, where the system of the 

step in question is statistical mechanically independent. The system of hetero­

geneous step is understood here to include sites on catalyst's surface required by 

the step and its dynamical state is defined by coordinates and momenta of its 

constituent particles. A system is termed statistical mechanically independent, 

if the probability of finding the system in any dynamical state is independent 
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of species of varying population. The interaction of the system, e. g. with 

adsorbate of varying population on the catalyst's surface may vary the proba­

bility of dynamical states of the system in question statistically in the neigh­

bourhood of catalyst's surface, disqualifying the system from being statistical 

mechanically independent, and in consequence the specific rate or the rate 

constant may vary with the varying population of the adsorbates. The mass 

action law thus does not apply in case where the appropriate system is not 

statistical mechanically independent. 

A step of statistical mechanically independent system may be dealt with, 

as if the system existed alone in vacuum or in a definite medium at a constant 

temperature as done by EYRING et at.,!) and EVANS and POLANYI ;2) a system 

thus getting into step is likened to a molecule of dilute gas colliding with wall 

or to a molecule of dilute solute in a definite solvent colliding with semi­

permeable septum. 

It is important to review the statistical mechanical independence of hetero­

geneous steps which constitute heterogeneous catalyses. A radical effect of the 

repulsive interaction upon the kinetics of recombination of hydrogen ada toms 

has been inferred by OKAMOTO, HORIUTI and HIROTA3
) on the basis of 

assumption that hydrogen adatoms exerted quantum-mechanical exchange re­

pulsion upon each other as well as upon those going to recombine, and of 

the inference from the observed adsorption heat that there subsisted the 

population of hydrogen ada toms of the order of magnitude of monolayer. 

TOYA4
) has developed the quantum-mechanical theory of adatoms on metals 

from first principles4
) concluding that the repulsion among adatoms was greater 

than the exchange repulsion on account of the shortage of condution electrons 

required for forming covalent bonds of H's, when crowded; the shortage 
'" 

gives rise to the decrease of bond energy, which is accounted as the repulsive 

potentia14
) between H's. 

~ 

The repulsion, if strong, would not, however, affect the probability of 

dynamical states of systems, were the population of repulsive adsorbates low 

enough. The population of adsorbates is given often in terms of covered 

fraction. Consider adsorbates which cover one tenth of 1015 cm 2 physically 

identical adsorption sites on the surface of catalyst, as one would say of 

moderate coverage. The thickness of the surfase phase ought to be of the 

order of magnitude of 10 8 cm in consistence with the latter two-dimensional 

concentration of adsorption sites. The three-dimensional concentration of 

adsorbates in the surface phase is 1015><O.1/108=1022cm3, which is compa­

rable with the concentration of liquid molecules. Adsorbates in the surface 

phase are thus crowded enough in this measure of population. SWEETT and 
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RIDEAL5
) have observed the hydrogen adsorption on Ni at 1O-3 mmHg partial 

pressure of hydrogen and room temperature; the adsorption was verified to 

have attained the practical completion of monoatomic layer of H's or the full 
* 

occupation of 1015 sites cm- 2 by analyses of the experimental results.5,6) 

It is in consequence an inevitable conclusion from thess results that 

systems of heterogeneous steps are subject to pronounced effect of adsorbates, 

whose populations vary in general along with the activity of the system in 

question. The rate of step would then only be reasonably derived by applying 

the statistical mechanics to the whole body of interacting species. The latter 

body, in which the step of interest is going on, is usually macroscopic and 

in temperature equilibrium; the body is called the assembly and the rate 

equation thus derived7
,8) is called the generalized rate equation. 

The present paper is concerned with the illustration of generalized rate 

equation and with the demonstration of radical difference in kinetics of hetero­

geneous catalysis derived by the mass action law of constituent steps from 

that derived by the generalized rate equation with due allowance for the 

interaction. 

1. The Generalized Rate Equation 

The generalized rate equations of the forward and backward rates, v+(s) 

and vjs), of step s are7
,8) 

v+(s) = K(s)(kT/h)p(:fs)/ p(I.) , vjs) = K(s)(kT/h)p(:f.)/p(F.) , 

(1. f), (1. b) 

where K(S) is the transmission coefficient equal to or less than unity, kT/h 

of usual meaning and p(:f.), p(I.) or p(F.) is the factor, by which the partition 

function, O~, of assembly ~ is multiplied, as the critical, initial or the final 

system of the step, respectively denoted by :f., Is or F., is added to assembly 

~. Since -kTlnO~ is identified with the Helmholtz energy of~, -RTlnp(o) 

gives the chemical potential, p(o), of species 0 representing :f., I. and F., i. e. 

p(o) = -RTlnp(o). (2 ) 

The critical system, :f., is defined as follows. Consider the configuration 

space of the whole assembly of a definite composition except for a single 

system of the step in question, which alone is left free to assume the initial, 

final and intermediate states. There exist thus two regions in the configuration 

space relevant to the initial or final state respectively, which do not overlap 

each other, inasmuch as the configuration of the initial system differs from 

that of the final system. The region is called the initial or the fianal region 
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according to its relevance to the inintial or final state respectively. A hyper­

surface is now extended through the configuration space to partition the initial 

region from the final one. The hypersurface is now varied to minimize the 

transit rate through it of the representative points of the canonical ensemble 

of the assembly. The hypersurface thus adjusted is called the critical surface 

and the system is called the critical system as the appropriate representative 

point of the assembly is just on the critical surface. 

In the particular case, where the system of the step is statistical me­

chanically independent, the critical surface partitions the partial configuration 

space of the system into regions relevant to the initial and final states re­

spectively independent of any other coordinates than those of the system and 

gives the minimum transit rate of representative points of the canonical ensemble 

of the system among those hypersurfaces which partition the partial configu­

ration space similarly. The hypersurface of the minimum transit rate in the 

partial configuration space is the intersection of the general critical surface 

defined above, with the partial configuration space of the system, which will 

be called the critical surface of the system. The critical system is in this 

case the system with its representative point situated on the critical surface 

of the system. In the particular case of a step in dilute gas, p(:f:8 ) in Eqs. 

(1) is reduced to the partition function of the single critical system in the gas 

phase. The p(I8) or p(F.,) of Is or F. consisting of molecules, Is,,; or F,,f, as 

1,= I: Is,,; or F8= I: F',f' is given as P (Is) = IIp (Is,,;) or P(F8)= IIp(F8,f), where 
,; f ,; f 

p(Is,i) or P(FS,i) is the partition function of a single Is,,; or F8,f in the gas 

phase divided by the total number of I",; or F8,f respectively.*) The gener­

alized rate equation is thus reduced to the form identical with the absolute 

rate equation of EYRING et al.,!) although the contents of the partition function 

of the critical system is not necessarily identical with that of the activated 

complex of the latter group of authors.!) 

In the further particular case, where the critical surface of system passes 

through the saddle point of its potential energy and the potential energy is 

maximum along the normal to the critical surface at the saddle point, the 

partition function of the critical system becomes identical with that of the 

activated complex, hence the rate equation as well with that of the absolute 

reaction rate theory.!) 

*) cf Eq. (9) and its derivation, noting that the partition function of a single molecule in 

dilute gas is proportional to volume of the dilute gas. 
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2. Location of the Critical System 

The location of critical system is illustrated by the simple example of 

combination of hydrogen and chlorine atoms to form a hydrogen chloride 

molecule assuming the relevant system statistical mechanically independent in 

order to show how the critical system contrasts with the activated complex. l
) 

The potential energy of the system, U(r), is given by the Morse function, 

U(r) = D {l-e n(r-,oe)V, 

as a sole function of the distance r between the constituent atoms, where D= 

106.4 kcal/mole, a= 1.869 A-I and re= 1.275 A are constants spectroscopically 

determined. The kinetic energy, K. E., is given, in terms of polar coordinates, 

r, 8 and cp for the relative position of hydrogen and chlorine in line with the 

above expression of potential energy, as 

K. E. = lvI (X 2 + in + 22) + -'1_ (r2 + rYl + r2 sin28cp) , 
2 2 

where M = mH + mCI, mIl or mCI is the mass of H or Cl atom respectively, 

X = (mnXH + mClxCI)/(mIl + mCI), Y = (mHYH + mCI YCI)/(mH + mCl) and Z = (mnzH + 
mClzCI)/(mH + mCI) are rectangular coordinates of the centroid derived from 

those, XH, Yn and ZH, of H and XCI, YCi and ZCl of Cl, and p= mHmCl/(mH + mCI) 

is the reduced mass. The K. E. is expressed in terms of momenta, Px= 

a(K. E.)/aX =MX, py=M}T, Pz=MZ, p,.= pr, Po= pr2!j and P.= Pl:2 sin28¢, as 

Statistical mechanics states now that the number, dN, of representative 

points of the canonical ensemble of the system in the elementary volume of 

its phase space, dr=dyelyd z drd8dcpdh-dPydp;dAdp,dP., is given as dN = 

C exp [ -(K.E. + U(r))/kT] dr, where C is the proportional constant. The 

initial and the final state of the system is described in terms of the polar 

coordinates as r); re and rc::::. re respectively. The hypersurface, which divides 

the initial region from the final one, is expressed as r= r(8, cp), where r remains 

greater than re but about of the same order of magnitude as re' The transit 

rate of representative points of the canonical ensemble of the system through 

the hypersurface is derived first rewriting the above expression of dN as 

where 
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dG = Cexp ( -p~y{~t;Pt)dXdYdZdhdPydPz. 

The integration of dN over X, Y, Z, PX,Py,PZ,PO and P9 IS 

CV(27rMkTr27rpkTr sin fJ exp ( - j)j/2~; U(~ )drdBdcpdPr , 

where V is the volume available for the centroid, i. c. the integral of dX dY dZ, 

and the integrations over Px, Py, P z, Po and P. are carried out respectively from 

-00 to + 00. 

The quotient of the above expression over r 2dr sin 8 d8 dcp, 1. c. 

CV(27r1l1kTj3J227rpkTexp( _P~/2~; U(r)) dpr is the density of representative 

points at r, 8 and cp in the partial configuration space extended by r, fJ and cp 

withpr lying betweenPr and Pr +dpr. Let a be the angle between the normal 

to the surface element over solid angle dQ = sin 8 dfJ dcp and the radius vector 

to the center of the surface element. Its area is r sin fJdfJdcp/cosa and the 

transit rate of representative points through it from greater r is given by the 

product of the velocity of representative points normal to the surface element, 

i. c. - Pr cos a / p, the area of the surface element and the density of repre­

sentative points given above, as 

-CV(27rMkTt227rpkTr2 sin 8d8dcp(p,./p)exp ( _p;.j2~; U(r) )dPr . 

Integrating the above expression over p,. from - 00 to 0, we have 

AdQr2 exp (- U(r)/kT) , where A = CVkT(27rMkTj3/227rpkT. 

The coefficient of solid angle dQ ==. sin 8d8dcp, i. c. Ar exp (- U(r)/kT) depends 

only on r and attains the minimum at r= rm = 5.273 A, where aU(r)/ar= 2kT 

and U(r)= 106.3 kcal/mole. 

The transit rate of representative points through a hypersurface element 

extending a definite solid angle thus attains the minimum at a common value, 

rm , of r irrespective of the orienation of solid angle. It follows that the 

equation of the critical surface is r= r"" which is a hypersurface in the six 

dimensional configuration space. The total transit rate of representative points 

through the critical surface is obtained by integrating the above expression, 

AdQr;,exp( - U(rm)/kT), over Q as CVkT(27rMkT]3/2S7r2pr;,kTexp( - U(rm)/kT). 

The V may be identified with the volume of the container in case, where the 

pair of atoms at r= rm is practically regarded as a point in the container. 

It may be mentioned that the critical state is located on the basis of the 

principles presented in 1. in the utter absence of any saddle point of potential 

energy. 
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3. The Effect of "Third Body" on Rates 

It is well-known that "third body" accelerates steps, e.g. recombination 

of hydrogen atoms in gas by removing the excess energy over that in the 

final state. This is the case where the momentum of system in question is 

exchanged with surroundings through encounter with the "third body". It is 

now shown that the momentum exchange between the mode of motion or­

thogonal to the critical surface and other modes of motion can as well decrease 

the rate, if too frequent, by decreasing /((s). 

The /((s) is unity provided that 

( i) the momentum exchange is so frequent that the system is stabilized 

practically with certainty as the representative point enters the final 

region. 

(ii) the momentum exchange is not so frequent that the representative 

point retains its momentum normal to the critical surface in its 

neighbourhood until the system is settled down in the final region. 

The so-called "third body" serves for realizing point (i). If the momentum 

exchange is too frequent, representative points transit the critical surface back 

and forth many times before being settled in the final state. Too frequent 

a momentum exchange thus reduces /((s), i. e. the ratio of the rate of step 

to the transit rate of representative points through the critical surface; in the 

case of statistical mechanically independent system of step, the frequency of 

transit through the critical surface remains unchanged irrespective of "third 

body", so that the rate of step should decrease. Too frequent a momentum 

exchange thus reduces the rate along with /((s), giving rise to a "negative 

catalysis" . 

The case where /((s)= 1 or /((s) (: 1 is likened to the flow of dilute gas 

through an orifice on a thin wall, i. e. the molecular effusion, or through a 

long pore, i. e. diffusion respectively as compared with the mean free path of 

gas molecules. The diffusion is the Poiseuille or Knudsen flow according as 

the mean free path is sufficiently smaller or greater than the pore diameter 

respectively. 

The decrease of rate due to too frequent a momentum exchange may 

be the case on application of hydrostatic pressure on an assembly of condensed 

phase, which is, however, associated with the increase of the work required 

for increase of partial molar volume of the system against the applied hydro­

static pressure*) from the initial to the critical state; the latter work is 

*) If the partial molar volume decreases from the initial to the critical state, the hydro­

static pressure accelerates the step from this cause. 
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added to the critical increment of Helmholtz energy of the assembly, i. e. 

-kTln(p(t8)/p(Is)), to decrease the rate of step. These two effects of hydro­

static pressure are hardly separable, insofar as we are dealing with steady 

occurrences of constituent processes of the step, i. e. the activation, transit 

through the critical surface and deactivation. 

4. Heterogeneous Step of Statistical-Mechanically 

Independent System 

Heterogeneous step is defined as a step with its critical system situated 

in a surface phase. The application of mass action law is illustrated by the 

Langmuir-Hinshelwood and Rideal mechanisms in comparison with that of the 

generalized rate equation. 

4.1. The Langmuir-Hinshelwood mechanism is based on the tacit assumption 

of the statistical mechanical independence of the system of step 

( 3) 

which converts adsorbed species, A and B, e. g. H2 and CO2, into free mole-
* * * * 

cules, Cg and Dg, e.g. H20 g and COg, and a pair of unoccupied adsorption 

sites, 2*, which are included in the system. The rate of the step, v,(LH) , 

is thus expressed as kLHO(A)O(B), where kLH is the rate constant and O(A) or 
* * *-

O(B) is the fraction of adsorption sites occupied by A or B respectively. The 
* 

O(A) and O(B) are developed in terms of concentrations of molecules Ag and 
* * 

Bg in dilute gas, [Ag] and [Bg], assuming partial equilibria of steps, 

Ag + * ---> A and Bg + * -, B , 
* * 

as 

where KA and KB are respective equilibrium constants and 0(0) is the fraction 

of unoccupied sites. Admitting that A and B are only adsorbates and that 
~~ * 

the critical system is rare enough to be ignored as regards the occupation of 

sites, we have 

O(A)+O(B)+O(O) = 1, 
* * 

or eliminating (}(O) from the above three equations 

O(A) = KA [Ag]j(l + KA [Ag] + KB [Bg]) , 
* 

(4.0) 

(4. A) 

(4. B) 
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The rate, v (LH)=llLH8(A)8(B), of step (3) is now gIven as 
I .j:: * 

v,(LH) = kLHKAKB [Ag] [Bg]/(l + KA [Ag] + KR [Bo]? (5.LH) 

If alternatively the system consisting of A, Band * is statistical mechani­

cally inderendent, the rate, v,(R)=kR [Ag][Bg]8(O), is given as 

(5.R) 

whether one of A and B is adsorbed and the other from the dilute gas hits 

the adsorbed one to form the critical system or the critical system is formed 

from A and B to liberate one of *, insofar as the critical system occupies 
* * 

just one * and the adsorbed species of the initial system is in equilibria 

with the species in the dilute gas. What is required for the kinetics of Eq. 

(5. LH) or (5. R) to be realized is that the statistical mechanically independent 

system consists of A, Band 2 * or A, Band * respectively and the respective 

initial system is in equilibrium with species in the dilute gas. 

4. 2. Several auxiliary theorems7
) are introduced for application of the gener­

alized rate equation. 

The p(o) defined in 1. is expressed with reference to a small space, a, 

which accommodates species 0, as7l 

p(o) = qu(o)8(O)/8(o) , (6. a) 

where fJ(O) or fJ(o) is the probability that a is vacated or occupied by 0 re­

spectively and qo(o) is the factor by which the partition function, ~Wt(O)' of 

~a(O) is multiplied by addition of one 0 to ~",O)' which has the a unoccupied 

with certainty, to make assembly ~~(J), which contains one more 0 than ~"(O) 

and has the a occupied by one 0 with certainty. 

Eq. (6. a) is verified as follows. The p (0) is given by definition as 

p(o) = mPjDW, (6. b) 

where ew" and ew are partition functions o. assemblies Wand W respectively, W' being 

derived from W by addition of a to W from outside the assembly. 

The q,(o) is similarly by definition 

qAo) = ew~,,) / eWa:O) , (6 c) 

where ew~\" and ew>(O) are partition functions of W~C;) and WJ(O) respectively. We have 

from the above two equations 

pta) = q,())(nwu(o)/C52!)/(e~e,")!CW'), 

where C9IJ(o)/ew and ew~w/cwa are identified with probabilities 0 (0) and 0 (J) respecti\'ely, 

as 

(} (0) = eWu(O)/ew , (j (a) = cW~ca)/ewa (6. d) (6. e) 

by the property of partition function, which verifies Eq. (6. a). 
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The p(o) of a set of species, 0== L: Oi, which are statistical mechanically 
i 

independent of each other, IS gIven as 

p(o) = IIp(Oi) ( 7 ) 
i 

m conformity with the thermodynamic relation, p(o)= L: p(Oi), and Eq. (2), 
i 

where superscript i numbers the constituent parts, Oi etc., of O. 

If a set of species, 0", is in equilibrium with another, Ob, we have m 

accordance with thermodynamics by Eq. (2)1) 

(8 ) 

If 0 is a molecule, Og, in a dilute gas, Eq. (6. a) IS reduced to the form7)*) 

( 9 ) 

where Q(oo) is the partition function of 00 per unit volume and [0
0
1 its 

concentration. 

The p(i=s) m Eqs. (1) is developed m accordance with Eq. (6. a) as 

p(i=.) = N:0:(0)q(i=8) , (10) 

where Nt is the total number of sites at's of critical system i=., 0:(0) the 

probability that a a: is vacated and q(i=8) the special case of qq(o), where 

0==i=8 and a-at; Eq. (10) follows from Eq. (6.a) by observing that the 

probability of finding the unique -I-s **) in a particular a: is the reciprocal of 

its total number, Nt. 

4. 3. The general rate equation is applied to the same mechanisms for com­

parison ignoring interactions among adsorbates; the conclusion is the same as 

that of the mass action law but elucidates the statistical mechanical contents 

of kinetic constants involved in case of the mass action law. 

*) Molecules in a dilute gas are respectively statistical mechanically independent, so that 

om~w in Eq. (6.c) is factored as O~(O)Q(oo)IO'I, where 10'1 is the volume of 0', so that 

Q(og)IO'I is the partition function of a single 00 in 0'. We have thus qq(Og)=Q(og)IO'I by 

Eq. (6.c), hence according to Eq. (6.a), p(Og)=Q(Og)O(O)/(O(og)/IO'I). The 0(00) is the 

probability of finding one of ny's inside 0', while all other og's are outside the 0'. Let V 

be the total volume of the dilute gas and N the total number of gas molecules, oo's. 

The probability of finding a particular 00 inside or outside 0' is IO'I/V or 1-10'1/V re­

spectively, hence the probability of finding a particular Og inside 0' and all others outside 

0' is (IO'I/V)(l-IO'I/V)N-l. The O(Og) is obtained by summing up the latter probability 

over all oa's as O(oo)=NIO'I(V-IO'I)N l/VN, inasmuch as 0(00) is relevant to the state 

with anyone of (jg's inside a. For infinitesimal 10' I, 0 (0) is reduced to unity, while 

O(og)=NIO'I(V-lal)N IjVN to laiN/V or noting that N/V=[og], to 10'1[00]' hence Eq. (9). 

**) Eqs. (1) are arrived at in terms of P(t8) defined for the unique critical system in the 

assembly [Ref. (7)], which is, however, nothing of claiming that there existed physically 

a unique critical system in the assembly at a time. 
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The p(Is) in Eqs. (1) is given for the Langmuir-Hinshelwood mechanism 

by Eq. (7) as 

p(Is) = p(A)p(B) (11. Is) 
* * 

and p(A) and p(B) by Eqs. (8) and (9) as 
* * 

p(A) = p(Ag) = Q(Ag)/[Ag] , p(B) = p(Bg) = Q(Bg)/[Bg] 
* * 

(11. A), (11. B) 

on account of the equilibria between 1- and A g , and between It and Bg , hence 

(12. Is) 

The 0:(0) in Eq. (10) is developed as follows. Eq. (6.a) is written par­

ticularly for A and B as 
* * 

p(A) = q.(A)O(O)/O(A) , p(B) = q.(B)O(O)/O(B) , (12. A), (12. B) 
¥ * * * * * 

hence by Eqs. (11. A) and (11. B) 

Q(Ag)/ [Ag] = q.(/})O(O)/ 0(1}) , Q(Bg)/ [Bg] = q.(B)O(O)/O(f}) . 

(13. A), (13. B) 

The 0(0) is obtained by eliminating O(A) and O(B) from Eqs. (4.0), (13.A) and 
* * 

(13. B) as 

0(0) = {I + (qa(~)/ Q(Ag))[Ag] + (q.(f})/ Q(Bg))[Bg]} -I. (14) 

The a: is identified with one or two a's according respectively to Rideal 

or Langmuir-Hinshelwood mechanism. In case of the Rideal mechanism, 

where a: is a itself, the rate is given by Eqs. (1. f), (10) and (12.Is) identifYing 

0:(0) with 0(0) of Eq. (14). In case of the Langmuir-Hinshelwood mechanism, 

0:(0) of a: consisting of two a's depends on the interaction among adsorbates. 

There should, however, exist no interaction, insofar as the system is statistically 

independent as premised, since if existed at all, the system would be subject 

to interaction with A and B, which varies with O(A) and O(B) along with 
* * * * 

change of [Ag] and [Bg] according to Eqs. (4), (13.A) and (13.B) to contradict 

the premised statistical independence of system. The two constituent sites of 

a* are in consequence quite independently vacated, hence 0:(0)=0(0)2. In a 

summary, the rate per unit area, V,.I (s) , is given as 

v+.b) = lC(s)(kT/h)Ns~lq: [Ag][Bg]/Q(Ag)Q(Bg) { 1 +(qa(~)/Q(Ag))[Ag] + 

+ (qa(f})/Q(Bg))[BgJt , (15) 
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where n is 1 or 2 for the Rideal and Langmuir-Hinshelwood mechanism 

respectively and N8~1 is Nt per unit area. Eq. (15) is identical with Eqs. (5) 

in functional form but illustrates the statistical mechanical contents of kinetic 

constants, kLH' kR' KA and KB in Eqs. (5), providing for allowance for the 

interaction. 

The interaction among adsorbates is by no means ignorable as reviewed 

in the introduction. Kinetics is now allowed for the interaction according 

to the generalized rate equation with a simple example of the catalytic mech­

anism of hydrogen electrode reaction in the following sections. 

5. Catalytic Mechanism of Hydrogen Electrode Reaction 

The rate of hydrogen electrode reaction is determined, according to the 

catalytic mechanism, by the recombination of hydrogen adatoms, H's, which 
* 

are in equilibrium with conduction electrons, e-'s, in the hydrogen electrode 

and hydrogen ions, H+'s, in the coexistent solution. Reviews are given first 

of the usual crude application of mass action law and then of stepwise advanced 

approximations, thus illustrating the effect of allowance for the interaction 

among adsorbates inclusive of the critical system in terms of the generalized 

rate equation. 

A basic relation of hydrogen electrode reaction is introduced as follows 

to proceed with the program. The overvoltage, 1), of hydrogen electrode 

reaction is the excess of potential of a reversible hydrogen electrode in the 

same environment as that of the hydrogen electrode in question over the 

potential of the latter, i. e. 

Fr; = p.(e-)- p.(e-)rev , 

where F is Faraday and p.(e) or p.(e-)rev is the chemical potential of con­

duction electron in the hydrogen electrode in question or the reversible one 

respectively. The p.(H) is given, on account of the equilibrium between H 
* * 

and H+ +e-, as 

The p.(e-)rev is the value of p.(e-) III the equilibrium of hydrogen electrode 

reaction, 2H + + 2e- = H 2 , hence 

2p(H+) + 2p.(e-)rev = P.(H2) . 

We have eliminating p.(e-) and p(H+) + p.(e-)rev from the above three equations 

p(H) = F1) + 1/2· P.(H2)' 
* 

(16) 
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5.1. It is usual to apply the mass action law to the recombination, so that 

the forward unidirectional current density, ii,l, of the hydrogen electrode 

reaction is expressed as proportional to the square of covered fraction of sites 

by H, O(H), as 
* * 

(17, i) 

It is another usual practice to combine O(H) with overvoltage r; of the hydrogen 
* 

electrode reaction, assuming that 

p(H) = RT In O(H) + const. 
" * 

(17. p) 

by analogy to the chemical potential of Og in a dilute gas given as p(Og)= 

RT In [Og] + const. The eliminant of p(H) and O(H) from Eqs. (16), (17. i) and 
* * 

(17.p) IS 

In if,! = (2F/RT)r;+const., 

hence 

'[ = (RT/F)o In i h1 / or; = 2 (18) 

instead of '[ = 0.5 as observed with many hydrogen electrodes. 

This has been taken as the leading ground against the catalytic mechanism, 

paying little attention to the interaction, which renders the mass action law 

inapplicable as mentioned in the introduction. *)9) 

5.2. The treatment in 5.1. is inexact because of Eq. (17. p) which does not 

hold good except for extremely small O(H), and of Eq. (17. i) based on the 

" 
mass action law which does not apply on account of the interaction. We will 

first leave off the crude analogy of Eq. (17. p) but remain for the moment 

with the neglect of the interaction underlying Eq. (17. i) to see how the con­

clusion is changed by this step of approximation and by subsequent ones based 

on the generalized rate equation. 

The exact equation of p(H) is derived from Eqs. (2) and (6. a) reading 
* 

H for 0 and admitting that its adsorption site, a, is either occupied by H or 
* * 
vacated exclusively, i. e. 

0(0) + O(H) = 1 
* 

(19) 

*) HABER and Russ suggested [Ref. (9)] that the discrepancy between Eq. (18) and obser­

vation would be due to the inapplicability of mass action law in accordance with the 

discussion in the introduction. 
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as 

p(IJ) = - RT lnp(IJl = RT In[O(IJ)/ qu(IJ)(1-0(IJ))]. (20) 

The qd(H) is constant independent of O(H) by the premised absence of inter-
* * 

action. We have in consequence from Eqs. (16) and (20) 

F'1) = RTln{0(IJ)/(1-0(IJ))} +const. (21) 

The forward unidirectional current density, i+. b of the catalytic mechanism 

IS proportional to v+.b) of recombination as given by Eq. (1. f). The p(Is) 

in Eq. (1. f) is developed by Eqs. (7) and (20) as 

(22) 

The p(i-s) in Eq. (1. f) is proportional to 0:(0) according to Eq. (10) 10 

the premised absence of interaction, where q(i-s) is constant. The 0:(0) 

depends now on the number of constituent sites of a: as in the case of the 

Langmuir-Hinshelwood and Rideal mechanism dealt with in 4.3. The a: 
consisting of a single a renders the activation energy forbiddingly high as 

seen from a rough survey, while more than two constituent a's of at are 

improbable on account of the expanse of the electron cloud of hydrogen atom. 

Admitting that a: consists of two a's on this ground, 0:(0) is equated to 

0(0j2 or (1-0(H)j2 by Eq. (19) on account of the premised absence of interaction 
* 

as in the case of 4.3., so that 

Substituting p(Is) and p(i-s) from the above equations into Eq. (1. f) we arrive 

at Eq. (17. i) to establish it as exact in the absence of interaction. Eq. (17. i) 

is the special case of Eq. (15), where n=2, ~==Bg and A==B==H, as seen 
)f: * ::,.; 

from the eliminant of 8(0), [Ag]/Q(Ag) and [Bg]/Q(Bg) from Eqs. (13. A), (13. B), 

(14) and (15) in the special case, i. e. 

(23) 

noting that iO.1 equals two elementary charges, 2e, times v i.I(S), 

Eq. (17. i) gives, on the other hand, on substitution of O(H) from Eq. (21), 
* 

In i".1 = - 2 In [(I/C) exp (-Fr;/RT) + 1] +const. , 

hence 

1: == (RT/F)a In i .1/ ar; = 2/[ 1 + C exp (Fr;/RT)] , 
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where -RTlnC is the const. in Eq. (21). The above equation states that 'r 

decreases with increase of r; from 2 to 0 and stays from 0.6 to 0.4 for only 

14 m V increase of r;10), whereas experimentally 'r stays in the same interval 

for several hundreds m V increase of 7J. 

5. 3. We review in this and subseq1,1ent sections the results of allowance for 

the interaction in stepwise advanced approximations. 

OKAMOTO, HORIUTI and HIROTA3
) approximated the reversible work,*) 

- RT In qq(H), as 
* 

-RTln qq(H) = -RTln qq(H)o+uO(H), 
* * * 

(24) 

where qq(H)o is the particular value of qq(H) in the absence of interaction 
* * 

and u the proportional constant of the excess of the reversible work due to 

repulsion or the sum total of the repulsive potentials of an H due to H's 
* * 

fully occupying its surroundings. Substituting qq(H) from the above equation 
* 

into Eq. (20) ·and. referring to Eq. (16) we have in place of Eq. (21) 

Fr; = RTln [0 (!f)j (1-0(!f))] + uO(I;;I) + const. (25) 

Eq. (25) states that uO(H) retards the increase of O(H) with increase of r; the 
* * 

more, the greater u is and the remoter O(H) is from 0 and 1. The q(i:.)o 
* 

m Eq. (10) is similary allowed for the interaction as 

- RT In q(i:.) = - RT In q(i:.)o + u:O(H) , .. (26) 

where q(f.8 )0 is the value of q(=I=.) in the absence of interaction and u: IS 

the proportional constant or the sum total of the repulsive potentials of =1=. 

due to H's fully occupying the surroundings. The approximation of Eqs. (25) 
* 

and (26) is called the proportional approximation in what follows. OKAMOTO, 

HORIUTI and HIROTA3
) arrived at the equation,**) substituting qq(H) and q8(i:8) 

* 

*) This is the work required, as seen with reference to Eq. (6. c), to derive \ll;(l) by addition 

of 0 to \llq(O) keeping the whole assembly in statistical mechanical equilibrium, per mole 

addition of 0; this follows from the property of partition function that -kTln \ll;(O) and 

-kTln \llq(O) behave as the Helmholtz energies of assemblies \ll~(J) and \ll.(0) respectively. 

**) This equation is not exact because of equation O~ (0) = 0 (0)2 derived for the absence 

of interaction in 4.3., which underlies Eq. (23). since in the presence of interaction a 

site is vacated not independent of the occupied or vacated state of its adjacent site. 

This point has later been dealt with consistently [Ref. 11], which approximated the 

theoretical ,-value to the observed one. 
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from Eqs. (24) and (26) respectively into Eq. (23), 

i t • l = 2e!C(s)(kT/h)N8~l (q(;t8lo/qq(If)~) O(If) exp[ -(ut -2u)O(If)/RT], 

(27) 

where N8~l is the number of sites of critical system per unit area. Eq. (27) 

gives i+. l as a function of 1) with reference to Eq. (25). 

The current density has thus been worked out by evaluating constants, 

N/:;, q(i8 )0, qq(l})o, ut and u, assuming the latter two to consist purely of 

exchange repulsion.3
) The i t •l practically equals its excess over the backward 

unidirectional current density, i_,l, i. e. the directly observab!e current density, 

i+,l-i_,l, for 1) above 50 m V as follows from Eq. (33), where most of obser­

vations are conducted. The range of 1), where " remained a proper fraction 

was thus calculated to extend to 200 m V, 3) although not as much as observed. 

It has been shown on the other hand by analysis of adsorption isotherms6
) 

that the repulsive potential among hydrogen adatoms was 1.5 times as large 

as the potential of exchange repulsion estimated by OKAMOTO et at.3
) in 

accordance with the Toy A'S conclusion4
) referred to in the introduction. The 

observed range of 1), where" remained a proper fraction, has been theoretically 

accounted for by advancing the approximation on the base of the multiplied 

value of repulsive potential. l2
) 

5.4. The proportional approximation illustrated in 5.3. would be justified, 

provided that H appeared with probability O(H) even on sites nearest to that 
* * 

occupied by H or i.; this cannot be the case in the presence of repulsion, which 
* 

extraordinarily reduces the probability of appearance of H's on the nearest 
* 

sites. In order to advance the approximation it needs take account of repulsions 

of direct neighbours individually instead by the proportional approximation. 

This is exemplified in the calculations of adsorption isotherm in this section 

and of current density in the next section with an extremely idealized model 

on the basis of the statistical mechanical theory introduced in the foregoing 

sections. 

Suppose that each of hydrogen ada toms is situated on one of sites fur­

nished by the atom row in the [110] direction on (110) lattice plane of fcc 

crystal and that interactions are present only between direct neighbours on 

the row. Let L: be a set of three consecutive sites on the row each of which 

accommodates a critical system or H. The partition function, D~q (0), of 
* • 

assembly ~qo(O) in a particular state with the middle site, ao, of L: vacated is 

developed in terms of the partitition function, D~L:(o), of assembly ~l:(0) with 
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L: vacated altogether, as 

D~q"(o) = D~E(o)[l+ (qq(lJ)ol;:/p(IJ))r ' 

where l/p(H) is the factor by which D~E(O) is multiplied as an H is extracted 
* * 

from somewhere in ~E(O) outside L:. As the extracted H is brought onto 
* 

one of the two end sites of L:, the partition function is further multiplied by 

the factor, qq(H)ol;:, where l;: is the Boltzmann factor of the extra work due 
" 

to interaction with H outside L:. 
* 

The partition function, D~E(O)' is thus 

multiplied by factor qq(H)ol;: / p(H), as an H is transferred from somewhere 
* * * 

outside L: onto one of the end sites of L:. If one of end sites of L: is left 

free to be either vacated or occupied by H, the appropriate partition function 
* 

is 1 +qq(H)ol;:/p(H) times D~E(O). By leaving the other end site of L: as 
* * 

well free similarly, the partition function is further multiplied by the same 

factor, 1 + qq(H)o l;:/p (H), on account of the premised absence of interaction 
* * 

between H's on both end sites of L:, hence the above equation. The above 
* 

equation is written in terms of 

so = qq(l})o/p(l}) (28. a) 

as 

(28. b) 

The partition function of the assembly with the middle site of L: occupied 

by H is developed as 
* 

(28. c) 

where D~E(O) SO is the partition function of the assembly with the middle site 

alone occupied with certainty by one H brought from somewhere in the as-
* 

sembly outside L:. By bringing another H in addition from somewhere in 
* 

the assembly outside L: to one of the end sites, the partition function is 

multiplied by the factor, sol;:~, where ~ is the Boltzmann factor of the additional 

work due to the premised interaction with H on the middle site. By leaving 
* 

one of the end sites free to be occupied by H or vacated, the appropriate 
* 

partition function is D~E(O)SO times 1 + sol;:~ and by leaving the other end 

site as well similarly free, the partition function gains another same factor 

1 + sol;:~ on account of the absence of interaction between H's on the two 
* 
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end sites of L;, hence Eq. (28. c). 

D~. (0) and D~. (H) complete the partition function, D~, of the micro-
o 0 * 

scopically unconstrained assembly, ~, i.e. 

D~ = D~. (0) + D~q (H) , 
o 0 * 

hence according to Eqs. (28. b) and (28. c) 

D~ = D~:E(o)[(1+9(Y+9(1 +9(';=)2]. (29. a) 

The ratio, O~q (o)DW-. (H), equals (1-0(H))jO(H), on the other hand, as follows 
o 0 * * * 

from the property of partition function, hence according to Eqs. (28. b) and 

(28. c) 

(29. b) 

The partition function, D~ •. (o), of assembly ~ •. (o) of the same composItIOn as 

~, but with one of the end sites, 0"1, of L; being vacated with certainty IS 

given as 

(30. a) 

The terms in the parentheses correspond in order respectively to the state of 

L; unoccupied altogether, the middle site only occupied, the end site, other 

than 0"1, only occupied and both sites of L; other than 0"1 are occupied re­

spectively. The ( in the above equations is evaluated in accordance with 

BETHE and PEIERLS 13) equating DW-.o(o) with D~ •• (o) according to Eqs. (28. b) 

and (30. a) on the ground of physical identity of 0"0 and 0"1> as 

(30. b) 

The p(If) of :r: in equilibrium with H 2 ,g, as denoted by p(f!)., is according 

to Eqs. (7), (8) and (9) 

{ }

1'2 

P (I})e = Q (H2,g) j [H2,g] . • (31) 

The \D is evaluated by statistical mechanical calculation of q.(f!)o and Q(H2 ,y) 

according to Eq. (28. a) substituting p(H) by p(H)e for the isotherm. Calcu-
* * 

lating further ~ from the repulsive potential between two adjacent H's, O(H) 
* * 

is determined by Eqs. (28. a), (29. b), (30. b) and (31) as a function of [H2 ,g]' 

5. 5. The current density is now worked out according to the generalized 

rate equation on the basis of the same L: used in 5.4. for the sake of sim­

plified presentation of the procedure; it is assumed that f-s occupies only one 
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of o"'s for H's and that -:1-8 as well as 
* 

H repulses only direct neighbours on 
* 

the atom row in the [110] direction. The q(=I=8){}:(0) in Eq. (10) IS gIven 

in terms of partition functions by Eqs. (6.c) and (6.d) as 

(32. a) 

where D~::("'8) is the partition function of the assembly, ~~:("'8)' derived from 

~'o(o) by adding a F. from outside the assembly to the vacated 0"0' D~~:(",,) 

is developed according to the premise as 

(32. b) 

where D~l:(O) q(F.)o is the partition function of the assembly derived from 

~:E(O) by adding =1=. from outside the assembly onto 0"0 with two end sites 

being vacated with certainty. Transferring further an H from somewhere in 
* 

the assembly outside L: onto one of the two end sites of L:, the partition 

function is multiplied by so(,;"', where ~'" is the Boltzmann factor of the 

additional reversible work due to the interaction with =1=8 on 0"0' Leaving now 

both the end sites free to be either occupied by H or vacated, the partition 
* 

function of the assembly gains factor 1 + SO(,;'" twice similarly to the case of 

Eq. (28. b) or (28. c), hence Eq. (32. b). 

We have eliminating D~jD~:E(o) and D~;:(",jD~:E(o) from Eqs. (32. a), 

(32. b) and (29. a) 

q(F8W:(0) = q(F.)(1 + SO(e)2/ [(1 + soC? + SO(1 + so(,;?] , 

hence according to Eqs. (1. f) and (10) 

V+.l (s) = lC(s)(kTjh)Nt,l q(=I=s)o(1 + SO(e)2/ {p(Is) [(1 + soC? + <;9(1 + SO(~)2]}. 

The so, ( and,; are calculated as described in 5.4. The p(I.) is given 

by Eqs. (22) and (24) for the recombination of H's. The v+.b) is thus 
* 

worked out by evaluating qt,o and e further by definition, provided IC(S) is 

reasonably estimated. 

5.6. Isotherm and current density have been derived in 5.4. and 5.5. re­

spectively, allowing for the interaction of adsorbates with their first nearest 

neighbours discretely but ignoring that with farther neighbours altogether. 

This procedure has now been elaborated by taking account of the interaction 

discretely as far as with the second and third nearest neighbours14
) to work 

out the isotherm of dissociative adsorption of hydrogen on the (110) lattice 

plane of fcc Ni catalyst. The result converged with increasing degree of 
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approximation, indicating the necessary radius of the discrete treatment. 

The L:: in this case included the site observed, (10, and surrounding sites 

as far as H's on them were premised to exert repulsion upon H on (10 as in 
* * 

the idealized case in 5.4. and 5.5.; ~ thus included as far as the first, second 

or third nearest neighbours of (10 and the appropriate approximation was called 

the first, second or third approximation respectively. The first approximation 

is identical with that illustrated in 5.4. in case of (110)-lattice plane of fcc 

crystal. 

It has thus been found that the second approximation differed appreciably 

from the first one but came close to the third approximation. A further 

investigation has shownl5
) that the second approximation was quantitatively 

reproduced by combining the first approximation with the proportional approxi­

mation for the second and third nearest neighbours by replacing qa(H)o in Eq. 
* 

(28. a) with qa(H)o exp( -uIIJII(}(H)/RT), where UIIm is the sum total of repulsive 
* * 

potentials due to the second and third nearest neighbours at (}(H)= 1; the (}(H) 
* * 

was thus worked out by Eqs. (28. a), (29. b) and (30. b) as a function of so. 

5.7. On the basis of the above results the calculation has been extended to 

the rate of recombination of H'S.12) The rate was worked out with reference 
* 

to the L::, which includes, besides the two constituent sites of a:, every first 

nearest site to either of the constituent sites of a:; L:: thus consisted of 6, 

8 or 10 adsorption sites of H in the respective case of (110), (100) or (111) 
* 

lattice plane of fcc crystal. *) 12) Repulsive potentials due to the second nearest 

and farther neighbours have been taken into account by the proportional 

approximation after the manner referred to in the foregoing section. The 

repulsive potential was taken to be 1.5 times the exchange repulsion according 

to the result referred to in 5.3 •. 

It has thus been shown that the adsorption as well as the recombination 

of hydrogen electrode reaction takes place predominantly on (llO)-lattice plane 

at 7) below -300 mY, whereas the adsorption attained saturation, while the 

rate of recombination approached a constant value, as 7) increased. 12
) The 

recombination proceeded for positive 7) predominantly on the (l11)-lattice 

plane.12
) The range of 7), where T remained a proper fraction was further 

extended up to ca. 500 m V in accordance with observations.12
) 

The T decreases according to the theoretical conclusion of catalytic 

*) The at; of every possible distance between its constituent sites has been tried on the 

rate on every lattice plane; the number of constituent adsorption sites of L: as mentioned 

in the text refers to the a't of the predominant contribution on each lattice plane. 
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mechanism, from 2 to 0, as 1) increases from extremely low to high a value 

irrespective as to whether or how the interaction among H's is taken into 
'" 

account except for the crude analogy to dilute gas of Eq. (17. p.), where 1: 

stays constant at 2 throughout. The allowance for the interaction extends 

the range of 1), where 1: remains a proper fraction and the range increases 

with increase of the magnitude of interaction. 

5.8. The values of T both at the extremities of 1) have been experimentally 

verified as follows. We have from Eqs. (1) 

V+,l(s)/v-,b) = p(Fs)/p(I8 ). 

The right side equals exp [(2p.(H)- p.(H2))/RT] according to Eq. (2), noting 
'" 

that I s=2If and F s=H2 ,q, hence according to Eq. (16) and the proportionalities, 

i"lCX::V"l(S) and i-,lCX::V_,l(S) 

(33) 

In the lower extremity of 1), where Eq. (18) applies, we have from Eq. 

(33) (RT/F)a In L,l/a1) =0. This conclusion has been verified by OKAMOTO/
6

) 

who observed the anodic current density, i-,l-i+,l, on a hydrogen electrode 

of Ni; i-,l-it,l tended to a limiting value with decrease of 1), where i-,l 

predominated over i+,l in accordance with Eq. (33). The limiting value was 

verified not apparent as that controlled by some transport process on the 

ground of an appreciable magnitude of its temperature coefficient. 

The other extreme value, T=O, at the higher extremity of 1) has been 

experimentally verified by Kita and his collaborators on hydrogen electrodes 

of Ni,17) Ag l8) and CU. l9 ) 

It might have been seen that the kinetics derived from one and the same 

mechanism was drastically changed by allowing for the interaction; without 

allowance the catalytic mechanism led to a conclusion in an explicit dis­

cordance with observations but with allowance the same mechanism accounted 

satisfactorily for experiments. 
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