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Remarks on the Trotter-Kato product formula
for unitary groups

Pavel Exner, Hagen Neidhardt and Valentin A. Zagrebnov

Dedicated to our friend Takashi Ichinose in occasion of his 70th birthday

Abstract. Let A and B be non-negative self-adjoint operators in a separable
Hilbert space such that their form sum C is densely defined. It is shown
that the Trotter product formula holds for imaginary parameter values in the
L2-norm, that is, one has

lim
n→+∞

∫ T

−T

∥∥∥
(
e−itA/ne−itB/n

)n

h − e−itCh
∥∥∥

2

dt = 0

for each element h of the Hilbert space and any T > 0. This result is extended
to the class of holomorphic Kato functions, to which the exponential function
belongs. Moreover, for a class of admissible functions: φ(·), ψ(·) : R+ −→ C,
where R+ := [0,∞), satisfying in addition ℜe (φ(y)) ≥ 0, ℑm(φ(y) ≤ 0 and
ℑm(ψ(y)) ≤ 0 for y ∈ R+, we prove that

s- lim
n→∞

(φ(tA/n)ψ(tB/n))n = e−itC

holds true uniformly on [0, T ] ∋ t for any T > 0.

Mathematics Subject Classification (2000). Primary 47A55, 47D03, 81Q30;
Secondary 47B25.

Keywords. Trotter product formula, Trotter-Kato product formula, unitary
groups, Feynman path integrals, holomorphic Kato functions, admissible func-
tions.

1. Introduction

We open the present paper with a short survey of the main results on the Trotter-
Kato product formula for imaginary times, and reformulate some of them in a form
suitable for further generalizations. This allows us to extend the L2-convergence of
the imaginary-time Trotter product formula to holomorphic Kato functions. Using
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the concept of admissible functions introduced in [6] we prove this result also for
the Trotter-Kato product formula.

It is a longtime open problem to prove that for non-negative self-adjoint
operators A and B in a separable Hilbert space H the strongly convergent Trotter
product formula

s- lim
n→∞

(
e−itA/ne−itB/n

)n

= e−itC (1.1)

holds uniformly in t ∈ [0, T ] for any T > 0, where C is the form sum of A and B,
cf. [13, Problem 11.3.9]. Apart from a pure mathematical interest such a product
formula is tightly related to certain physical problems. In particular, the Trotter
formula provides a natural way to define Feynman path integrals [4, 13]. Note that
extensions of such a definition beyond the essentially self-adjoint case allows one
to treat in this way Schrödinger operators for a much wider class of potentials.

In order to put our message into a proper context we recall first some known
results relevant for our presentation. Let −A and −B be two generators of con-
traction semigroups in the Banach space X. In the seminal paper [22] Trotter
proved that if the operator −C, where C := A + B, is a generator of a contraction
semigroup on X, then the formula

e−tC = s- lim
n→∞

(
e−tA/ne−tB/n

)n

, (1.2)

holds for all t ∈ [0, T ] and any T > 0. The formula is usually called Trotter,
or Lie-Trotter product formula. The result was generalized by Chernoff in [2] to
Banach spaces X in the following form: Let F (·) : R+ −→ B(X) be a strongly
continuous operator-valued family of contractions such that F (0) = I and the
strong derivative F ′(+0) exists being a densely defined operator in X. If −C,

C := −F ′(+0), is a generator of a C0-contraction semigroup, then the generalized
Lie-Trotter product formula

e−tC = s- lim
n→∞

F (t/n)n , (1.3)

holds for t ≥ 0. In [3, Theorem 3.1] it was shown that the strong convergence in
the last formula is in fact uniform in t ∈ [0, T ] for any T > 0.

Moreover, in [3, Theorem 1.1] this result was generalized as follows: Let F (·) :
R+ −→ B(X), where R+ = [0,∞), be a family of linear contractions on a Banach
space X. Then the generalized Lie-Trotter product formula (1.3) holds uniformly
in t ∈ [0, T ] for any T > 0 if and only if there is a λ > 0 such that

(λ + C)−1 = s- lim
τ→+0

(λ + Sτ )−1 ,

where

Sτ :=
I − F (τ)

τ
, τ > 0 .

Using these results, Kato [14] was able to prove the following claim: let A and B
be two non-negative self-adjoint operators in a separable Hilbert space H. Assume
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that the intersection dom(A1/2) ∩ dom(B1/2) is dense in H. If C := A
.
+ B is the

form sum of the operators A and B, then Lie-Trotter product formula,

e−tC = s- lim
n→∞

(
e−tA/ne−tB/n

)n

, (1.4)

holds uniformly in t ∈ [0, T ] for any T > 0. In fact, the Lie-Trotter formula was
extended by Kato to more general products of the form (f(tA/n)g(tB/n))

n
, where

f (and similarly g) is a real valued Borel measurable function f(·) : R+ −→ R+

obeying 0 ≤ f(t) ≤ 1, f(0) = 1 and f ′(+0) = −1, which we call Kato functions

in the following. Usually the product formulæ of that type are known under the
name Lie-Trotter-Kato or Trotter-Kato.

It is a longstanding open question whether the Lie-Trotter product formula
(1.4) remains valid for imaginary times t under the same assumptions which justify
the formula (1.2), see [3, Remark p. 91], [9], [10] and [20]. Note that if A and B are
non-negative self-adjoint operators in H and the limit in the left-hand side of (1.1)
exists for all t ∈ R, then dom(A1/2)∩dom(B1/2) is dense in H, see [13, Proposition
11.7.3]. Hence, we assume in the following that dom(A1/2)∩dom(B1/2) is dense in
H. Furthermore, applying Trotter’s result [22] one immediately gets that formula
(1.1) is valid if the operator C := A + B is self-adjoint. However, if A + B is not

essentially self-adjoint, then all attempts to verify the Lie-Trotter product formula
(1.1) for imaginary times have failed so far. A somewhat weaker result is proved
in [17, Proposition 3.2], see also [13, Proposition 11.7.4]. It was shown there that

s- lim
n→∞

∫

R

ϕ(t)
(
e−itA/ne−itB/n

)n

dt =

∫

R

ϕ(t)e−itCdt , C := A
.
+ B , (1.5)

holds for all ϕ ∈ L1(R).
In [10] Ichinose proposed a modified Trotter-type product formula. He proved

in that paper that

e−itC =s- lim
n→∞

{(
e−itA/n(EA([0, nδ/t]) + e−ita/nEA((nδ/t,∞)

)
×

(
e−itB/n(EB([0, nδ/t]) + e−itb/nEB((nδ/t,∞)

)}n

, t ≥ 0 ,
(1.6)

where EA(·) and EB(·) denote the spectral measures of the operators A and B,
respectively, and a ≥ 0, b ≥ 0, 0 < δ < π/2. If one introduces the functions

f(λ) := e−iλχ[0,δ](λ) + χ(δ,∞)(λ), λ ≥ 0, (1.7)

then the result of [10] for a = b = 0 acquires the form

s- lim
n→∞

(f(tA/n)f(tB/n))
n

= e−itC (1.8)

for any t ≥ 0. Notice that the above function f(λ) is admissible in the sense of [6],
i.e.

|f(x)| ≤ 1, x ∈ [0,∞), f(0) = 1 , and f ′(+0) = −i,

and satisfies in addition the conditions ℜe (f(x)) ≥ 0 and ℑm(f(x)) ≤ 0, x ∈ R+.
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In [10, Section 3] this result was generalized to functions ζ(t, λ) from a class
denoted as Fν,µ(τ, γ, ε), 0 < τ ≤ ∞, 0 < µ < ν ≤ 1, γ ∈ R and ε = ±1, defined in
a slightly cumbersome way.

Consider a particular case. Let f be an admissible function. Choosing γ = 0
and ε = −1 one can verify that ζ(t, λ) := f(tλ) ∈ Fν,µ(τ, 0,−1) if and only if f(·)
is continuous,

ℑm(f(x)) ≤ 0 and |1 − f(x)| ≤ min

{
2µ,

1

ν
|ℑm(f(x))|

}
, x ∈ R+ . (1.9)

In particular, there exists a δ > 0 such that the conditions (1.9) are satisfied for

f(x) =
1

1 + ix
χ[0,δ](x) + χ(δ,∞)(x) , x ≥ 0 ,

which yields
e−itC = s- lim

n→∞
(f(tA/n)f(tB/n))

n
, t ≥ 0 .

In [15], see also [18] or [13, Corollary 11.3.5], Lapidus showed a slightly stronger
result, namely that

e−itC = s- lim
n→∞

(
(I + itA/n)−1(I + itB/n)−1

)n
(1.10)

holds uniformly in t ∈ [0, T ], T > 0.
Averaging formulas were proposed in [16] for real times for the cases of lin-

ear and non-linear semigroups. It was Cachia who for the first time linked the
imaginary-time averaging formulas to the L2-convergence. In [1] he proved that

lim
n→∞

∫ T

0

∥∥∥∥∥

(
e−2itA/n + e−2itB/n

2

)n

h − e−itCh

∥∥∥∥∥

2

dt = 0

holds for any h ∈ H and T > 0. In fact, the notion of holomorphic Kato functions

also appeared for the first time in [1]. A Kato function f(·) is called holomorphic,
if it admits a holomorphic extention to the right complex half-plane, Cright := {z ∈
C : ℜe (z) > 0}, such that |f(z)| ≤ 1, z ∈ Cright. For holomorphic Kato functions
the limit f(iy) := limǫ→+0 f(ǫ + iy) exist for a.e. y ∈ R. In the following we are

going to show that there is a Borel measurable function f̃(·) : iR −→ C satisfying

|f̃(iy)| ≤ 1, y ∈ R, such that f(iy) = f̃(iy) for a.e. y ∈ R, cf. Lemma 3.2. Since the

f̃(·) is Borel measurable the expression f̃(isA) is well defined by the functional

calculus for any s ∈ R. Moreover, one has ‖f̃(isA)‖ ≤ 1 for s ∈ R. It was shown
in [1] that if f and g are holomorphic Kato functions, then

lim
n→∞

∫ T

0

∥∥∥∥∥

(
f̃(2itA/n) + g̃(2itB/n)

2

)n

h − e−itCh

∥∥∥∥∥

2

dt = 0

holds for any h ∈ H and T > 0.
Before we close this introductory survey, let us mention another family of

related results. Note that the paper [1] was inspired, in fact, by results obtained
by Ichinose and by one of us in [5]. This article was devoted to the so-called
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Zeno product formula, which can be regarded as a kind of degenerated Lie-Trotter
product formula. In this formula one replaces the unitary factor e−itA by an
orthogonal projection onto some closed subspace h ⊆ H and defines C as the

self-adjoint operator associated with the quadratic form k(h, k) :=
(√

Bh,
√

Bk
)
,

h, k ∈ dom(k) := dom(
√

B) ∩ h, where it is assumed that dom(k) is dense in h. It
was proved in [5] that

lim
n→∞

∫ T

0

∥∥∥
(
Pe−itB/nP

)n

h − e−itCh
∥∥∥ dt = 0

holds for any h ∈ h and T > 0, where P is the orthogonal projection from H onto
h. Subsequently, an attempt was made in [6] to replace the strong L2-topology
of [5] by the usual strong topology of H. For admissible functions φ satisfying
ℑm(φ(x)) ≤ 0, x ∈ R+, it was shown in [6] that

e−itC = s- lim
n→∞

(Pφ(tB/n)P )
n

,

holds uniformly in t ∈ [0, T ] for any T > 0. We would like to stress that the
function φ(x) = e−ix, x ∈ R+, is admissible but does not satisfy the condition
ℑm(e−ix) ≤ 0 for x ∈ R+, thus the question about convergence of the Zeno
product formula in the strong topology of H remains open.

Our present paper is organized as follows. In Section 2 we show that the
Trotter product formula makes sense in L2-topology, that is, it holds

lim
n→∞

∫ T

−T

∥∥∥
(
e−itA/ne−itB/n

)n

h − e−itCh
∥∥∥

2

dt = 0 (1.11)

for h ∈ H and any T > 0 without any additional assumptions, cf. Theorem 2.2. This
observation follows directly from the Lapidus result (1.5). Of course, it does not
solve under our hypotheses the strong convergence problem of (1.1). Nevertheless,
(1.11) implies the existence of a subsequence nk such that one has pointwise (i.e.,
the strong) convergence along it for a.e. t ∈ [−T, T ]. From the physical point of
view our result seems to be quite satisfactory, see a discussion on that point in [8,
Section 11].

Using the concept of the holomorphic Kato functions we prove the Trotter-
Kato product formula in the L2-topology in Section 3, that is,

lim
n→∞

∫ T

−T

∥∥∥
(
f̃(itA/n)g̃(itB/n)

)n

h − e−itCh
∥∥∥

2

dt = 0 (1.12)

for h ∈ H and any T > 0, where f, g are holomorphic Kato functions and f̃ , g̃ are
Borel measurable extensions of f and g on the imaginary axis, see Lemma 3.2 and
Theorem 3.3. Moreover, we propose a characterization of the class of holomorphic
Kato functions.

Finally, in Section 4 we give a generalization of the results due to Ichinose
[10], to the class of admissible functions defined above. We show that

s- lim
n→∞

(φ(tA/n)ψ(tB/n))
n

= e−itC , (1.13)
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where φ and ψ are admissible functions such that ℜe (φ(y)) ≥ 0, ℑm(φ(y) ≤ 0 and
ℑm(ψ(y)) ≤ 0 for y ∈ R+, cf. Theorem 4.7. Choosing φ(y) = ψ(y) = (1 + iy)−1,
y ∈ R, one recovers Lapidus’ result (1.10), see [18] and [13, Corollary 11.3.5].
Moreover, it turns out that admissible functions can be always slightly modified
so that the Trotter-Kato product formula is valid, see Corollary 4.9. In particular,
it follows from Corollary 4.9 that the modified Trotter product formula,

s- lim
n→∞

(
e−itA/nEA([0, πn/2t])e−itB/nEB([0, πn/2t])

)n

= e−itC , (1.14)

holds uniformly in t ∈ [0, T ], T > 0, cf. (1.7) and (1.8). Notice that (1.14) is similar
to (1.6).

2. Lapidus’ results revisited

We start by proving the following important technical lemma.

Lemma 2.1. Let {Fn(·)}n∈N be a family of measurable operator-valued functions

Fn(·) : iR −→ B(H) such that ‖Fn(it)‖ ≤ 1 holds for a.e. t ∈ R. Furthermore,

let C be a densely defined self-adjoint operator. Then the following assertions are

equivalent:

(i) For each ϕ ∈ L1(R) one has

w- lim
n→∞

∫

R

ϕ(t)Fn(it)dt =

∫

R

ϕ(t)e−itCdt . (2.1)

(ii) For each h ∈ H and T > 0 it holds

lim
n→∞

∫ T

−T

‖Fn(it)h − e−itCh‖2dt = 0 . (2.2)

(iii) For each ϕ ∈ L1(R) one has

s- lim
n→∞

∫

R

ϕ(t)Fn(it)dt =

∫

R

ϕ(t)e−itCdt . (2.3)

Proof. (i) =⇒ (ii) Since

‖Fn(it)h − e−itCh‖2 ≤ 2‖h‖2 − 2ℜe (Fn(it)h, e−itCh), t ∈ R,

and

e−itCh =

∞∑

k=0

(−it)k

k!
Ckh, t ∈ R ,

for h ∈ EC([a, b])H, −∞ < a < b < ∞, we find

‖Fn(it)h − e−itCh‖2 ≤ 2‖h‖2 − 2ℜe

(
∞∑

k=0

iktk

k!
(Fn(it)h,Ckh)

)
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for a.e. t ∈ R, which leads to
∫ T

−T

‖Fn(it)h − e−itCh‖2dt ≤ 4T‖h‖2 − 2ℜe

(
∞∑

k=0

ik

k!

∫ T

−T

tk(Fn(it)nh,Ckh)dt

)

or
∫ T

−T

‖Fn(it)h − e−itCh‖2dt ≤ 4T‖h‖2 − 2ℜe

(
∞∑

k=0

ik

k!

(∫ T

−T

tkFn(it)h dt, Ckh

))

for t ≥ 0. From (2.1) we get

lim
n→∞

(∫ T

−T

tkFn(it)h,Ckh

)
=

(∫ T

−T

tke−itCh dt, Ckh

)
. (2.4)

Hence
∫ T

−T

‖Fn(it)h − e−itCh‖2dt ≤ 4T‖g‖2 − 2ℜe

(
∞∑

k=0

ik

k!

(∫ T

−T

tke−itCh dt, Ckh

))
.

Therefore

lim sup
n→∞

∫ T

−T

‖Fn(it)h − e−itCh‖2dt ≤ 4T‖h‖2 − 2ℜe

∫ T

−T

(e−itCh, e−itCh)dt = 0

which proves (2.2).
(ii) =⇒ (iii) The following estimate holds:
∥∥∥∥∥

∫ T

−T

ϕ(t)
(
Fn(it) − e−itC

)
h dt

∥∥∥∥∥ ≤
∫ T

−T

|ϕ(t)|
∥∥Fn(it)h − e−itCh

∥∥ dt .

From (1.11) we obtain the convergence in measure, that is, for each ε > 0 one has

lim
n→∞

∣∣{t ∈ [−T, T ] : ‖Fn(it)h − e−itCh‖ ≥ ε}
∣∣ = 0 .

Setting ∆ε,n := {t ∈ [−T, T ] : ‖Fn(it)h − e−itCh‖ ≥ ε} we find the estimate
∥∥∥∥∥

∫ T

−T

ϕ(t)
(
Fn(it) − e−itC

)
h dt

∥∥∥∥∥

≤ ε

∫

[−T,T ]\∆ε,n

|ϕ(t)| dt + 2

∫

∆ε,n

|ϕ(t)|dt, n ∈ N .

In view of (2.2) we obtain in the limit n → ∞ the inequality

lim sup
n→∞

∥∥∥∥∥

∫ T

−T

ϕ(t)
(
Fn(it) − e−itC

)
h dt

∥∥∥∥∥ ≤ ε

∫

R

|ϕ(t)|dt

for any ε > 0. Hence for any ε small enough we have

lim sup
n→∞

∥∥∥∥
∫

R

ϕ(t)
(
Fn(it) − e−itC

)
h dt

∥∥∥∥ ≤ ε

∫

R

|ϕ(t)|dt + 2

∫

R\[−T,T ]

|ϕ(t)|dt .
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Since T can be chosen sufficiently large and ε was arbitrary we get

lim sup
n→∞

∥∥∥∥
∫

R

ϕ(t)
(
Fn(it) − e−itC

)
h dt

∥∥∥∥ = 0 ,

which yields

s- lim
n→∞

∫

R

ϕ(t)Fn(it)h =

∫

R

ϕ(t)e−itCh dt, h ∈ H .

(iii) =⇒ (i) Obviously (2.3) implies (2.1). ¤

Lemma 2.1 allows us to reformulate the Lapidus result of [17, Proposition
3.2], mentioned as (1.5) above, in the following form:

Theorem 2.2. Let A and B two non-negative self-adjoint operators on the Hilbert

space H. If the form sum C := A
.
+ B is densely defined, then (1.11) holds for any

h ∈ H and T > 0.

Proof. We set

Fn(it) :=
(
e−itA/ne−itB/n

)n

, n ∈ N, t ∈ R .

From [17, Proposition 3.2] we get (1.5), which yields (2.1). Applying now Lemma
2.1 we obtain (1.11). ¤

We note that Theorem 2.2 partially solves the question posed in [13, Problem
11.3.9] by a slight change of topology. Indeed, from Theorem 2.2 we get that (1.1)
holds in measure, that is, for any η > 0, h ∈ H and T > 0 one has

lim
n→∞

∣∣∣
{

t ∈ [−T, T ] :
∥∥∥
(
e−itA/ne−itB/n

)n

h − e−itCh
∥∥∥ ≥ η

}∣∣∣ = 0 , (2.5)

where | · | denotes the Lebesgue measure, while [13, Problem 11.3.9] requires a
uniform convergence of t ∈ [−T, T ], i.e. for any η > 0, h ∈ H and T > 0 one has

lim
n→∞

sup
t∈[−T,T ]

∥∥∥
(
e−tA/ne−tB/n

)n

h − e−tCh
∥∥∥ = 0.

Notice that convergence in measure (2.5) takes place if and only if any subsequence

of
{(

e−itA/ne−itB/n
)n

}

n∈N

contains a subsequence
{(

e−itA/nke−itB/nk
)nk

}

k∈N

which converges strongly almost everywhere to e−itC , i.e

s- lim
k→∞

(
e−itA/nke−itB/nk

)nk

= e−itC

holds for a.e. t ∈ [−T, T ].

Remark 2.3. From the viewpoint of physical applications, the formula (1.11) allows
us to extend the Trotter-type definition of Feynman integrals for Schrödinger oper-
ators to a wider class of potentials. Following [13, Definition 11.2.21] the Feynman
integral F t

TP(V ) associated with the potential V is the strong operator limit

F t
TP(V ) := s- lim

n→∞

(
e−itH0/ne−itV/n

)n
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where H0 := − 1
2∆ and −∆ is the Laplacian operator in L2(Rd) defined in the

usual way. From [13, Corollary 11.2.22] one gets that the Feynman integral exists
if V : R

d −→ R is Lebesgue measurable, non-negative, and satisfies V ∈ L2
loc(R

d).

With Theorem 2.2 in mind it is possible to extend the Trotter-type definition
of Feynman integrals if one replaces the L2(Rd)-topology by the L2([−T, T ]×R

d)-
topology. Indeed, let us define the generalized Feynman integral F t

gTP(V ) by

lim
n→∞

∫ T

−T

∥∥∥
(
e−itH0/ne−itV/n

)n

h −F t
gTP(V )h

∥∥∥
2

dt = 0

for h ∈ L2(Rd) and T > 0. Obviously, the existence of F t
TP(V ) yields the existence

of F t
gTP(V ) while the converse is in general not true. By Theorem 2.2 one can im-

mediately conclude that the generalized Feynman integral exists if V : R
d −→ R is

Lebesgue measurable, non-negative, and satisfies V ∈ L1
loc(R

d). This substantially
extends the class of admissible potentials. The same class of potentials is covered
by the so-called modified Feynman integral F t

M (V ) defined by

F t
M (V ) := s- lim

n→∞

(
[I + i(t/n)H0]

−1[I + i(t/n)V ]−1
)n

,

see [13, Definition 11.4.4] and [13, Corollary 11.4.5]. However, in this case the
exponents are replaced by resolvents which leads to loss of the typical structure of
Feynman integrals and the related physical insights.

3. Lapidus’ result generalized

The Lapidus result (1.5) relies on the so-called Vitali’s classical theorem and the
Vitali extended theorem, cf. [13, Theorem 11.7.1]. We reformulate them in appli-
cation to our situation as follows:

Let Φn(z), n ∈ N be a sequence of contractive holomorphic function in Cright

which for x ∈ R+ converges to a function Φ(x), that is, limn→∞ Φn(x) = Φ(x)
for x ∈ R+. Then Φ(x) admits a contractive holomorphic continuation Φ(z) to
Cright such that Φ(z) = limn→∞ Φn(z). Since Φn(z) and Φ(z) are contractive
holomorphic functions the limits Φn(iy) := limǫ→+0 Φn(ǫ+iy), n ∈ N, and Φ(iy) :=
limǫ→+0 Φ(ǫ + iy) exist for a.e. y ∈ R. The Vitali extended theorem now yields
that

lim
n→∞

∫

R

ϕ(y)Φn(iy)dy =

∫

R

ϕ(y)Φ(iy)dy

for any ϕ ∈ L1(R). Notice that this conclusion cannot be deduced from Theorem
11.7.1 of [13], since it is required that the functions Φn(z) and Φ(z) must admit
continuous extension to Cright. However, applying Lemma 2 of [1], which is a slight
generalization of Theorem 11.7.1 from [13], one gets that the conclusion holds.

Let us make precise the notion of holomorphic Kato functions (cf. Section 1)
in the following way:
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Definition 3.1. Let f(·) : R+ −→ R+ be a Kato function. The function is called
a holomorphic Kato function if f(·) admits a holomorphic continuation to Cright

such that

|f(z)| ≤ 1, z ∈ Cright .

Standard holomorphic Kato functions are fk(x) := (1+x/k)−k, x ∈ R+, and,
of course, f(x) = e−x, x ∈ R+. At the end of this section we give a description of
holomorphic Kato functions and indicate some non-standard examples of holomor-
phic Kato functions. It turns out that for standard holomorphic functions the limit
to the imaginary axis exists everywhere. This yields f(tA) = s-limǫ→+0 f((ǫ+it)A)
for any t ≥ 0. However, if f is a holomorphic Kato function, then in general the
relation f(itA) = s-limǫ→+0 f((ǫ + it)A) cannot be expected. Indeed, this is due
the fact that the limit f(iy) = limǫ→+0 f(ǫ + iy) exists only for a.e. y ∈ R. Hence
the limit function f(iy) is not in general Borel measurable which makes it impos-
sible to apply the functional calculus for self-adjoint operators. However, the limit
function f(iy), defined for all those y ∈ R for which the limit f(iy) exists, admits
an extension to the whole real axis which is Borel measurable.

Lemma 3.2. Let f(·) : R+ −→ R+ be a holomorphic Kato function. Then there is

a Borel measurable function f̃(·) : iR −→ C satisfying |f̃(iy)| ≤ 1, y ∈ R, such

that f̃(iy) = limǫ→+0 f(ǫ + iy) for a.e. y ∈ R.

Proof. We set fR(z) := ℜe (f(z)) and fI(z) = ℑm(f(z)), z ∈ Cright. Since |f(z)| ≤
1, z ∈ Cright, we find

|fR(z)|2 + |fI(z)|2 ≤ 1, z ∈ Cright .

Further we set f±
R (z) := max{0,±fR(z)} ≥ 0 and f±

I (z) := max{0,±fI(z)} ≥ 0,

z ∈ Cright. Since the function f(·) is holomorphic the functions f±
R (·) and f±

I (·)
are Borel measurable. Obviously, we have

f(z) = f+
R (z) − f−

R (z) + i(f+
I (z) − f−

I (z)), z ∈ Cright ,

and

|f+
R (z)|2 + |f−

R (z)|2 + |f+
I (z)|2 + |f−

I (z)|2 ≤ 1, z ∈ Cright .

We set f̃±
R (iy) := lim infǫ→+0 f±

R (ǫ + iy) and f̃±
I (iy) := lim infǫ→+0 f±

I (ǫ + iy),

y ∈ R. Since f±
R (z) and f±

I (z), z ∈ Cright, are Borel measurable functions, the

functions f̃±
R (iy) and f̃±

I (iy) are also Borel measurable. From

inf
0<η≤ǫ

f±
R (η + iy) ≤ f±

R (ǫ + iy) and inf
0<η≤ǫ

f±
I (η + iy) ≤ f±

I (ǫ + iy), y ∈ R ,

we find

∑

j=±

(∣∣∣∣ inf
0<η≤ǫ

f j
R(η + iy)

∣∣∣∣
2

+

∣∣∣∣ inf
0<η≤ǫ

f j
I (η + iy)

∣∣∣∣
2
)

≤ |f+
R (ǫ + iy)|2 + |f−

R (ǫ + iy)|2 + |f+
I (ǫ + iy)|2 + |f−

I (ǫ + iy)|2 ≤ 1 ,
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y ∈ R, which yields

|f̃+
R (iy)|2 + |f̃−

R (iy)|2 + |f̃+
I (iy)|2 + |f̃−

I (iy)|2 ≤ 1, y ∈ R .

Setting

f̃(iy) := f̃+
R (iy) − f̃−

R (iy) + i(f̃+
I (iy) − f̃−

I (iy)), y ∈ R ,

we define a Borel measurable function. From

|f̃(iy)|2 = |f̃+
R (iy) − f̃−

R (iy)|2 + |f̃+
I (iy) − f̃−

I (iy)|2

≤ |f̃+
R (iy)|2 + |f̃−

R (iy)|2 + |f̃+
I (iy)|2 + |f̃−

I (iy)|2 ≤ 1, y ∈ R .

The relation f̃(iy) = limǫ→+0 f(ǫ + iy) for a.e. y ∈ R is obvious. ¤

Since |f̃(iy)| ≤ 1, y ∈ R, the expression f̃(iτA), τ ∈ R, is well defined for any
self-adjoint operator A.

Setting F (z) := f(zA)g(zB), z ∈ Cright, it turns out that the operator-
valued family F (z) is contractive and holomorphic, if f and g are holomorphic
Kato functions.

Theorem 3.3. Let A and B two non-negative self-adjoint operators on the Hilbert

space H. Assume that C := A
.
+ B is densely defined. If f and g are holomorphic

Kato functions, then (1.12) holds for any h ∈ H and T > 0.

Proof. We set Fn(z) := F (z/n)n, z ∈ Cright, n ∈ N. We note that if z = t ∈ R+,
then

Fn(t) := (f(tA/n)g(tB/n))
n

=
(
e−tA/ne−tB/n

)n

, t ∈ R+, n ∈ N .

From [14] we find
s- lim

n→∞
Fn(t) = e−tC

for t ∈ R+ which yields

lim
n→∞

(Fn(t)h, k) = (e−tCh, k)

for t ∈ R+ and h, k ∈ H. Setting Φn(t) := (Fn(t)h, k), n ∈ N, and Φ(t) =
(e−tCh, k), t ∈ R+, by Vitali’s classical theorem, see [13, Theorem 11.7.1.(i)], we
find limn→∞ Φn(z) = Φ(z), z ∈ Cright. Moreover, taking into account the extended
Vitali theorem, see Lemma 2.1 of [1], we get

lim
n→∞

∫

R

ϕ(t)Φn(it) dt =

∫

R

ϕ(t)Φ(it) dt

for all ϕ ∈ L1(R). The last relation yields

w- lim
n→∞

∫

R

ϕ(t)Fn(it) dt =

∫

R

ϕ(t)e−itC dt

for all ϕ ∈ L1(R) where Fn(it) := s-limǫ→+0 Fn(ǫ + it) for a.e. t ∈ R, cf. [21,
Section V.2]. Applying Lemma 2.1 we obtain

lim
n→∞

∫ T

−T

‖Fn(it)h − e−itCh‖2dt = 0
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for T > 0.

It remains to show that Fn(it) can be replaced by
(
f̃(itA/n)g̃(itB/n)

)n

for

each n ∈ N. We find
∫ T

−T

dt
∥∥∥f((ǫ + it)A/n)h − f̃(itA/n)h

∥∥∥
2

=

∫ T

−T

dt

∫

[0,∞)

d(EA(λ)h, h) |f((ǫ + it)λ/n) − f̃(itλ/n)|2

=

∫

[0,∞)

d(EA(λ)h, h)

∫ T

−T

dt |f((ǫ + it)λ/n) − f̃(itλ/n)|2

for each n ∈ N and h ∈ H. For any λ ∈ [0,∞) we have

lim
ǫ→+0

∫ T

−T

dt |f((ǫ + it)λ/n) − f̃(itλ/n)|2 = 0

which yields

lim
ǫ→+0

∫ T

−T

dt
∥∥∥f((ǫ + it)A/n)h − f̃(itA/n)h

∥∥∥
2

= 0

for each n ∈ N and h ∈ H. Since also

lim
ǫ→+0

∫ T

−T

dt ‖g((ǫ + it)B/n)h − g̃(itB/n)h‖2
= 0

holds for each n ∈ N and h ∈ H we immediately find that

lim
ǫ→+0

∫ T

−T

dt
∥∥∥(f((ǫ + it)A/n)g((ǫ + it)B/n))

n
h −

(
f̃(itA/n)g̃(itB/n)

)n

h
∥∥∥

2

= 0

for each n ∈ N and h ∈ H. Hence

0 = lim
ǫ→+0

∫ T

−T

dt
∥∥∥Fn(ǫ + it)h −

(
f̃(itA/n)g̃(itB/n)

)n

h
∥∥∥

2

=

∫ T

−T

dt
∥∥∥Fn(it)h −

(
f̃(itA/n)g̃(itB/n)

)n

h
∥∥∥

2

for each n ∈ N and h ∈ H which yields Fn(it) =
(
f̃(itA/n)g̃(itB/n)

)n

for a.e.

t ∈ R and n ∈ N. ¤

Using the standard Kato function fk(x), see above, we get

lim
n→+∞

∫ T

−T

∥∥∥
(
(I + itA/kn)−k(I + itB/kn)−k

)n
h − e−itCh

∥∥∥ dt = 0

for any h ∈ H and T > 0. We note that for the particular case k = 1 Lapidus
demonstrated in [15] that (1.10) holds uniformly in t ∈ [0, T ] for any T > 0. By
Theorem 3.3 one gets that formula (1.10) is valid in a weaker topology than in
[15]. This discrepancy will be clarified in the next section.
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The set of holomorphic Kato functions was characterized in [7]. For the sake
of completeness we recall these results here:

Theorem 3.4 ([7, Theorem 5.1]). If f is a holomorphic Kato function, then

(i) there is an at most countable set of complex numbers {ξk}k, ξk ∈ Cright with

ℑm(ξk) ≥ 0 satisfying the condition

κ := 4
∑

k

ℜe (ξk)

|ξk|2
≤ 1 (3.1)

(ii) there is a Borel measure ν defined on R+ = [0,∞) obeying ν({0}) = 0 and
∫

R+

1

1 + t2
dν(t) < ∞

such that the limit β := limx→+0
2
π

∫
R+

1
x2+t2 dν(t) exists and satisfies the condition

β ≤ 1 − κ;

(iii) the Kato function f admits the representation

f(x) = D(x) exp

{
−2x

π

∫

R+

1

x2 + t2
dν(t)

}
e−αx, x ∈ R+ , (3.2)

where α := 1 − κ − β and D(x) is a Blaschke-type product given by

D(x) :=
∏

k

x2 − 2xℜe (ξk) + |ξk|2
x2 + 2xℜe (ξk) + |ξk|2

, x ∈ R+ . (3.3)

The factor D(x) is absent if the set {ξk}k is empty; in that case we set κ := 0.
Conversely, if a real function f admits the representation (3.2) such that the

assumptions (i) and (ii) are satisfied and the condition α + κ + β = 1 holds, then

f is a holomorphic Kato function and its holomorphic extension to Cright is given

by

f(z) = D(z) exp

{
−2z

π

∫

R+

1

z2 + t2
dν(t)

}
e−αz, z ∈ Cright .

Above we have indicated several standard holomorphic Kato functions such
as f(z) = e−z, fk(z) = (1 + iz/k)−k, k ∈ N, z ∈ Cright. The last theorem allows
us to give examples of some non-standard holomorphic Kato functions.

1. If a holomorphic Kato function f(·) has no zeros in Cright and ν ≡ 0, then
f(z) = e−z, z ∈ Cright, where α = 1 follows from condition α = 1 − κ − β

where κ = β = 0. Obviously, we have f̃(iy) = limǫ→+0 f(ǫ + iy) = e−iy for
y ∈ R .

2. If a holomorphic Kato function f(·) has zeros and the measure ν ≡ 0, then
f(·) is of the form f(z) = D(z)e−αz, where the Blaschke-type product D(z)
is given by (3.3). In particular, if n = 1 we find the representation

f(z) =
z2 − 2zℜe (ξ) + |ξ|2
z2 + 2zℜe (ξ) + |ξ|2 e−αz, z ∈ Cright ,
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where ξ ∈ Cright is such that

α + 4
ℜe (ξ)

|ξ|2 = 1 .

This gives the representation

f(z) =
z2 − 2η

(
z − 2

1−α

)

z2 + 2η
(
z + 2

1−α

) e−αz, z ∈ Cright ,

0 < η ≤ 4
1−α , 0 ≤ α ≤ 1, where we have denoted ξ = η + iτ , η > 0, and

τ =

√
4

(1−α)2 −
(
η − 2

1−α

)2

. We have

f̃(iy) = lim
ǫ→+0

f(ǫ + iy) =
y2 + 4η 1

1−α + 2iηy

y2 − 4η 1
1−α + 2iηy

e−iαy, y ∈ R .

3. If a holomorphic Kato function f(z) has no zeros and the measure ν is atomic,
then f(z) admits the representation

f(z) = exp

{
−2z

π

∑

l

1

z2 + s2
l

ν({sl})
}

e−αz, z ∈ Cright ,

where {sl}l is the point where ν({sl}) 6= 0. In the particular case when
dν(t) = cδ(t − s)dt, s > 0, we have

f(z) = exp

{
−2zc

π

1

z2 + s2

}
e−αz ,

and α + 2c
π

1
s2 = 1, which yields c = 1

2 (1 − α)πs2 and

f(z) := exp

{
−z(1 − α)

s2

z2 + s2

}
e−αz, z ∈ Cright .

One gets

f̃(iy) =

{
limǫ→+0 f(ǫ + iy) = exp

{
iy(1 − α) s2

y2−s2

}
e−iαy y 6= ±s

0 y = ±s

where y ∈ R.
4. If a holomorphic Kato function f(z) has no zeros and the measure ν is abso-

lutely continuous, that is, dν(t) = h(t)dt, h(t)(1+ t2)−1 ∈ L1(R+), then f(z)
admits the representation

f(z) = exp

{
−2z

π

∫ ∞

0

h(t)

z2 + t2
dt

}
e−αz, z ∈ Cright ,

such that

α + lim
x→+0

2

π

∫ ∞

0

h(t)

x2 + t2
dt = 1 .
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If h(·) is Hölder continuous, then limǫ→+0
2(ǫ+iy)

π

∫ ∞

0
h(t)

(ǫ+iy)2+t2 dt exists for

each y ∈ R and one gets

f̃(iy) = exp

{
− lim

ǫ→+0

2(ǫ + iy)

π

∫ ∞

0

h(t)

(ǫ + iy)2 + t2

}
e−iy, y ∈ R .

In particular, if f(x) = (1 + x
k )−k, x ∈ R+, k ∈ N, then

f(z) = exp

{
−kz

π

∫

R+

1

z2 + t2
ln

(
1 +

t2

k2

)
dt

}

for z ∈ Cright and f̃(iy) = (1 + iy/k)−k, y ∈ R, k ∈ N.

4. Ichinose’s result revisited

Recall that the notion of admissible functions was introduced in [6, Definition 1].

Definition 4.1. A Borel measurable function φ : R+ −→ C is called admissible if
the conditions

|φ(y)| ≤ 1, y ∈ [0,∞), φ(0) = 1, φ′(0) = −i

are satisfied.

We set φR(y) := ℜe (φ(y)) and φI(y) := ℑm(φ(y)), y ∈ R+. Obviously we
have

|φR(y)| ≤ 1, y ∈ R+, φR(0) = 1 and φ′
R(0) = 0

as well as

|φI(y)| ≤ 1, y ∈ R+, φI(0) = 0 and φ′
I(0) = −1 .

Let Σ := {y ∈ R+ : φ(y) = 0} and Ω := R \ Σ. We set

ϕ(y) :=

{
1

φ(y) , y ∈ Ω

1, y ∈ Σ .

Notice that χΩ(y) = ϕ(y)φ(y), y ∈ Ω, where χΩ(·) is the characteristic function of
Ω. The function ϕ obeys

|ϕ(y)| ≥ 1, y ∈ R+, ϕ(0) = 1, ϕ′(0) = i .

Moreover, we find

ϕR(y) := ℜe (ϕ(y)) =

{
φR(y)
|φ(y)|2 , y ∈ Ω

1, y ∈ Σ

and

ϕI(y) := ℑm (ϕ(y)) =

{
− φI(y)

|φ(y)|2 , y ∈ Ω

0, y ∈ Σ.

as well as

ϕR(0) = 1, ϕ′
R(0) = 0 and ϕI(0) = 0, ϕ′

I(0) = 1 .
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Let Eτ := χΩ(τA), τ > 0. Obviously, Eτ is an orthogonal projection. We consider
the operator-valued function

K(τ) :=
ϕ(τA) − I

τ
+ Eτ

I − ψ(τB)

τ
Eτ , τ > 0 .

We note that

KR(τ) := ℜe (K(τ)) =
ϕR(τA) − I

τ
+ Eτ

I − ψR(τB)

τ
Eτ

and

KI(τ) := ℑm(K(τ)) =
ϕI(τA) − EτψI(τB)Eτ

τ
. (4.1)

If φI(y) ≤ 0 and ψI(y) ≤ 0, y ∈ R+, then KI(τ) ≥ 0. Furthermore, we set

Lγ(τ) := γKR(τ) + KI(τ), γ ∈ [0, 1] .

Let us introduce the functions

fγ(y) := γ(ϕR(y) − 1) + ϕI(y), y ∈ R+, (4.2)

and

gγ(y) := γ(1 − ψR(y)) − ψI(y), y ∈ R+, (4.3)

for γ ∈ [0, 1]. If φ(·) and ψ(·) are admissible functions, then

fγ(0) = 0, f ′
γ(0) = 1 and gγ(0) = 0, g′γ(0) = 1. (4.4)

Using the functions fγ(·) and gγ(·) one gets the representation

Lγ(τ) =
fγ(τA)

τ
+ Eτ

gγ(τB)

τ
Eτ (4.5)

If φR(y) ≥ 0 and φI(y) ≤ 0 for y ∈ R+, then

fγ(y) =

{
γφR(y)(I−φR(y))−φI(y)(1+γφI(y))

|φ(y)|2 , y ∈ Ω

0, y ∈ Σ

yields fγ(y) ≥ 0 for y ∈ R+ and γ ∈ [0, 1]. Hence fγ(τA) ≥ 0 for τ > 0 and
γ ∈ [0, 1]. Similarly, if ψI(y) ≤ 0 for y ∈ R+, then gγ(y) ≥ 0 for y ∈ R+ which
implies gγ(τB) ≥ 0 for τ > 0 and γ ∈ [0, 1]. Hence one has Lγ(τ) ≥ 0 and τ > 0
and γ ∈ [0, 1], which shows that (µI + Lγ(τ))−1 exists and is bounded for µ > 0,
τ > 0 and γ ∈ [0, 1].

Lemma 4.2. Let A and B be non-negative self-adjoint operators such that the

intersection dom(A1/2) ∩ dom(B1/2) is dense in H. If f(·) : R+ −→ R and g(·) :
R+ −→ R are finite-valued non-negative Borel measurable functions satisfying

f(0) = 0, f ′(0) = 1 and g(0) = 0, g′(0) = 1 , (4.6)

and

0 ≤ g(y) ≤ 1, y ∈ R+ , (4.7)

then

s- lim
τ→+0

(µI + L(τ))−1 = (µI + C)−1 (4.8)
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for µ > 0 where

L(τ) :=
1

τ
f(τA) +

1

τ
Eτg(τB)Eτ , τ > 0 . (4.9)

and Eτ := χΩ(τA), Ω ⊇ supp(f) ∪ {0}, supp(f) := {y ∈ R+ : f(y) > 0}.

Proof. Since f(·) takes only finite values the operator f(τA), τ > 0, is densely
defined. Moreover, the operator g(τB) is bounded. Hence the operator L(τ) is
well-defined. We set

p(y) :=
1

1 + f(y)
and q(y) := 1 − g(y), y ∈ R+ . (4.10)

We note that

0 ≤ p(y) ≤ 1, y ∈ R+, p(0) = 1, and p′(0) = −1

as well as

0 ≤ q(y) ≤ 1, y ∈ R+, q(0) = 1, and q′(0) = −1 .

Hence p(·) and q(·) are Kato functions. We have

L(τ) = p(τA)−1/2

(
I − p(τA)

τ
+

√
p(τA)Eτ

I − q(τB)

τ
Eτ

√
p(τA)

)
p(τA)−1/2.

Let

F̂ (τ) := p(τA)1/2Eτq(τB)Eτp(τA)1/2, τ ≥ 0 .

Since p(y) = 1 for y ∈ Σ := R \ Ω ⊆ ker(f), ker(f) := {y ∈ R+ : f(y) = 0}, we
find

L(τ) = p(τA)−1/2Eτ Ŝ τEτp(τA)−1/2 , (4.11)

where

Ŝ τ :=
I − F̂ (τ)

τ
, τ > 0 .

Hence the representation

(µI + L(τ))−1 =
√

p(τA)
(
µp(τA) + Eτ Ŝ τEτ

)−1 √
p(τA)

holds. Since 0 ≤ p(τA) ≤ I we obtain

√
p(τA)

(
µI + Eτ Ŝ τEτ

)−1 √
p(τA) ≤ (µI + L(τ))−1 (4.12)

for µ > 0. By the formula

(µI + Eτ Ŝ τEτ ))−1 =
1

µ
E⊥

τ + Eτ (µEτ + Eτ Ŝ τEτ )−1Eτ (4.13)

we get

√
p(τA)Eτ

(
µEτ + Eτ Ŝ τEτ

)−1

Eτ

√
p(τA) ≤ (µI + L(τ))−1
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for τ > 0. Setting p̂ (y) := p(y)χΩ(y), y ∈ R+, we find the representation F̂ (τ) =√
p̂ (τA)q(τB)

√
p̂ (τA), τ > 0. Since p̂ (·) and q(·) are Kato functions we obtain

s- lim
τ→+0

(µI + Ŝ τ (τ))−1 = (µI + C)−1

for µ > 0 using [3] and [14]. Taking into account formula (4.13) we find

s- lim
τ→+0

Eτ (µEτ + Eτ Ŝ τEτ )−1Eτ = (µI + C)−1 (4.14)

for µ > 0. From (4.12) and (4.14) we finally get

((µI + C)−1h, h) ≤ lim inf
τ→+0

(
(µI + L(τ))−1h, h

)−1

for h ∈ H, µ > 0. Moreover, from (4.5) we find

L(τ) ≥ f(τA)

τ
EA([0, a)) + Eτ

g(τB)

τ
EB([0, b))Eτ , a, b ∈ (0,∞) ,

which gives the estimate

(µI + L(τ))−1 ≤
(

µI +
f(τA)

τ
EA([0, a)) + Eτ

g(τB)

τ
EB([0, b))Eτ

)−1

for µ > 0 and a, b ∈ (0,∞). Using s-limτ→+0 Eτ = I we obtain

lim sup
τ→+0

(
(µI + L(τ))−1h, h

)
≤

(
(µI + AEA([0, a)) + BEB([0, b)))

−1
h, h

)
.

for h ∈ H, µ > 0 and a, b ∈ (0,∞). Since a, b ∈ (0,∞) are arbitrary we obtain

lim sup
τ→+0

(
(µI + L(τ))−1h, h

)
≤

(
(µI + C)−1h, h

)

for h ∈ H, µ > 0. Hence

w- lim
τ→+0

(µI + L(τ))−1 = (µI + C)−1 (4.15)

for µ > 0, and consequently,

w- lim
τ→+0

(µI + L(τ))−1/2 = (µI + C)−1/2 (4.16)

for µ > 0. From (4.15) and (4.16) we immediately get (4.18). ¤

Lemma 4.3. Let A and B be non-negative self-adjoint operators such that the

intersection dom(A1/2) ∩ dom(B1/2) is dense in H. If φ and ψ are admissible

functions such that

φR(y) ≥ 0, φI(y) ≤ 0 and ψI(y) ≤ 0, y ∈ R+, (4.17)

then the self-adjoint operators Lγ(τ), τ > 0 are well-defined and non-negative, and

it holds

s- lim
τ→+0

(µI + Lγ(τ))−1 = (µI + C)−1 (4.18)

for µ > 0 and γ ∈ [0, 1].
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Proof. One easily verifies that the functions fγ(·) and gγ(·) defined by (4.2) and
(4.3) satisfy the assumptions (4.6) and (4.7) for each γ ∈ [0, 1]. Setting Ω :=
supp(φ) := {y ∈ R+ : φ(y) 6= 0} we find Ω ⊇ supp(fγ) ∪ {0} for γ = [0, 1].
Moreover, the definition of Lγ(τ) given by (4.5) coincides with that one of L(τ)
for each τ > 0 and γ ∈ [0, 1], see (4.9). Applying Lemma 4.2 we arrive at the
sought conclusion. ¤

For purposes of the next statement we introduce the operators

Mγ(τ) := Lγ(τ) + (1 + γ)ϕR(τA) + (1 − γ)ϕI(τA) (4.19)

with τ > 0 and γ ∈ [0, 1]. Since Lγ(τ) ≥ 0, ϕR(τA) ≥ 0 and ϕI(τA) ≥ 0 we get
Mγ(τ) ≥ 0 for γ ∈ [0, 1].

Lemma 4.4. Let A and B be non-negative self-adjoint operators such that the

intersection dom(A1/2) ∩ dom(B1/2) is dense in H. If φ and ψ are admissible

functions such that the conditions (4.17) are satisfied, then Mγ(τ) ≥ 0 and

s- lim
τ→+0

(µI + Mγ(τ))−1 = ((1 + µ + γ)I + C)−1 (4.20)

holds for µ > 0 and γ ∈ [0, 1].

Proof. We note that Mγ(τ) ≥ Lγ(τ)+ (1+γ)ϕR(τA) ≥ 0 for τ > 0 and γ ∈ [0, 1].

Let Ω
(n)
R := {y ∈ R : ϕR(y) ≤ n}. We set

ϕ
(n)
R (y) :=

{
ϕR(y), y ∈ Ω

(n)
R

n, y ∈ R+ \ Ω
(n)
R

for any n ∈ N. Obviously we have 0 ≤ ϕ
(n)
R (y) ≤ n, y ∈ R+, and 0 ≤ ϕ

(n)
R (y) ≤

ϕR(y), y ∈ R+. Therefore one obtains

Mγ(τ) ≥ Lγ(τ) + (1 + γ)ϕ
(n)
R (τA) ≥ 0

for τ > 0 and γ ∈ [0, 1] which yields

(µI + Mγ(τ))−1 ≤ (µI + Lγ(τ) + (1 + γ)ϕ
(n)
R (τA))−1,

for µ > 0 and γ ∈ [0, 1]. Since s-limτ→+0 ϕ
(n)
R (τA) = I we obtain from Lemma 4.3

that

s- lim
τ→+0

(µI + Lγ(τ) + (1 + γ)ϕ
(n)
R (τA))−1 = ((1 + µ + γ)I + C)−1.

Hence

lim sup
τ→+0

(
(µI + Mγ(τ))−1h, h

)
≤

(
((1 + µ + γ)I + C)−1h, h

)
(4.21)

for µ > 0 and γ ∈ [0, 1]. Furthermore, we note that

Mγ(τ) ≤ (1 + γ)I + Lγ(τ) + (1 + γ)ρ(τA) ,



20 Pavel Exner, Hagen Neidhardt and Valentin A. Zagrebnov

where ρ(y) := ϕR(y) + ϕI(y)− 1, y ∈ R+. One has ρ(0) = 0 and ρ′(0) = 1. Hence
we find

Mγ(τ) ≤ (1 + γ)I + Lγ(τ) + τ0(1 + γ)
ρ(τA)

τ
for 0 < τ ≤ τ0. By

1 + ρ(y) =
φR(y) − φI(y)

|φ(y)|2 ≥ φ2
R(y) + φ2

I(y)

|φ(y)|2 ≥ 1 , y ∈ R+,

we find ρ(y) ≥ 0, y ∈ R+. We set

f̃γ(y) :=
1

(1 + τ0 + τ0γ)
(fγ(y) + τ0(1 + γ)ρ(y)) , y ∈ R+, τ0 > 0 ,

where fγ(y) is given by (4.2). It holds f̃γ(0) = 0 and f̃ ′
γ(0) = 1 as well as f̃γ(y) = 0

for y ∈ Σ. One gets

Lγ(τ) + τ0(1 + γ)
ρ(τA)

τ
≤ (1 + τ0 + γτ0)

(
f̃γ(τA)

τ
+ Eτ

gγ(τB)

τ
Eτ

)

for γ ∈ [0, 1] and τ ∈ (0, τ0] where gγ(y) is given by (4.3). Setting

L̃γ(τ) :=
f̃γ(τA)

τ
+ Eτ

gγ(τB)

τ
Eτ , τ > 0, γ ∈ [0, 1] ,

we obtain

Mγ(τ) ≤ (1 + γ)I + (1 + τ0 + γτ0)L̃γ(τ), τ > 0, γ ∈ [0, 1] ,

which yields

((1 + µ + γ)I + (1 + τ0 + γτ0)L̃γ(τ))−1 ≤ (µI + Mγ(τ))−1, µ > 0, 0 < τ ≤ τ0 ,

and γ ∈ [0, 1]. Let λ := 1+µ+γ
1+τ0+γτ0

, we find

(λI + L̃γ(τ))−1 ≤ (1 + τ0 + γτ0)(µI + Mγ(τ))−1

for µ > 0, 0 < τ ≤ τ0 and γ ∈ [0, 1]. Applying Lemma 4.2 we immediately get that

((λI + C)−1h, h) ≤ (1 + τ0 + γτ0) lim inf
τ→+0

((µ + Mγ(τ))−1h, h)

for µ > 0, τ0 > 0, γ ∈ [0, 1] and h ∈ H. Since τ0 > 0 is arbitrary we finally obtain

(((1 + µ + γ)I + C)−1h, h) ≤ lim inf
τ→+0

((µI + Mγ(τ))−1h, h) (4.22)

for µ > 0, γ ∈ [0, 1] and h ∈ H. From (4.21) and (4.22) we deduce that

w- lim
τ→+0

(µI + Mα(τ))−1 = ((1 + µ + γ)I + C)−1 (4.23)

holds for µ > 0 and γ ∈ [0, 1]. Since the relation (4.23) is valid for every µ > 0 we
get

w- lim
τ→+0

(µI + Mα(τ))−1/2 = ((1 + µ + γ)I + C)−1/2

for µ > 0 which yields

s- lim
τ→+0

(µI + Mα(τ))−1/2 = ((1 + µ + γ)I + C)−1/2
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for µ > 0. The last relation proves (4.20). ¤

Let us introduce the operator-valued function

T (τ) :=
1√

I + M0(τ)
(KR(τ)+ϕR(τA)−ϕI(τA))

1√
I + M0(τ)

, τ > 0 , (4.24)

where M0(τ) = KI(τ) + ϕR(τA) + ϕI(τA) ≥ 0, see (4.1), (4.5) and (4.19).

Lemma 4.5. Let A and B be non-negative self-adjoint operators in a separable

Hilbert space H such that dom(A1/2) ∩ dom(B1/2) is dense in H. If φ and ψ are

admissible functions such that the conditions (4.17) are satisfied, then T (τ) ≥ −I,
τ > 0, and

s- lim
τ→+0

(iI + T (τ))−1 = (iI + (2I + C)−1)−1, (4.25)

where T (τ) is defined by (4.24).

Proof. Since Mγ(τ) ≥ 0 for γ ∈ [0, 1] and τ > 0 we find I +T (τ) ≥ 0, which yields
T (τ) ≥ −I. Hence γT (τ) ≥ −γI holds for γ ∈ [0, 1], and therefore the operator
I + γT (τ) is boundedly invertible for γ ∈ [0, 1) and we have the representation

(I + Mγ(τ))−1 =
1√

I + M0(τ)
(I + γT (τ))−1 1√

I + M0(τ)

for γ ∈ [0, 1). Setting γ = 0 we find from Lemma 4.4 that

s- lim
τ→+0

1√
I + M0(τ)

= (2I + C)−1/2 .

Since s-limτ→+0(I + Mγ(τ))−1 = ((2 + γ)I + C)−1 for γ ∈ [0, 1], by Lemma 4.4
we get that w-limτ→+0(I + γT (τ))−1 exists for γ ∈ [0, 1) and is given by

w- lim
τ→+0

(I + γT (τ))−1 =
2I + C

(2 + γ)I + C
, γ ∈ [0, 1) .

Hence we get

w- lim
τ→+0

(νI + T (τ))−1 =
2I + C

I + ν(2I + C)
= (νI + (2I + C)−1)−1, ν ∈ (1,∞).

However, in standard manner we obtain from this relation

s- lim
τ→+0

(νI + T (τ))−1 = (νI + (2I + C)−1)−1, ν ∈ (1,∞) ,

which immediately implies (4.25). ¤

Finally, for technical reasons we need the following lemma. First we recall
that a bounded operator X is called accretive, if ℜ(Xh, h) ≥ 0 for any h ∈ H.

Lemma 4.6. Let {X(τ)}τ>0 be a sequence of bounded accretive operators on H. If

there is self-adjoint operator Y such that

w- lim
τ→+0

(X(τ) − ξ)−1 = (iY − ξ)−1
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for some ℜe (ξ) ≤ 0, then

s- lim
τ→+0

(X(τ) − ξ)−1 = (iY − ξ)−1.

Proof. We set

W (τ) := (X(τ) + ξ)(X(τ) − ξ)−1 and W := (iY + ξ)(iY − ξ)−1,

τ > 0. One easily verifies that {W (τ)}τ>0 is a family of contractions. Obviously,
we have w-limτ→+0 W (τ) = W . By

‖W (τ)h − Wh‖2 = ‖W (τ)h‖2 + ‖h‖2 − 2ℜe ((W (τ)h,Wh)), τ > 0 ,

we find

lim sup
τ→+0

‖W (τ)h − Wh‖2 ≤ 2‖h‖2 − 2 lim
τ→+0

(W (τ)h, Wh) = 0 ,

which completes the proof. ¤

Theorem 4.7. Let A and B be non-negative self-adjoint operators such that the

intersection dom(A1/2)∩dom(B1/2) is dense in H. If φ and ψ admissible functions

such that the conditions (4.17) are satisfied, then (1.13) holds uniformly for t ∈
[0, T ] and T > 0.

Proof. Taking into account the representation

1√
I + M0(τ)

(iI + T (τ))−1 1√
I + M0(τ)

= (iI + (1 + i)ϕ(τA) + K(τ))−1

we find
1√

I + M0(τ)
(iI + T (τ))−1 1√

I + M0(τ)
=

√
φ̃(τA)(Z(τ)− ξ0)

−1

√
φ̃(τA) (4.26)

for τ > 0, where φ̃(y) := 1
ϕ(y) , y ∈ R+, ξ0 = −(1 + i),

Z(τ) := iφ̃(τA) + S̃τ , τ > 0 ,

and

S̃τ :=

√
φ̃(τA)K(τ)

√
φ̃(τA), τ > 0 .

A straightforward computation shows that

S̃τ = Eτ

(
I − φ(τA)

τ
+

√
φ(τA)

I − ψ(τB)

τ

)
Eτ = EτSτEτ τ > 0 , (4.27)

where

Sτ :=
I − F (τ)

τ
, τ > 0 ,

and F (τ) :=
√

φ(τA)ψ(τB)
√

φ(τA), τ > 0. Since for each τ > 0 the operators Sτ

are accretive and ℜe (φ̃(τA)) ≥ 0, τ ≥ 0, the operator Z(τ) is accretive and the
inverse operator (Z(τ) − ξ0)

−1 exists and its norm is bounded by one for τ > 0.
From the representation (4.26), Lemma 4.4 and Lemma 4.5 we get

w- lim
τ→+0

(Z(τ) − ξ0)
−1 = (iC − ξ)−1, ξ = −1 − 2i , (4.28)
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where we have used s-limτ→+0

√
φ̃(τA) = I. Since Sτ is accretive we find

(iI+S̃τ −ξ0)
−1−(Z(τ)−ξ0)

−1 = i(iI+S̃τ −ξ0)
−1(φ̃(τA)−I)(Z(τ)−ξ0)

−1 (4.29)

for τ > 0. From (4.28) and (4.29) we get

w- lim
τ→+0

(S̃τ − ξ)−1 = (iC − ξ)−1.

Applying Lemma 4.6 we find

s- lim
τ→+0

(S̃τ − ξ)−1 = (iC − ξ)−1

which yields

s- lim
τ→+0

(µI + S̃τ )−1 = (µI + iC)−1, µ > 0 . (4.30)

Since

Sτ = −1

τ
(I − Eτ ) + S̃τ , τ > 0 ,

we have

(µI + Sτ )−1 − (µI + S̃τ )−1 =

(µI + Sτ )−1(S̃τ − Sτ )(µI + S̃τ )−1 =
1

µτ
(µI + Sτ )−1(I − Eτ ), τ > 0 .

Let ∆ = [0, d), d > 0, then we have

(µI + Sτ )−1EA(∆)h − (µI + S̃τ )−1EA(∆)h =
1

µτ
(µI + Sτ )−1(I − Eτ )EA(∆)h

for τ > 0. Since (I − Eτ )EA(∆)h = 0 if τ is sufficiently small we find from (4.30)
that

s- lim
τ→+0

(µI + Sτ )−1 = (µI + iC)−1, µ > 0 .

From [2] we get s-limn→∞ F (t/n)n = e−itC uniformly in t ∈ [0, T ], T > 0, which
completes the proof. ¤

Corollary 4.8 ([18]). Let A and B be non-negative self-adjoint operators such that

dom(A1/2) ∩ dom(B1/2) is dense in H. If φ(y) = ψ(y) = (1 + iy)−1, y ∈ R+, then

s- lim
n→∞

(
(I + itA/n)−1(I + itB/n)−1

)n
= e−itC

uniformly in t ∈ [0, T ], T > 0.

Proof. One easily verifies that φ(·) and ψ(·) are admissible functions. Moreover,
one has

φR(y) = ψR(y) =
1

1 + y2
≥ 0 and φI(y) = ψI(y) = − y

1 + y2
≤ 0

which shows that the assumptions (4.17) are satisfied. Applying Theorem 4.7 we
arrive at the sought conclusion. ¤
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The function φ(y) = e−iy, y ∈ R+, does not satisfy the conditions ℜe (φ(y)) ≥
0 and ℑm(φ(y)) ≤ 0. However, its modification φ(y) := e−iyχ[0,π/2](y), y ∈ R+,
obeys ℜe (φ(y)) ≥ 0 and ℑm(φ(y)) ≤ 0, y ∈ R+. In particular, the function (1.7)
satisfies the conditions ℜe (f(y)) ≥ 0 and ℑm(f(y)) ≤ 0. The last observation
leads to the following claim.

Corollary 4.9. Let A and B non-negative self-adjoint operators in a separable

Hilbert space H such that dom(A1/2) ∩ dom(B1/2) is dense in H. Let φ and ψ
be admissible functions. Then there are real numbers δφ > 0 and δψ > 0 such that

s- lim
n→+∞

(φ(tA/n)EA(([0, nδφ/t])ψ(tB/n)EB(([0, nδψ/t]))
n

= e−itC

holds uniformly in t ∈ [0, T ], T > 0.

Proof. If the function φ is admissible, then φ(0) := limy→+0 φ(y) = 1 and φ′(0) =

limy→+0
φ(y)−1

y = −i. In particular, this yields ℜe (φ(0)) = limy→+0 φR(y) = 1 and

ℑm(φ(0)) = limy→+0 φI(y) = 0 as well as ℜe (φ′(0)) = limy→+0
φR(y)−1

y = 0 and

ℑm(φ′(0)) = limy→+0
φI(y)

y = −1 where φR := ℜe (φ(y) and φI := ℑm(φ(y)),

y ∈ R+. Hence there is a δφ > 0 such that φR(y) ≥ 0 and φI(y) ≤ 0 for y ∈ [0, δφ],
and consequently, the function φ(y)χ[0,δφ](y) satisfies the assumptions of Theorem
4.7. Similar considerations are valid for ψ. ¤

Corollary 4.9 shows that the modified Trotter product formula (1.14) men-
tioned in the introduction is valid.

5. Concluding remarks

To conclude the paper let us list some open problems related to the Trotter-Kato
product formula:

(i) The relation between holomorphic Kato and admissible functions is an
open question. Of course, the class of admissible functions is (in some sense) larger
than the class of holomorphic Kato functions, even if the conditions (4.17) are
satisfied. This follows from the fact that far from zero an admissible function
can be chosen arbitrarily, in particular, one can extend it by zero. However, a
holomorphic Kato function, which is zero on a set of positive Lebesgue measure,
equals zero identically. On the other hand, it is not clear whether a holomorphic
Kato function satisfies the conditions of admissible functions at zero, cf. Definition
4.1.

(ii) Is it possible to verify the Trotter-Kato product formula (1.13) for
admissible functions if one strengthens slightly the hypotheses made in Section 4,
for instance, supposing that dom(B1/2) ⊆ dom(A1/2)?

(iii) Are there non-negative self-adjoint operators A and B such that the
Trotter-Kato product formula (1.13) does not hold for a pair of holomorphic Kato
functions φ and ψ?
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(iv) What can be said about the operator norm convergence of the Trotter-
Kato product formula (1.13)? It is known that for the real time there are several
conditions, which guarantee the operator norm convergence, see [12, 19] and ref-
erences therein. For imaginary times, however, the available results are rather
restricted, see [11].
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