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Summary

We show, by considering some specific examples, that in the nonlinear theory of elasticity
the application of the semi-inverse method has to be carried out very carefully. Usually, the
strategy followed in applying the semi-inverse method while dealing with complex models is to
generalize forms of solutions already known within the framework of a simpler theory. This is
a smart strategy from a mathematical point of view, but from the physical point of view, it may
be imprudent. For example, in the theory of nonlinear elasticity, we are at times motivated by
the results obtained in the incompressible case to arrive at an understanding of what happens in
the compressible case, and by doing so, many important exact solutions for special classes of
compressible elastic materials have been obtained successfully. Sometimes, the admissibility
of a given deformation field is considered to delineate special classes of constitutive laws. We
wish to point out that the classes of constitutive equations thus identified from the standpoint
that it may admit a type of deformation may lead to models that exhibit physically unacceptable
mechanical behavior. To illustrate the dangers inherent to merely turning the mathematical
crank to determine classes of constitutive equations where a certain class of deformations are
possible, we consider the torsion of a cylindrical shaft and the propagation of transverse waves
in a compressible nonlinear elastic material and show that care has to be exercised in appealing
to the semi-inverse method.

1. Introduction, basic equations and background of the problem

The aim of this paper is to emphasize that great care has to be exercised in using the semi-inverse
method in continuum mechanics to delineate classes of constitutive equations that admit a particular

†Permanent Address: Dipartimento di Matematica, Universitá del Salento, 73100 Lecce, Italy
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452 R. DE PASCALISet al.

class of deformations and motions to be possible. This method has been misused often in nonlin-
ear elasticity, and hence, we will appeal to examples within the context of nonlinear elasticity to
illustrate our thesis. To simplify the exposition, we consider the theory ofunconstrained(compress-
ible) nonlinear isotropic elasticity, but our remarks are completely general and apply (with some
modifications) in general to the use of semi-inverse method in continuum mechanics.

It is well known that nonlinear theories lead to counterintuitive solutions: for example, shearing
a nonlinear elastic solid leads to forces normal to the plane of shear. In general, the application
of certain given loads produces deformation fields that may be completely different from the ones
that we may expect based on our intuition or our knowledge of simplified material models such
as linearized elasticity. One needs to exercise a great deal of prudence in ensuring that the results
obtained by using the semi-inverse method make sense.

To this end, let us consider a material bodyB. A particle P ∈ B is identified by its position
X(P) in a given reference frame at some reference time. The deformation or motion of the body
is described by the mappingx = χ(X, t), which identifies the position,x, of P at time t . The
deformation gradient is defined asF = ∂x/∂X and the left Cauchy–Green strain tensor is given by
B = FF T . The principal invariants ofB are I1 = tr B, I2 = [ I 2

1 − tr (B2)]/2 andI3 = detB.
The constitutive equation for the Cauchy stress tensorT in an unconstrained isotropic hyperelastic

(Green) solid is

T = β0I + β1B+ β−1B−1, (1.1)

where the response coefficients,β0 (0 = 0, 1,−1), are related to the strain-energy density
6(I1, I2, I3) by

β0(I1, I2, I3) =
2
√

I3

[

I2
∂6

∂ I2
+ I3

∂6

∂ I3

]

, β1(I1, I2, I3) =
2
√

I3

∂6

∂ I1
,

β−1(I1, I2, I3) = −2
√

I3
∂6

∂ I2
.

The Piola–Kirchhoff stress tensor,S, is related to the Cauchy stress tensor by the formula

S=
√

I3TF−T .

The balance equations in the absence of body forces are given by

div T = ρa (1.2)

or, equivalently, by

Div S= ρRẍ, (1.3)

where div denotes the divergence operator with respect tox, Div denotes the divergence operator
with respect toX, ρ is the density in the current configuration,ρR is the density in the reference
configuration,a is the Eulerian acceleration vector andẍ is the Lagrangian acceleration vector.

Our starting point is a result due to Ericksen (1) on universal solutions in unconstrained isotropic
elastic materials. Ericksen proved1 that homogeneous deformations,x = F0X, whereF0 is a con-
stant tensor, are the onlycontrollablestatic deformations possible in every hyperelastic material

1 For a modern and simple proof of Ericksen’s theorem, we refer to (2, Chapter 3).
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REMARKS ON THE USE AND MISUSE OF THE SEMI-INVERSE METHOD 453

(1.1). A controllable deformation is a deformation that is produced in a material by the application
of surface tractions alone. A controllable deformation that can be effected in every homogeneous
isotropic material is referred to as auniversalsolution. We point out that universal solutions are
the only solutions wherein the geometry associated with the deformation does not depend on the
response functionsβ0. This fundamental property of universal solutions deserves special mention.

Ericksen’s result concerning universal deformations has had a profound influence on the devel-
opment of nonlinear elasticity and for many years there has been ‘the false impression that the only
deformations possible in an elastic body are the universal deformations’ (3). However, around the
same time as the publication of Ericksen’s result, there was considerable activity in trying to find
solutions for nonlinear elastic materials using the semi-inverse method. A summary of these earlier
results may be found in the monograph by Green and Adkins (4). The purpose of the semi-inverse
method is to reduce a formidable set of nonlinear partial differential equations to a system of ordi-
nary differential equations or to a simpler system of compatible partial differential equations2 that
are more amenable to mathematical analysis but can yet capture the salient features of the physics
of the problem under consideration. If this reduced system can be solved in closed form, then it is
possible to obtain some exact solutions to boundary-value problems that hopefully are meaningful
within the framework of the theory that is being employed.3 Of course, even if it cannot be solved
exactly, the semi-inverse method leads to a simpler set of equations that can be resolved numerically.

In any case, Currie and Hayes (3) were right to point out that after some initial interest in the
search for exact solutions in nonlinear elasticity, there followed a long period of inactivity concern-
ing such an endeavor, with some notable exceptions (see, for example, Ogden (5)). At the end of
the 1970s after two important papers by Knowles (6, 7) about the anti-plane shear problem and
the paper by Currie and Hayes (3), the search for possible solutions outside universal ones was
revitalized.

Knowles used Cartesian coordinates (X1, X2, X3) in the reference configuration and Cartesian
coordinates (x1, x2, x3) in the current configuration to write down the anti-plane shear deformation:
x1 = X1, x2 = X2 andx3 = X3 + u(X1, X2). For this class of deformations, the general balance
equations reduce to an overdetermined system of partial differential equations for the out-of-plane
displacementu = u(X1, X2). For the anti-plane shear problem considered by Knowles (6, 7), it
is possible to find the restrictions on6(I1, I2, I3) such that this overdetermined system of scalar
partial differential equations admits nontrivial solutions, so that the anti-plane shear deformation
is controllable. Clearly in this case, the functionu(X1, X2) depends on the response coefficients
because the determining partial differential equation containsβ0.

In Currie and Hayes (3), the strategy proposed to search for exact solutions starts from a different
point of view. They search for special solutions by choosing a deformation whose geometry is
completely knowna priori; in doing so they are solving Ericksen’s problemsin miniature: they are
searching for universal solutions for a subclass of isotropic elastic materials.4

The influential papers by Knowles, Currie and Hayes have stimulated the development of a large
amount of research on closed-form solutions in nonlinear elasticity. Beatty, Boulanger, Carroll,
Chadwick, Hill, Horgan, Murphy, Ogden, Polignone, Rajagopal, Saccomandi, Wineman and many

2 Because the semi-inverse method is essentially heuristic, it is nearly impossible to give a rigorous definition of what is
meant by the method.
3 This is not always the case, as it is well known in the framework of the Navier–Stokes theory where the exact solutions
found by the semi-inverse method are often not compatible with the canonical no-slip boundary conditions.
4 The expression ‘in miniature’ is taken from a paper by Knowles (8) where the author tries to find nonhomogeneous
universal solutions in the family of anti-plane shear deformations, a similar but not identical problem.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/62/4/451/1908026 by guest on 21 August 2022



454 R. DE PASCALISet al.

others have determined a long list of exact solutions for special classes of constitutive equations. We
refer to the recent books edited by Fu and Ogden (9) and Hayes and Saccomandi (2) for an overview
of such activity. Here, we wish to point out that although these researches have helped in obtaining
a better understanding of the behavior of nonlinear elastic bodies, some of them nonetheless have
been the source of possible confusion in the field; some are even incorrect in their use of the semi-
inverse method. Indeed, in some of the papers that followed the papers of Knowles concerning anti-
plane shear, the authors investigate the restrictions that the strain-energy density function must fulfil
for a given class of deformation to be admissible. For example, they determine the most general
constitutive equation for a compressible isotropic elastic material such that the deformation, of
pure torsion5 or pure axial shear, is controllable. This requirement is interesting because it allows
one the possibility to determine exact solutions for special classes of materials. Our point is that
the constitutive equations determined by such special mathematical characterizations may lead to
constitutive models that exhibit response that is too special from the point of view of physics and
therefore their use in modeling of real materials is highly questionable.

To examine what kind of problems one may encounter, let us recall that it has been possible
to determine the most general class of compressible materials for which pure torsion is a control-
lable deformation in the case of a circular solid cylinder. This means that for the constitutive equa-
tions that allow the deformation in question, the balance equations are satisfied for the pure torsion
deformation. The next step is to ensure that the lateral surface of the circular cylinder is traction
free. Now, because simple torsion is an isochoric deformation, we have to ensure that the lateral
boundary is traction free while the volume remains constant. There is no reason to expect that this
situation is automatically complied with in a compressible material. It is more natural to expect that
when the lateral boundary of the cylinder is traction free, the volume change has to be nonzero.
In some sense, the behavior of a class of compressible materials such that pure torsion is control-
lable is extraordinary. In this paper, we wish to investigate quantitatively the meaning of this sort of
unusual possibility.

It is well known that the general theory of unconstrained nonlinear elasticity predicts that new
types of surface loads need to be applied in order to effect a given deformation; these loads may
be absent in the linearized theory or in the case of nonlinear incompressible materials.6 Conversely,
given loads will produce new types of deformations that are not possible within the context of
linearized elasticity or incompressible nonlinear elasticity theory. Let us consider a solid cylinder
and let us subject it to a pure twisting couple. In the real world, a material will not only twist
but also extend or contract and undergo a change of volume. (This is the well-known Poynting
effect.) Therefore, a pure torsion deformation (an isochoric deformation) as the consequence of
a pure twisting couple happens only within the context of very special constitutive theories for
compressible materials.

We recall that for incompressible nonlinear elastic materials, there exist some families ofinho-
mogeneousuniversal solutions (see, for example, (2, Chapter 3)). Therefore, a strategy to find some
exact solutions for compressible elastic materials may be to take inspiration from these isochoric
deformations and to seek similar solutions in compressible elastic materials. We point out that any
inhomogeneous solution admissible in a compressible material must be nonuniversal because of

5 We point out that pure or simple torsion is by definition anisochoricdeformation (see, for example, page 21 of Atkin and
Fox (10)).
6 In constrained nonlinear materials such as incompressible bodies, the arbitrariness of the pressure allows one a great deal
of flexibility in effecting certain deformations; this luxury is not available when one considers unconstrained materials.
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REMARKS ON THE USE AND MISUSE OF THE SEMI-INVERSE METHOD 455

Ericksen’s result. It must be clear that the isochoric deformations of an incompressible elastic body
have to be modified because the same loads will in general produce changes in volume in compress-
ible materials. It is hard to justify, from the point of view of mechanics, a compressible material for
which the given load will, in the case of an incompressible material, once again produce isochoric
deformations. Clearly in some cases, the volume variations may besmallbut in nonlinear mechan-
ics the idea that small is negligible has to be handled delicately. For example, the papers by Fosdick
and Kao (11), Rajagopal and Zhang (12) and Mollica and Rajagopal (13) on secondary deforma-
tions in nonconcentric hollow circular tubes or in tubes of elliptic cross-section or the recent paper
concerning the deformation of a cork by De Pascaliset al.(14) are good examples of the ambiguity
of the word ‘small’ in this framework.

The aim of the present work is to show by examples the importance of a clear description of the
complex deformation field that may be engendered by a simple state of surface load. The complex
deformation may be split into a basic field that may be denoted as theprimary field, whereas the
remaining deformation may be denoted assecondary. The exact reasons for calling them primary
and secondary fields will become clear as we discuss the examples.

The plan of the paper is the following. In section2, we consider some static deformations with the
help of which we can lay bare the confusion that has been created in seeking semi-inverse solutions.
By considering torsional deformation of a cylindrical shaft, we discuss step by step our criticism
concerning the mistakes that have been made as well as the possible errors that can be committed.
Here, the primary deformation is pure torsion and the secondary deformation is radial expansion.
Then in section3, we consider the propagation of transverse bulk waves (primary motion) that
according to general nonlinear elasticity theory must always be coupled to a longitudinal wave
(secondary motion). Instead of considering what happens within the context of the linearized theory,
a second-order theory and then the general nonlinear setting, we consider a top to bottom approach.
We derive the general equations and, assuming that the amplitude of the displacements is of order
ε, we show that at the first-order we recover the results of the linearized theory and that at a higher-
order of approximation we may have some insight into the coupling between the various modes of
deformation. Here, the interesting point is the occurrence of the phenomena of resonance between
the primary and secondary fields. Section4 is devoted to concluding remarks.

2. Statement of the problem

In this section, we illustrate our point of view by considering the works of Polignone and Horgan
(15 to 17), Beatty and Jiang (18, 19) and Jiang and Beatty (20). In these papers, the authors investi-
gate when certain deformations are admissible (that is, controllable) for an unconstrained nonlinear
elastic material. We wish to point out that our criticism is not about the mathematical results con-
tained in these papers. These results can and do lead to useful exact solutions if the correct subclass
of materials is picked. However, with regard to the whole class of materials that are identified in the
papers, one has to exercise a great deal of caution because models that are obtained on the basis of
purely mathematical arguments may exhibit highly questionable physical behavior.

We use cylindrical polar coordinates (R,2, Z) in the reference configuration and (r, θ, z) in
the deformed configuration. There are several interesting deformation fields that may be examined
within this setting, one of them being the torsion problem

r = f (R), θ = 2+ τ Z, z= Z, (2.1)
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the axial shear problem

r = f (R), θ = 2, z= Z + w(R) (2.2)

or the azimuthal shear problem

r = f (R), θ = 2+ g(R), z= Z. (2.3)

In the above equations,τ > 0 is the twist per unit undeformed length andf (R), w(R) andg(R)
are the radial, axial and azimuthal deformations, respectively, that must be determined by solving
the balance equations. It is clear that helical shear deformation may be easily obtained by combining
axial and azimuthal shear.

In the case of a cylinder composed of anincompressibleisotropic elastic material, it is well
known that pure torsion, pure axial shear and pure azimuthal shear are admissible deformations.
This means that the deformed configuration is again a solid circular cylinder which undergoes no
volume change. There is no physical reason to presume that in a compressible material suchpure
deformations can occur, but from a mathematical point of view, we may ask for which subclass
of unconstrained isotropic elastic materials are the deformations (2.1), (2.2) and (2.3) admissible
with r = R.

To minimize the algebra involved in our discussion, we focus on the case of deformation (2.1).
This case has been examined in a detailed and exhaustive manner by Kirkinis and Ogden (21). In
this paper, the authors formulate the equilibrium equations for a general compressible material and
then specialize their computations to the case of pure torsion. One of the important results obtained
by Kirkinis and Ogden (21) is the necessary and sufficient condition on the strain energy for the
material to sustain pure torsion with zero traction on the lateral surface. The fundamental difficulty
of ensuring the absence of traction on the lateral surface of the cylinder was completely ignored by
the previous authors. Here, we consider the general results in the paper by Kirkinis and Ogden (21)
with the aim to illustrate our thesis within the context of a simple example.

In the case of deformation (2.1), we have

F = f ′er ⊗ ER+ ( f/R)eθ ⊗ E2 + τ f eθ ⊗ EZ + ez⊗ EZ, (2.4)

and the invariants ofB are computed to be

I1 = 1+ f ′2+ f 2/R2+ τ2 f 2, I2 = f ′2+ f 2(1+ f ′2)/R2+ τ2 f ′2 f 2, I3 = ( f f ′/R)2.

Sincer = f (R), it is possible to consider the stress as a function of the reference coordinateR,
T = T(R) instead ofT = T(r ). In this case, the balance equations reduce to a single equation

dTr r

dr
+

1

r
(Trr − Tθθ ) = 0,

and using the chain rule, we obtain

d

d R

[
R f ′

f
(61+62)+

f f ′

R
(63+62)+ τ

2R f ′ f62

]

+

(
R f ′2

f 2 −
1

R

)

(61+62)− τ
2R61 = 0. (2.5)
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This is the equation that is to be used for determining the radial expansionf (R). The usual boundary
conditions for a solid circular cylinder of undeformed radiusA subjected to twisting moments at its
end are that the outer surface is traction free,Trr (A) = 0, and thatF is bounded, so thatr (R) =
O(R) asR→ 0. We point out that in this case

Trr = β0+ β1 f ′2+ β−1 f ′−2.

Clearly, the solution of (2.5) is not universal and therefore the solution will depend on the material
properties. Here, we refer to the deformation associated with torsion as primary; the radial expansion
is treated as the secondary field.

If in (2.5), we seta priori r = R, then we obtain

d

d R
[61+ 262+63+ τ

2R262] − τ2R61 = 0, (2.6)

which is an equation that expresses a restriction on the strain-energy density. The determination of
the most general strain-energy density satisfying (2.6) is the main question studied by Polignone
and Horgan (15). In the paper, a necessary condition that the strain energy6 has to satisfy for pure
torsion to be possible is determined, then a subclass of materials for which this condition is satisfied
is identified. Kirkinis and Ogden (21) have shown that the condition obtained by Polignone and
Horgan is not sufficient to ensure that pure torsion is possible in a compressible material with zero
traction on the mantle of the cylinder.

To make this claim quantitative, let us observe that any idealized material characterized by spe-
cial mathematical properties cannot be clearly identified in the real world. That is, all mathematical
models have to be viewed as approximations and one has to evaluate how well such models repre-
sent reality. We have to make some determination of what we will find acceptable in terms of an
approximate answer. Such a determination cannot be totally subjective and one has to have some
sort of agreement among those developing and using such models. Whether our criticism concern-
ing the inapplicability of certain models is appropriate or otherwise needs to be judged by the
reader.

For example, let us suppose that we wish to consider the mathematical assumption6 = 6(I2, I3)
with regard to a specific body. This is exactly the constitutive assumption of the celebrated Blatz
and Ko model for foamed polyurethane elastomeric foams (22). It is imperative, when we make
such an assumption, to check whether the experimental data back the validity of the mathematical
relationship

∂6/∂ I1 = 0. (2.7)

Because the first derivatives of the strain energy are the mechanical quantities directly related
to the stress, the relation (2.7) is indeed the correct way to check the constitutive assumption
6 = 6(I2, I3), for example in a biaxial experiment. It is clear that in the real world, our measure-
ment in itself introduces an uncertainty with regard to the measured quantity and that the accuracy
of measurement is such that any measurement of the mechanical quantity∂6/∂ I1 to check (2.7)
will deliver a real numberε different from zero. It is not merely the prerogative of the modeler to
say whenε is sufficiently small enough to be considered zero but, and as always, any theoretical
assumption is an approximation and making such an approximation is an art. Roughly speaking,
in a nonlinear theory, just because a certain quantity is small it does not follow that everything
else connected with this quantity is or remains small. For this reason, we must be very careful in
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458 R. DE PASCALISet al.

considering constitutive assumptions generated by purely mathematical arguments as the ones
arising from the semi-inverse method.7

On the other hand, it is clear that approximations must be consistent and for the specific problem
under consideration the following problem arises. If a given problem depends on various parameters
αi , i = 1, . . . , n, and depends on a small parameterε such that forε = 0 the secondary deformation
may be ignored, the small-ε approximation is consistent if forε � 1 the secondary field is negligible
for any admissible value of the parametersαi . For pure torsion, this means

max
R∈[0,A]

∣
∣
∣
∣

f (R)

R
− 1

∣
∣
∣
∣ ≈ O(ε)

or
√

I3 ≈ 1 for all R ∈ [0, A] and for any possible value ofαi .
Now, let us consider the classical Blatz–Ko material (22) whose stored energy is given by

6 =
µ

2

[(
I2

I3
− 3

)

+ 2(
√

I3− 1)

]

, (2.8)

whereµ is a constant. This model is of the form6 = 6(I2, I3) and it is well known that for the
class of materials whose stored energy is given by (2.8), the isochoric simple torsion deformation is
controllable.

Let us consider a more general strain energy than (2.8),

6 = k(I1− 3)+
µ

2

[(
I2

I3
− 3

)

+ 2(1− 2k/µ)(
√

I3− 1)

]

, (2.9)

wherek andµ are constants. The strain energy (2.9) differs from (2.8) by a linear term inI1 and a
null lagrangianterm

√
I3 (23) such that the usual restrictions imposed by the normalization condi-

tions are satisfied. Clearly ask→ 0, from (2.9) we recover (2.8).
The derivatives of the strain energy (2.9) with respect to the invariants are

61 = k, 62 =
µ

2I3
, 63 =

µ

2

(
1− 2k/µ
√

I3
−

I2

I 2
3

)

. (2.10)

Now, it is possible to evaluate via a suitable experiment the magnitude of the parameterk with
respect to the parameterµ and to decide if the assumption61 = 0 is reasonable on the basis of
fitting the experimental data. Ifk = 0, the model (2.9) reduces to (2.8); our point is that this model
is so special that it is not possible to ensure that the predictions of the mechanical response are not
in contradiction with the assumptionk = 0.

To make this point more quantitative, the next step is to introduce the dimensionless independent
variableζ = R/A ∈ [0, 1], the dimensionless dependent variableF(ζ ) = f/A and the quantities
τ̂ = Aτ and k̂ = k/µ. The introduction of (2.10), evaluated for the specific deformation under
consideration, in (2.5) after some simple algebra leads to the equation

k̂

(
ζ F ′′

F
+

F ′

F
− τ̂2ζ −

1

ζ

)

+
3

2

ζ F ′′

F F ′4
+

ζ 3

2F4 −
1

2F F ′3
= 0. (2.11)

7 We point out that this procedure is exactly the reverse of the constitutive assumption that comes out from a rigorous math-
ematical definition of some physical intuition. Notable examples of this last situation are the concept of frame indifference
and material symmetry. In this case, we start by the evidence provided by our observations in the real world and then try to
translate this into mathematics; in the former case, we force mathematics to fit into the real world.
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(Here F ′ = d F/dζ .) Moreover, the dimensionless radial stress component, associated with the
deformation, for the model (2.9) is given by

T̂ζ ζ (ζ ) = 1− 2k̂+ 2k̂
F ′2
√

I3
−

F ′−2
√

I3
. (2.12)

Therefore, for a solid circular cylinder of undeformed radiusA subjected to end torques only, the
boundary-value problem of interest here is given by (2.11), subject to the conditionŝTζ ζ (1) = 0
(that is,Trr (A) = 0) andF(ζ )→ 0 asζ → 0. We point out that the isochoric solutionF(ζ ) = ζ
is controllable for the model (2.9) if and only if k = 0 and in this casêTζ ζ (1) = 0.

It seems unlikely that one can obtain an explicit exact solution for (2.11), and even a numerical
solution for the boundary-value problem under investigation is not an easy task because the bound-
ary condition onζ = 1 is nonlinear and of mixed type. For this reason, we consider an approximate
O(k̂) solution. A straightforward computation gives

F(ζ ) ≈ ζ + k̂
τ̂2ζ

24
(2ζ 2− 5) (2.13)

and theO(k̂) volume approximation is

J ≈ 1+ V(τ̂2, ζ )k̂, (2.14)

whereV(τ̂2, ζ ) = 1
12(4ζ

2 − 5)τ̂2 is the variation of volume at order̂k. The maximum of this
variation is

|V(τ̂2, 0)| =
5

12
τ̂2. (2.15)

Because (2.13) and (2.15) depend not only on̂k but also onτ2, and because the two parameters are
independent, it is clear that the approximationk̂ = 0 may not be consistent.

Therefore, imagine that you are able to evaluate via an experiment the parameterk̂ and that you
discover that this parameter is small. It is clear that the experimentally determined number may be
never small enough to justify the model corresponding tok̂ = 0 and only the modeler can choose
to setk̂ = 0, or do otherwise. Our computation shows that such an assumption might be dangerous
under certain circumstances. Indeed, while the limiting model fork̂→ 0 predicts that during torsion
the variation of volume is null, this is not always the case even for very smallk̂. Therefore, the use of
the Blatz–Ko model (2.8) is fraught with danger because it is too special. This situation is peculiar to
all the constitutive models that are identified by enforcing via purely mathematical properties special
mechanical behaviors such as the controllability of isochoric deformations within the context of a
theory to describe the response of compressible bodies.

3. Transverse and longitudinal waves

Another important example is given by the propagation of longitudinal and transverse waves. Intro-
ducing the Cartesian coordinates (X1, X2, X3) in the undeformed configuration and the Cartesian
coordinates (x1, x2, x3) in the current configuration, we consider the motion given by

x1 = u(X1, t), x2 = X2+ v(X1, t), x3 = X3, (3.1)

where the longitudinal waveu and the transverse wavev must be determined from the balance
equation. The principal invariants,I1, I2 and I3, are given by

I1 = 2+ u2
X1
+ v2

X1
, I2 = 1+ 2u2

X1
+ v2

X1
, I3 = u2

X1
. (3.2)
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The equations of motion (1.2) reduce to the two scalar equations

ρR
∂2u

∂t2 =
∂

∂X1

[
2(61+ 262+63)uX1

]
, ρR

∂2v

∂t2 =
∂

∂X1

[
2(61+62)vX1

]
. (3.3)

Here, the strain energy6 is a function ofu2
X1

andv2
X1

.
We remark that in the linearized limit, (3.3) reduces to the classicaluncoupledsystems of linear

wave equations (10).
If we consider the caseu(X1, t) ≡ X1, (3.3) reduces, in the general case, to anoverdetermined

system of two differential equations in the single unknownv. Therefore, it seems, at least at first
sight, that it is not possible to ensure the existence of a transverse wave in the nonlinear theory for
any material within the constitutive class (1.1). It is possible that forspecialclasses of materials, this
overdetermined system may have a solution. For example, this is the case for Hadamard materials
whose stored energy is given by

6 = c1(I1− 3)+ c2(I2− 3)+ H(I3), (3.4)

wherec1 andc2 are constants andH(I3) is an arbitrary function to be specified on the basis of
constitutive arguments. The connection of these parameters with the usual Lamé constantsµ andλ
is c1 = µ + H ′(1), c2 = −µ − H ′(1) and 2H ′′(1) = λ + 2µ. In the case of Hadamard materials,
becauseu ≡ X1 and I3 = 1, we find that (3.3) reduces to

ρR
∂2v

∂t2 = 2µ
∂2v

∂X2
1

. (3.5)

In this case, the system is compatible and the transverse wave solution may be computed by solving
a linear differential equation, as in the linearized theory of elasticity.

Now, let us consider for the Hadamard material, the case that the longitudinal waveu(X1, t) is of
orderε, whereε � 1. Then it is possible to considerH(I3) = (λ+µ)(I3−1)−2(λ+2µ)(

√
I3−1)

as proposed by Levinson and Burgess (24). Now, (3.3) becomes

ρR
∂2u

∂t2 = 2(λ+ 2µ)
∂2u

∂X2
1

, ρR
∂2v

∂t2 = 2µ
∂2v

∂X2
1

. (3.6)

In this case, we find that the equations are the same as in the linearized theory and therefore they
are uncoupled.

We take a further step and we consider a very small coupling, that is, we modify the constitutive
equation (3.4) to be

6 = c1(I1− 3)+ c2(I2− 3)+ (λ+µ)(I3− 1)− 2(λ+ 2µ)(
√

I3− 1)+ k I3(I1− I3− 2), (3.7)

wherek is the coupling parameter. In this case, we compute

ρR
∂2u

∂t2 = 2(λ+ 2µ)
∂2u

∂X2
1

+ 2k
∂

∂X1

(
v2

X1
uX1

)
(3.8)

and

ρR
∂2v

∂t2 = 2µ
∂2v

∂X2
1

+ 2k
∂

∂X1

(
u2

X1
vX1

)
. (3.9)
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Clearly, the term∂
(
u2

X1
vX1

)
/∂X1 in the right-hand side of (3.9) may be (at least, at first sight)

ignored because the amplitudeu is very small. This means that we may consider the system of (3.8)
and (3.9) as being decoupled. This is, indeed, a way to justify the Hadamard material (3.4) which is
a model that predicts an exact decoupling. Indeed, as we have already remarked any experimental
determination of the couplingk may lead tok being small but never zero.

To make the idea rigorous, we must (at least) require that, given a set of boundary conditions (for
example,u = v = 0 at X1 = 0 andL), the initial condition is such thatu(X1, 0) ≈ O(εn) with
suitablen > 1 and that we have a suitablea priori bound on the solution such that for any time,
we are ensuredu(X1, t) ≈ O(ε). Then if thispriori bound exists, the initial conditions satisfy the
requirements and whenk is small it is possible to consider the transverse waves as decoupled from
the longitudinal waves.

The point is that from the structure of the equations it is clear that this bound cannot exist for
all the admissible range of parameters. Letk ≈ O(ε), then when the longitudinal motion is small
a better approximation than the linear one is to neglect in (3.9) the term 2ε2k∂X1

(
u2

X1
vX1

)
(which

is O(ε3)) but to retain the coupling term in (3.8) (which is O(ε)). In this case, (3.9) is a classical
linear wave equation and introducingc2

T = 2µ/ρR this equation admits solutions of the usual form,

v(X1, t) =
∞∑

n=1

[ An cos(kT
n t)+ Bn sin(kT

n t)] sin(nπX1/L),

wherekT
n (= nπcT/L) is the transverse wave number of thenth mode. If we introduce this solution

into (3.8), we obtain foru(X1, t) a linear but nonautonomous equation for which it is possible to
search for solutions of the form

u(X1, t) =
∞∑

n=1

ηn(t) sin(nπX1/L).

Using standard methods of nonlinear oscillations (25), we obtain a reduction of the equations to
an infinite system of coupled ordinary differential equations in the unknownsηn. These equations
are nonautonomous and they display autoparametric resonance phenomena for some values of the
various parameters. Therefore, ana priori bound is impossible. This means that it does not matter
how small the longitudinal motions are, after a certain time the amplitude of such waves cannot
be neglected and a full coupling between transverse and longitudinal motion must be considered.
Therefore, the Hadamard model is much too special to be considered as a reasonable idealization of
real elastic bodies.

Phenomena of this kind are quite common in classical mechanics. For example in the framework
of the elementary and classical theory for holonomic systems, it is well known that unstable normal
modes may not contribute to the approximate linear theory. This happens for such modes that are
latent at the initial time. Nevertheless, the higher orders neglected in the Lagrangian are able to
awaken these latent unstable modes, which brings the system away from equilibrium. A simple and
clear example of a mechanical system displaying wake-up of latent modes is reported in page 133
of Biscariet al. (26).

4. Concluding remarks

The semi-inverse method is the principal tool for obtaining closed-form solutions in continuum me-
chanics. Usually, we are concerned with the mathematical difficulties that this method may present.
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Here, we have discussed certain subtle physical issues that can come into play in using the semi-
inverse method.

Our simple examples have to be added to the list of contributions that have recognized some
of the issues involved, namely, the paper by Fosdick and Kao (11), where the presence of normal
stress differences in anti-plane shearing of cylinders of nonlinear materials stimulates secondary
deformations, the papers by Rajagopal and Zhang (12) and Rajagopal and Mollica (13), where the
secondary deformation comes into play because of the geometry of the domain, the paper by Horgan
and Saccomandi (27), where it is shown that the coupling between different deformation fields may
also exist when the governing equations are uncoupled because of the boundary conditions, and the
paper by De Pascaliset al. (14), where a detailed study of latent deformation is carried out for a
complex deformation field and where a small change in the constitutive assumptions produces a
dramatic change of the nature of the solution.

Here, we have considered two simple and well-known deformations to show that if we ignore
the full scope of the deformation, we may be misguided and we may miss real and interesting
phenomena.

Nonetheless, we must acknowledge the value of simple exact solutions, and we must remember
that such solutions have been obtained by inverse or semi-inverse methods in many cases. There-
fore, we have to be particularly aware that inverse and semi-inverse methods, while they may lead
to solutions of important boundary-value problems, may also lead to the solutions with unsuspected
discontinuities or certain other limitations that are more a mathematical by-product than a represen-
tation of real-world phenomena.
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