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ABSTRACT

A range of static analysis tools and techniques have been de-
veloped in recent years with the aim of helping JavaScript
web application programmers produce code that is more ro-
bust, safe, and efficient. However, as shown in a previous
large-scale study, many web applications use the JavaScript
eval function to dynamically construct code from text strings
in ways that obstruct existing static analyses. As a con-
sequence, the analyses either fail to reason about the web
applications or produce unsound or useless results.

We present an approach to soundly and automatically
transform many common uses of eval into other language
constructs to enable sound static analysis of web applica-
tions. By eliminating calls to eval, we expand the appli-
cability of static analysis for JavaScript web applications in
general.

The transformation we propose works by incorporating a
refactoring technique into a dataflow analyzer. We report
on our experimental results with a small collection of pro-
gramming patterns extracted from popular web sites. Al-
though there are inevitably cases where the transformation
must give up, our technique succeeds in eliminating many
nontrivial occurrences of eval.
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1. INTRODUCTION

The eval function and its variants in JavaScript allow
dynamic construction of code from text strings. This can be
useful for parsing JSON data', lazy loading of code?, and
execution of user code in web-based JavaScript IDEs®. Using
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eval, however, makes it difficult to statically reason about
the behavior of the application code. Existing automated
static analyses for JavaScript try to dodge this problem.
They either forbid eval altogether [23, 1, 14, 19], handle
only the simplest cases where the strings passed to eval are
constants or assumed to contain JSON data [16, 15, 13], or
simply ignore calls to eval thereby sacrificing precision and
soundness [12]. Since JavaScript has limited encapsulation
mechanisms, the dynamically constructed code can generally
affect most of the application state, so ignoring calls to eval
may have drastic consequences for the analysis quality.

The recommended best practice for web application de-
velopers is to avoid eval: “The eval function is the most
misused feature of JavaScript. Avoid it.” [5]. Nevertheless,
the recent study “The Eval That Men Do” by Richards et al.
has shown that eval is widely used [21]. Not only do a ma-
jority of the most popular web sites use eval, but in many
cases they use it where simple alternatives exist, for example
to access variables in the global scope or to access proper-
ties of objects. A likely explanation is poor understanding of
the JavaScript language, in particular of its functional pro-
gramming features that allow functions to be passed as ar-
guments and of its unusual object model where each object
is effectively a map from strings to values. Consequently,
there is currently a mismatch between the capabilities of
state-of-the-art static analysis tools for JavaScript and the
JavaScript code that average programmers write.

Richards et al. also suggest that many of the uses of eval
could be eliminated by rewriting the code, often improving
both clarity and robustness as a side effect. They conclude
that 83% of eval uses in their study could be rewritten to
use less dynamic language features — however, they provide
no automated way to perform these changes. Although it is
often “obvious” to competent programmers how specific calls
to eval can be eliminated manually, automating the trans-
formation is not trivial. On the other hand, not all occur-
rences of eval can be eliminated with reasonable means; as
an example, a call to eval that gets its input from an HTML
text field could ultimately be eliminated by implementing a
full JavaScript interpreter in JavaScript, which would hardly
help static analysis tools reason about the code.

The goal of our work is to develop a sound, automated
transformation technique for eliminating typical patterns of
eval calls in JavaScript programs. The primary purpose is
not to clean up messy code but rather to enable static anal-
ysis of programs that contain eval, for example for verifica-
tion or bug detection. We therefore accept transformations
that produce complex code as output as long as that code —
unlike the input code that uses eval — is amenable to static
analysis. We only permit transformations that preserve the
behavior of the code because we want to apply sound static



1 function _var_exists(name) {

2 // return true if var ezists in "global” context,
3 // false otherwise

4 try {

5 eval(’var foo = ’ + name + ’;’);
6 1}

7 catch (e) {

8 return false;

9 }

10 return true;

11 }

12 var Namespace = {
13 // simple namespace support for classes
14  create: function(path) {

15 // create namespace for class

16 var container = null;

17 while (path.match(/~(\wt)\.?/)) {

18 var key = RegExp.$1;

19 path = path.replace(/~(\w+)\.?/, "");
20 if (!container) {

21 if (!_var_exists(key))

22 eval ("window.’ + key + > = {};’);
23 eval (’container = ’ + key + ’;’);
24 }

25 else {

26 if (!container[key]) container[key] = {};
27 container = container [key];

28 }

29 }

30}

31 };

Figure 1: Example of eval taken from the Chrome
Experiments program canvas-cycle.

analyses on the resulting code. In this way, eliminating eval
can be viewed as a code refactoring challenge [7]. We want
a tool to transform the program code without affecting its
behavior, which requires an analysis to check certain precon-
ditions and infer other information needed by the transfor-
mation. This apparently raises a chicken-and-egg problem:
Before we can rewrite a given occurrence of eval we need
to run a static analysis to infer the necessary information,
but as discussed above we cannot in general perform static
analysis of programs that use eval.

Another challenge is that the flexibility of eval makes
apparently simple cases surprisingly difficult. For example,
consider a rewrite rule that replaces a call eval("S") by S
when S is a constant string consisting of syntactically cor-
rect JavaScript code. Such a rule is unsound; for example, S
may contain variable and function declarations even when
the call eval ("S") occurs inside an expression, so the result-
ing code might not be syntactically correct, and moreover,
variable declarations in S may conflict with variables in the
surrounding code. Even finding the occurrences of calls to
eval is nontrivial because programs may create aliases of the
eval function. Some programs use such aliasing to exploit a
subtlety of the language specification: Calling eval directly
will cause the given code to be executed in the current scope,
whereas calls via aliases use the global scope (or, before 5th
edition of ECMAScript, cause an EvalError exception).

The example in Figure 1 demonstrates how eval can be
used in practice. The code appears in the Chrome Experi-
ments program canvas-cycle? and is part of a larger library
that implements a class system in JavaScript, which does not
support classes natively. This particular snippet implements
a namespace mechanism for these classes.
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The example contains three calls to eval. The first on
line 5 tests whether a given name exists in the global scope
(although it only works if the name is not "name" or "foo").
This could have been accomplished without eval, for exam-
ple by writing name in window since window refers to the
global scope. The second call to eval on line 22 is used
to assign to a dynamically computed property of the window
object. This could have been achieved using window [key] to
access the dynamically computed property. The last eval
call on line 23 could be rewritten in a similar way. This
example demonstrates that many calls to eval are in fact
unnecessary and the same results could be achieved with
other language constructs that are easier to reason about
for a static analysis.

1.1 Contributions

The key idea of our approach is to eliminate eval calls
soundly and automatically by incorporating refactoring into
the fixpoint computation of a dataflow analyzer. We demon-
strate this idea using the TAJS analysis [16, 17, 15] that
performs a whole-program dataflow analysis for JavaScript
web applications, but until now with poor support for eval.
Whenever the analysis encounters dataflow into eval, a refac-
toring component is triggered for rewriting the call to equiv-
alent JavaScript code without the eval call, and the analysis
can proceed by analyzing the resulting code. When the anal-
ysis reaches its fixpoint, we have eliminated all reachable
calls to eval and can output the resulting program. The
success of this approach naturally depends on the power of
the refactoring component and the information it can obtain
from the underlying dataflow analysis — especially informa-
tion about the strings that are passed to eval.

As an example, consider this fragment of JavaScript code
used by Richards et al. for illustrating the power of eval [21]:

Point = function() {
var x=0; var y=0;
return function(o,f,v) {

if (o=="r")
return eval(f);
else

return eval (f+"="+v);
}
}

A call p = Point () will return a closure that can be invoked
as e.g. p("w", "x", 42) to write the value 42 to the local
variable x or as p("r", "x") toread its current value. Let us
focus on the second eval call site. Suppose that our dataflow
analysis first encounters a call p("w", "x", 42). Provided
that the analysis can keep track of the flow of values, it
can infer that eval is called with the argument "x"+"="+42
which reduces to eval("x=42"). This eval call can safely
be rewritten to the assignment x=42, and the dataflow anal-
ysis can proceed by analyzing the effect of that assignment,
which will likely have consequences to other parts of the pro-
gram. If the analysis later encounters another call, for ex-
ample p("w", "y", 87), things become more complicated.
Even if the analysis knows that the value of f is always a
valid, non-reserved identifier name and v is always a num-
ber, and the local variables x and y are merely properties
of a scope object, it is difficult to rewrite the eval’d assign-
ment £f+"="+v into an object property assignment because
JavaScript does not provide a way to obtain a reference to
the local scope object. Instead, we use context sensitive



dataflow analysis to keep the two calls to p apart. Assum-
ing that the analysis in this way finds out that the only
possible values of £ are "x" and "y", the code may safely be
transformed into the following by conditionally specializing
the eval calls accordingly:

Point = function() {
var x=0; var y=0;
return function(o,f,v) {

if (o=="r")

return f==="x" 7 x : y;
else

return f==="x" 7 x=v : y=v;
}

}

Another example is the function get_server_option in the
code for the web site scribd. com:

var get_server_option =
function(name, default_value) {
if (typeof Scribd.ServerOptions == ’undefined’ ||
eval (*typeof Scribd.ServerOptions.’ + name)
== ’undefined’)
return default_value;
return eval(’Scribd.ServerOptions.’ + name);

};

The dataflow analysis can find out that the value of name
is always a valid identifier name by looking at the call sites,
so the code can safely be rewritten to eliminate the calls to
eval:

var get_server_option =
function(name, default_value) {
if (typeof Scribd.ServerOptions == ’undefined’ ||
typeof Scribd.ServerOptions[name]
== ’undefined’)
return default_value;
return Scribd.ServerOptions [name];

};

The transformations in these examples allow subsequent pro-
gram analyses to reason about the code without having to
worry about eval.

This paper explores the idea of incorporating eval refac-
toring into the dataflow analysis fixpoint computation and
proposes a sequence of steps for developing the refactor-
ing component and exploiting information provided by the
dataflow analysis. In summary, the contributions of this pa-
per are as follows.

e We describe a framework that soundly integrates refac-
toring of eval calls into a dataflow analyzer.

e Guided by a study of how eval is being used in prac-
tice, we instantiate our framework with different tech-
niques for transforming typical calls to eval into equiv-
alent JavaScript code without eval.

e We present results of an experimental evaluation with
a prototype implementation. On 28 nontrivial pro-
gramming patterns extracted from the Alexa top 500
web sites and from Chrome Experiments® containing
a total of 44 calls to eval, our approach successfully
eliminates 33 of the calls, which enables further use of
static analysis on those applications and demonstrates
that our approach is feasible. For the other call sites,
we describe the challenges that remain for future work.
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The remainder of this paper is organized as follows. Sec-
tion 2 contains a study of calls to eval, slightly extending
the work by Richards et al., to learn more about how eval
is being used in practice. We present an overview of our
transformation framework, the Unevalizer, in Section 3. We
take the first step in Section 4 to eliminate a class of calls to
eval where the arguments are constant strings and proceed
with a number of improvements in Section 5 involving con-
stant propagation, special treatment of strings that contain
JSON data or identifiers, and context sensitive specializa-
tion to obtain more precise information about the strings
that enter eval. In Section 6 we report on experiments
performed using our prototype implementation on a small
collection of JavaScript web applications that use eval and
until now have been out of reach for static analysis tools.

Although our presentation focuses on the eval function,
our technique also works for its cousins Function, setInter-
val, and setTimeout, and in principle for script code embed-
ded in dynamically constructed HTML and CSS data. We
target the 3rd edition of ECMAScript [6]. None of the web
sites we have studied use the newer strict mode semantics
in combination with eval.

The intended user of our code transformation tool is the
JavaScript web application developer. This means that we
can disregard “minification” and lazy code loading, which are
often used before deployment to compress the code and di-
vide it into small parts for faster loading, and we can assume
that all relevant source files are available for analysis.

We strive toward transformations that preserve the pro-
gram behavior: Given a program that uses eval, our tool
either outputs a program with the same external behavior,
but without eval, or the tool gives up and issues an explana-
tion message. (Stating this formally and proving correctness
is beyond the scope of this paper.) Since the main purpose of
our work is to enable sound static analysis of programs that
use eval, one may argue that we could loosen this require-
ment and permit non-behavior preserving transformations
as long as they are sound with respect to the subsequent
analysis. The advantage of our present approach is that
the transformation of eval call becomes independent of the
subsequent analysis of the transformed programs.

1.2 Related Work

Static analysis of JavaScript has been the focus of much
work recently, and the eval function is widely recognized as
being a challenging language construct.

Thiemann has suggested a type system for detecting sus-
picious type conversions [23], Anderson et al. have proposed
a type inference algorithm for tracking object properties [1],
Jang and Choe have presented a points-to analysis for a sub-
set of JavaScript [14], and Logozzo and Venter have intro-
duced an analysis technique that enables type specialization
optimizations [19]. All these analyses are defined on sub-
sets of JavaScript that do not include eval. The end result
is that these analyses currently do not work for many real
JavaScript programs.

In the Gatekeeper project, Guarnieri and Livshits miti-
gate the eval problem by providing a runtime checker that
determines if a given JavaScript program falls into the safe
subset [11]. Another approach, which is used in the Actarus
security analysis tool by Guarnieri et al. [12], is to simply
ignore the effects of eval, which makes analysis results un-
sound in the presence of eval calls.



Dynamically constructed code also presents unique chal-
lenges in security analyses that are performed on-the-fly
whenever untrusted third-party code is loaded dynamically.
Staged or incremental analysis [3, 10] handles the issue by
generating security policies that are checked when code is
loaded and added to the program using eval. In contrast, we
disregard lazy code loading as discussed above, and our ap-
proach aims to eliminate eval calls by purely static dataflow
analysis without runtime checks.

Some uses of eval follow common patterns that can be
recognized and handled without needing a full analysis. The
control flow analysis by Guha et al. recognizes loading of
code [13], and our previous work uses similar techniques to
rewrite uses of eval that simulate simple higher-order func-
tions [15]. In the present work we aim to expand the scope
of static analysis for JavaScript in general by transforming
eval calls into other language constructs that can be han-
dled by existing static analyzers.

We use TAJS [16, 17, 15] to drive the transformation
of eval calls, but our approach is not inherently tied to
TAJS. The general aim of TAJS is to detect likely program-
ming errors related to mismatches of types and dataflow in
JavaScript programs, for example to detect suspicious type
coercions or function calls where the call expression may not
evaluate to a function object. In brief, TAJS performs inter-
procedural flow-sensitive dataflow analysis with a complex
abstract domain that soundly and in great detail models
how objects, primitive values, expressions, and statements
work in JavaScript according to the ECMAScript standard.
Here, we do not use the results produced by TAJS when it
analyzes a program; instead we exploit TAJS as a dataflow
analysis infrastructure for exposing calls and arguments to
eval. In previous work [15] we pointed at dynamically gen-
erated code as an important next step for static analysis of
JavaScript web applications — we here take that step.

The ability to construct code from text at runtime is not
limited to JavaScript. Most dynamic scripting languages
include an eval construct. Furr et al. have presented an in-
termediate language to ease the task of making static anal-
ysis for Ruby [9]. Calls to eval are removed using dynamic
profiling of the program during the transformation of Ruby
programs into this intermediate form [8]. As for the com-
parison with staged or incremental analysis discussed above,
the key difference with our work is that we aim for a sound
and purely static approach. Interestingly, the experiments
by Furr et al. suggest that eval is more commonly used
for sophisticated metaprogramming in Ruby programs than
Richards et al. have observed in JavaScript programs.

Other programming languages have more disciplined vari-
ants of eval than the one in JavaScript. As a case in point,
eval in Scheme [22] works with S-expressions rather than
text strings, which makes it easier to reason about the struc-
ture of the code being evaluated. Moreover, the code runs
in an immutable environment, so it is safe to ignore eval
calls in static analysis for Scheme, unlike JavaScript.

As mentioned above, our techniques can be viewed as
a refactoring that transforms a program to a behaviorally
equivalent one without dynamic code evaluation. Similar to
the work we present here, Feldthaus et al. use static analysis
as a foundation for describing and implementing refactorings
of JavaScript programs [7]. One important difference is that
we here perform the refactoring during the analysis, not af-
ter the analysis fixpoint is reached.

Other JSON
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Figure 2: Classification of 17,665 eval call sites from
Alexa top 10,000 web sites.

Knowledge about the contents of the strings that are passed
to eval is obviously essential to be able to transform the
eval calls to other code. As we show in the following sec-
tions, we have chosen a pragmatic approach that aims to
cover the patterns that appear to be the most common in
practice. This allows us to handle typical calls by focusing
on relatively simple patterns of string concatenations. In
principle, it would be possible to integrate more advanced
string analysis algorithms, as introduced by Christensen et
al. [2], but our study of how eval is used in practice suggests
that our present approach is adequate in most cases.

2. EVAL IN PRACTICE

To guide the development and to be able to evaluate the
quality of our code transformation system, we need a collec-
tion of representative example programs that use eval and
show how it is used in practice. A useful starting point is the
study by Richards et al. [21], which is based on execution
traces of thousands of the most popular web sites accord-
ing to Alexa®. Their study shows that more than half of
the web sites use eval, which suggests that there are plenty
of examples to choose from. We disregard dynamic code
loading for the reason mentioned in Section 1.1, and JSON
parsing can be treated separately with known techniques,
which we describe in Section 5.2, so these uses of eval are
less interesting to us. The Richards et al. study does not di-
rectly show how many of the web sites use eval for purposes
other than dynamic code loading and JSON data parsing.
Of the remaining uses of eval, calls where the argument is
a constant string in the source code can also be considered
as relatively easy cases for the transformation (we return to
this category in Section 4).

To investigate this further, we examine the Alexa top
10,000 web sites. We find using the tools made available
by Richards et al. that 6,465 of them use eval. Filtering
out those that use eval for purposes other than dynamic
code loading and JSON parsing gives us 3,378 URLs. If we
further remove those where all calls to eval have constant
arguments, only 2,589 URLs remain. This alone gives an
interesting picture of the typical uses of eval that is not
emphasized by Richards et al. [21]: Although eval is per-
vasive, we can expect that relatively few web sites (around
25%) use eval in ways that are truly challenging to reason
about with static analysis.

A second observation is that the results of measuring the
eval usage patterns are more useful to us if we count num-
bers of static call sites rather than numbers of runtime calls

6http ://www.alexa.com/topsites
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Figure 3: Structure of the Unevalizer.

to eval as in the Richards et al. study. Many calls at run-
time typically originate from the same call sites in the code,
and for the purpose of developing techniques to transform
source code to eliminate typical eval calls, we obtain more
relevant information about the usage patterns by consider-
ing the static call site information. Of a total of 17,665
eval call sites, we find that 3,339 are used for loading li-
brary code, 6,228 have arguments that are constant strings
(see Section 4), and 2,202 are used for parsing JSON data
(see Section 5.2). Of the remaining call sites, 3,624 evalu-
ate code strings that are single operations, such as property
read/write operations, typeof type test expressions, or sim-
ple function/method calls. A few call sites, 141, fall into
more than one of these categories. The distribution is shown
in Figure 2. This suggests that a transformation technique
that can handle constants, JSON, and single operations will
cover a majority of the eval calls that programmers write.

3. THE UNEVALIZER FRAMEWORK

Figure 3 shows the structure of the Unevalizer. As input,
it takes a JavaScript web application containing HTML and
JavaScript files. It then transforms the application driven
by a whole-program dataflow analysis and, if successful, out-
puts a semantically equivalent application that does not con-
tain calls to eval.

The dataflow analysis A will abstractly trace all possi-
ble execution paths through the program and keep track of
what data flows into what variables and functions. This
process is based on the classical monotone framework [18]
that maintains abstract states for all program points and
abstract values for all expressions. Specifically, it models
function objects using object labels where feya1 is an ob-
ject label describing the eval function that is defined in
the ECMAScript core library. Our prototype implementa-
tion uses TAJS for the dataflow analysis. Whenever new
dataflow is detected during the analysis at a function call
site F'(E), where F' and F are expressions, we look for calls
to eval: If the abstract value provided by the analysis for F’
includes feva1 then the transformation component 7 is trig-
gered. Method calls are treated similarly as function calls,
and we omit them here to simplify the presentation. We

also ignore indirect calls via built-in native functions such
as call and apply, which are fully supported by our analysis
but rarely used in combination with eval.

The transformation component 7 is passed an 8-tuple
(E,V,Dg,Dr, D, r,p,n) with information from the anal-
ysis:

e F/ is the syntactic argument expression as it appears
in the program code at the function call site.

e V' is the abstract value of the argument expression
E. This abstract value soundly approximates the code
string to be evaluated.

e D¢ and Dy, are the sets of names of variable and func-
tion declarations in the global and local scope, respec-
tively. This takes into account nesting of functions and
properties of the global object. Dy is the set of names
of built-in properties of the global object that may
have been modified by the application code. We settle
for sound approximations of these sets since JavaScript
does not have ordinary lexical scope (due to with state-
ments and dynamically constructed properties of the
global object that are always in scope).

e 7 is a boolean flag that indicates whether the call ap-
pears syntactically as an expression where its return
value is used (as in x=eval(y)) or as a statement on
its own.

e p is a boolean flag that signals whether the eval call
is direct or aliased, which controls its execution scope
as mentioned in Section 1.

e 7 is a number that indicates the eval nesting depth,
which is 0 for an eval call that occurs in the origi-
nal source program, 1 for a call that appears in code
generated by an eval call at nesting depth 0, etc.

This turns out to be sufficient information to perform the
transformation in many common cases. Note that for a given
call site we can statically determine E, r, p, and n from the
syntax of the call and its context, whereas V', D¢g, Dy, and
Dy may vary during the analysis. We assume that the
underlying dataflow analysis models possible string values
of expressions using a finite-height lattice Str. We discuss
specific choices of this lattice in Sections 4 and 5. On top of
this, we give special treatment to argument expressions that
are built from concatenations using the + operator, which is
common in practice. As an example, for the call

eval ( "V"+i+"="+X)

the argument expression F is "v"+i+"="+x and its abstract
value V' is v1 @ v2 @ vs @ va where each v1,...,vs € Str are
abstract values of the four constituents and @ represents
concatenation. Note that we do not require the underlying
dataflow analysis to reason precisely about string concate-
nations, and the @ operator is only used to model concate-
nations that appear literally in the argument expression E.
In response, T gives either

e astring S containing JavaScript code that is equivalent
to the function call F'(F) relative to the given context,
or

e the special value 4 in case it is unable to transform the
given eval call.



There will inevitably be situations where 4 is returned, for
example if the value of E partly originates from the user via
an HTML text field, as discussed in Section 1.

If T returns 4 then the Unevalizer is unable to transform
the given program and aborts. If T" returns successfully, the
Unevalizer will incorporate S into the code base at the point
of the function call and proceed with the analysis. In doing
this, we must consider the possibility that feva1 may not be
the only value of F', in which case the analysis must process
all the possible functions and join their respective abstract
return states. Additionally, we must take into account the
fact that £ may evaluate to non-string values. Such argu-
ments to eval are simply returned directly without string
coercion according to the ECMAScript specification. More-
over, we must retain the original call F'(£) in the code since
more dataflow may appear later in the analysis, which trig-
gers new invocations of 7. Consider the following example:

if (...)
X = "f";
else
x = ugu;

eval(x + "O");

The first time dataflow arrives at the eval call site, it is
possible that A has the information that the value of x is
the string "£", which could result in S becoming the code
£(). However, A will later realize that "g" is also a possible
value of x, and this may cause a different output from 7T
replacing the old value of S.

As common in dataflow analysis using the monotone frame-
work, the Unevalizer operates as a fixpoint computation that
starts with the empty abstract states and empty abstract
values everywhere and then applies monotone transfer func-
tions iteratively until the least fixpoint is reached [18]. When
A encounters a call to eval, that gets replaced by the code
S, which A subsequently models as an abstract transformer
S relative to the abstract domain in use. This informally
explains how we avoid the apparent chicken-and-egg prob-
lem we mentioned in Section 1: At each call site where feya1
occurs, the corresponding values V', Dg, Dy, and Dy grow
monotonically during the process. This requires the trans-
formation component to be monotone in the following sense:

PROPERTY 1 (MONOTONICITY). Let C = (E,V,Dg,
Dyr, Dy, r,p,n) and C' = (E, V', D¢, D7, D, 7, p,n) be in-
puts to T such that V Cvawe V', D C Dy, D C D7,
Dy C D)y where Cvae is the partial order of abstract val-
ues in the dataflow analysis, and let S and S’ denote the
outputs from T, that is, S = T(C) and S’ = T(C"). Let S
and S denote the corresponding abstract transformers with
respect to the abstract domain used by A. The transforma-
tion component T is monotone in the sense that § Crans §’
for any such two inputs C and C' where Crpans is the partial
order of the abstract transformers.

As the Unevalizer replaces calls to eval with other code
that is analyzed subsequently, we must be careful with gener-
ated code that itself calls eval, although that is not common
in practice. An example from bild.de:

eval("try { lFrame = eval (1f[i]) }catch(e){};");}

The eval nesting depth n gives us an easy way to ensure
that the Unevalizer always terminates:

PROPERTY 2 (CONVERGENCE). Ifn > k for some bound
k then T returns 4.

The bound k& = 1 suffices for all examples we have encoun-
tered.

We can now establish the meaning of correctness for the
Unevalizer and the requirements to A and 7T:

PROPERTY 3  (CORRECTNESS). Assuming that

e the underlying dataflow analysis A is sound,

e for any input (E,V,Dg, Dy, D, r,p,n), T outputs ei-
ther 4 or a program fragment S that has the same ex-
ternal behavior as the call eval (E) in the context given
by V, Dg, D, Dy, v, and p, and

e T satisfies Properties 1 and 2,

the Unevalizer is guaranteed to output a program that has
the same external behavior as the input, or report that it is
unable to transform the input.

Upon completion, the Unevalizer outputs JavaScript and
HTML files where all calls to eval have been eliminated.
This allows the output to be be further analyzed by other
analyses that do not work on programs that contain eval.

In the following two sections we describe our instantiations
of the framework.

4. ELIMINATING CALLS TO EVAL WITH
CONSTANT ARGUMENTS

We start by introducing techniques needed to remove calls
to eval where the argument E is a constant string. Sur-
prisingly many programs actually call eval with constant
string arguments, as observed in Section 2. More impor-
tantly, this transformation is used as a stepping stone for
Section 5 where we consider more general eval calls.

The task might appear trivial, but there are several issues
to consider to ensure that the transformation is correct. A
naive approach of simply “dropping the quotes” may yield a
program with a different behavior. Consider the following
hypothetical rewrite rule:

eval("var x;") ~ var x;

This rule might appear correct at a first glance, but consider
the eval call below and the resulting program after applying
the transformation:

var x = 2; var x = 2;
function £() { function £() {
var y = x; var y = x;

eval("var x;"); — var x;
return y; return y;
} }
£0; £0O;

These two programs are not equivalent: the one on the right
yields undefined rather than 2 since the global variable x is
shadowed by the local with the same name.

In general, the following five issues must be considered
when transforming eval calls with constant strings.

Statements. When the eval call occurs as an expression
and F consists of statements rather than a single expression,
the code must be reorganized using temporary variables to
ensure a correct order of evaluation. For example,



x = a( * eval("bQ; cO;") * dO;
can be translated into the following code:

var t1 = a();

bO;

var t2 = c();

x = tl * t2 *x dO;

This raises a subtle issue about generating fresh names, here
t1 and t2. We pick names that are not in DgUD7p,, or return
4 in case that set contains all possible identifier names.

Declarations. Function and variable declarations in E can
potentially clash with identifiers already in scope, as shown
by the example in the beginning of this section. We simply
let 7 return 4 if any new variable declarations in E are
already in Dg U Dry.

Syntactic Validity. If the string passed to eval at runtime
is not a syntactically valid program, a SyntaxError excep-
tion is thrown. This is easy for 7 to check when the string
is a constant, simply by running a JavaScript parser. If the
string is invalid, 7 returns S = throw new SyntaxError().
The name SyntaxError may be shadowed by other decla-
rations, so if SyntaxError € Dy U Dy, we instead let T
return 4. Although this is unlikely a problem in practice, it
is necessary for soundness.

Return Value. The return value of eval is defined to be the
value of the last so-called value yielding statement executed
in the input string. Most statements have a value, however,
a few such as the empty block and var statements do not.
This means that the return value of an eval call cannot al-
ways be statically determined, even if the entire input string
is a known constant. Consider for example this call:

eval("2;if (b) 3;")

Its return value is either 2 or 3 depending on the value of
the b variable. Rather than trying to devise complex trans-
formation rules to handle such cases, we choose a simple
alternative that seems to suffice in practice: If the return
value is not used, which 7 knows from the r flag, then there
is no issue. Otherwise, we let T return 4 if it is ambigu-
ous which statement will yield the return value. The string
has already been parsed at this point, as discussed above,
so checking for this kind of ambiguity is straightforward.

Scope. Another peculiar corner case in the ECMAScript
standard is that the execution scope of dynamically eval-
uated code depends on whether eval is called directly or
through an alias, which was the reason for introducing the
p flag in Section 3. The following example uses an alias for
eval to access a variable x in the global scope, even if the
variable name x is shadowed by a local declaration:

var geval = eval;
geval("x = 5");

When the p flag is set to global scope execution, 7 needs
to transform the code to ensure the proper binding of iden-
tifiers. At first, one may try to exploit the fact that the
global object is a synonym for window, however, the window
variable may itself be overwritten or shadowed by local dec-
larations. A more robust way to get a reference to the global
object is to evaluate the expression (function () {return

this;}) (), which we abbreviate as global. This is perhaps
not pretty but it satisfies our requirement of being analyz-
able with, for example, TAJS. The call geval("x = 5") in
the example above is then transformed into global.x = 5.
Declarations in the global scope can be transformed sim-
ilarly, for example geval("function £(){...}") becomes
global.f = function(){...}.

One additional issue remains. Reading a nonexistent vari-
able in JavaScript will throw a ReferenceError, but reading
an absent property just yields the value undefined. If we
change an identifier read operation naively into a property
read operation, for example from geval("x") to global.x,
the behavior changes if the identifier is undeclared. Instead
we transform it into a conditional expression:

"x" in global ? global.x : throw new ReferenceError ()

and check whether ReferenceError has been shadowed, as
for SyntaxError earlier in the section.

S. MORE PRECISE ANALYSIS OF THE
ARGUMENTS TO EVAL

Eliminating calls to eval with constant arguments as done
in Section 4 handles the tip of the iceberg. We now suggest
four pragmatic ways of building on top of the transformation
described in the previous sections by more deeply exploiting
the connection between the transformation component and
the dataflow analysis.

5.1 Exploiting Constant Propagation

We obtain the first improvement using constant propaga-
tion, which the TAJS dataflow analysis already performs.
Technically, the Str lattice mentioned in Section 3 contains
all possible string constants and a top element T represent-
ing non-constant strings, and all transfer functions in TAJS
are designed to perform constant folding.

The following example extracted from the web site qq.com
demonstrates an eval call where simple constant propaga-
tion is enough to enable transformation:

var json = "<large constant string>";
eval ("area="+json) ;

Consider also the following example from the Chrome Ex-
periments program canvas-sketch’ that uses eval to emu-
late higher-order functions:

if (vez.func instanceof Function) vez.func(texto);
else eval(vez.func + "(texto)");

It turns out that interprocedural constant propagation for
this program is able to infer that vez.func is always a con-
stant string. To handle an even larger class of eval calls, in
Section 5.4 we present a way to boost the effect of constant
propagation using code specialization.

5.2 Tracking JSON Strings

JSON is a standardized format for data exchange that is
derived from the JavaScript syntax for objects, arrays, and
primitive values [4]. It is designed such that JSON data
can be parsed using eval, and many eval calls are used for
this purpose as discussed in Section 2. Modern browsers
have the function JSON.parse for parsing the JSON subset

7http://www.chromeexperiments.com/detail/canvas—sketch/



of JavaScript in a more safe and efficient manner. Many
programs check whether the JSON object exists and, if not,
fall back to calling eval for parsing JSON data.

The following pattern occurs in many web sites:

x = eval("(" + v + ")");

The wrapping forces v to be evaluated as an expression. If
v is known to contain JSON data, this eval call can be
translated as follows:

x = JSON.parse(v);

The benefit of this transformation is that JSON. parse, unlike
eval, never has side-effects other than creating an object
structure, so it can easily be modeled soundly in a static
analysis.

We use the technique introduced in our earlier work [15]
to find out which values contain JSON data: The Str lattice
is augmented with a special abstract value JSONString that
represents all strings that are valid JSON data. The trans-
formation suggested above can then be applied whenever the
abstract value V of F is, e.g., "(" & JSONString ® ")".

Now, the problem is to detect when JSON data is cre-
ated. This is easy for constant strings and for the function
JSON. stringify that explicitly constructs JSON data, how-
ever, the most common source of JSON data is Ajax commu-
nication with the server. Since we cannot know what data
the server produces by only analyzing the client-side of the
web application, we choose to rely on user annotations in the
JavaScript code to specify sources of JSON data, typically
in Ajax response callbacks.

JSON data obtained using Ajax is in rare situations com-
bined with other string values before being passed to eval.
We leave it to future work to incorporate more elaborate
string analysis [2] for reasoning about such cases.

5.3 Handling Other Non-Constant Strings

It is evident from Figure 2 that we need to handle other
cases than constants and JSON strings. A common pattern
is eval("foo."+x) that accesses a property of an object.
This can be transformed into foo[x], but only if we can be
certain that x evaluates to specific classes of values, such
as numbers or strings that are valid identifier names. The
transformation would be unsound if x has a value such as
"f*x2". This example suggests that we refine the Str lattice
further: we introduce a new abstract value ldString repre-
senting all strings that are valid JavaScript identifiers. TAJS
handles number values in a similar way as strings, so we here
focus on the string values.

Related patterns such as eval("foo_"+x) and eval(x+
"_foo"), which also appear in widely used web applica-
tions, can be handled similarly. However, in the case of
eval ("foo_"+x) we can loosen the requirement on x. It
suffices to know that x is a string that consists of charac-
ters that are valid in identifiers, excluding the initial charac-
ter. We therefore extend Str with yet another abstract value
IdPartsString representing such strings. As an example, the
string "42" belongs to IdPartsString but not to 1dString.

With these extensions, the Unevalizer can handle cases
such as this one from canvas-cycle where A infers the ab-
stract value IdString for the variable key:

eval (’window.’ + key + > = {};’);

In the following example from the web site zedo.com the
abstract value of vO[i] is IdPartsString:

for(var i=0;i<v0.length;i++){
if (eval ("typeof (zflag_"+vO[i]+") !="undefined’")){ ...

When transforming calls such as eval("foo_"+x) that ac-
cess identifiers with computed names we run into the prob-
lem described in Section 1.1 that JavaScript does not provide
a general mechanism for accessing the current scope object,
so we restrict ourselves to the cases where we are certain
that the identifiers are not bound locally: if Dy contains
names that in this case start with "foo_" then 7 returns 4.

5.4 Specialization and Context Sensitivity

By selectively exploiting context sensitivity of the dataflow
analysis the Unevalizer can also handle many eval calls
where the strings are not constant but can be traced to a
finite number of constant sources. Consider the following
representative example from the web site fiverr.com:

get_cookie = function (name) {
var ca = document.cookie.split(’;’);
for (var i = 0, 1 = ca.length; i < 1; i++) {
if (eval("calil.match(/\\b" + name + "=/)"))
return decodeURIComponent (cali].split(’=’)[1]);
¥
return ’’;
}
get_cookie(’clicky_olark’)
get_cookie (’no_tracky’)
get_cookie(’_jsuid’)

When the analysis enters get_cookie from the first call site,
the name parameter will be bound to the constant string
"clicky_olark". Constant propagation to the eval call will
then enable transformation as in Section 4. When the analy-
sis later encounters the second call to get_cookie, the name
parameter would with a context insensitive analysis obtain
the abstract value IdString, which would flow to the eval call
and cause 7 to fail with 4. Instead, when name first flows
to the eval call we mark that get_cookie shall be analyzed
context sensitively with respect to the name parameter. This
will ensure that the second and the third call to get_cookie
with different arguments will be analyzed separately. As a
result, the analysis will know that the only possible values of
name at the eval call site are "clicky_olark", "no_tracky",
and "_jsuid". This can be used to specialize the argument
to eval and transform the eval call into the following ex-
pression:

name==="clicky_olark" ? cali].match(/\\bclicky_olark=/)
: name==="no_tracky" ? calil.match(/\\bno_tracky=/)
: cal[i] .match(/\\b_jsuid=/)

This mechanism can in principle be taken a step further
to handle situations where the eval call appears nested in-
side more function calls, similar to k-CFA or the use of call
strings in interprocedural analysis [20], however, one level of
selective context sensitivity seems to suffice in our setting.

6. EVALUATION

We have implemented the eval transformer 7 and use
TAJS as the driving dataflow analysis, A. The two are
cleanly separated by an interface similar to the 8-tuple de-
scribed in Section 3. Any program implementing this inter-
face can in principle use the transformation component.

The implementation of 7 works by first converting the
abstract value V' to a concrete JavaScript program using
placeholder identifiers for non-constant parts. This pro-
gram is then parsed using an ordinary JavaScript parser,



and the transformation is performed on the AST. If the
transformation is successful, the output S is generated by
pretty-printing the new program where the placeholders are
replaced by the corresponding parts from FE.

In this section we describe our experiences running the
prototype on a benchmark collection. We will try to answer
the following research questions about the Unevalizer.

Q1: Is the Unevalizer able to transform common usage pat-
terns of eval calls?

Q2: To what extent are the individual techniques presented
in Sections 4 and 5 useful in practice?

Q3: For call sites where the Unevalizer fails to find a valid
transformation, can we suggest improvements that are
likely to handle more cases?

6.1 Benchmarks

Our main source of benchmarks is the Alexa list® that we
also used in Section 2. We focus on the most challenging
cases of eval, which are the call sites that fall into the cat-
egories “other” or “single operation” described in Section 2.
We exclude all web sites that do not have any instances of
eval in these categories. Library loading is outside the scope
of this work as discussed in Section 1.1, and the technique
we use for JSON data in Section 5.2 has to some extent been
covered before [15]. Applying these criteria on the Alexa top
500 list gives us 19 web sites.

Analyzing JavaScript web applications involves many other
challenges than eval. Although TAJS is able to analyze
many real applications [15], the 19 applications collected
from the Alexa list are still beyond the current capabilities
of TAJS because they are considerably larger than what we
have run TAJS on previously. However, since the purpose of
the present evaluation is not to test the quality of TAJS but
how the Unevalizer performs, we choose to manually extract
the parts of the web applications that involve calls to eval
including the relevant dataflow. This exposes 25 interesting
program slices, each containing one or more calls to eval.

Our previous experiments with TAJS considered programs
from Chrome Experiments®, which generally have more man-
ageable sizes than the Alexa top 500 web sites. We have
found 3 programs in Chrome Experiments that use eval in
ways that satisfy the criteria mentioned above, and we in-
clude those programs unaltered without slicing.

The resulting 28 programs are listed in Table 1. For
each of the sliced web sites, we list each program slice sep-
arately. The benchmark collection can be downloaded from
http://www.brics.dk/TAJS/unevalizer-benchmarks.

6.2 Experiments

In this section we describe the experiments used to answer
research questions Q1 and Q2. The last question, Q3, is
discussed in Section 6.3.

Q1 is addressed by the column “Pass” in Table 1. The
symbol v indicates that the Unevalizer is able to success-
fully transform all eval call sites in the program, and X
means that 7 returns 4 at some point during the fixpoint
computation. We see that the Unevalizer is able to handle
19 out of 28 cases, corresponding to 33 out of 44 eval call
sites.

We address Q2 with the three columns “ConstProp”, “Iden-
tifier” and “Specialization” in Table 1. The numbers in those

Table 1: Experimental results. The first three pro-
grams are the ones from Chrome Experiments; the
remaining ones are the sliced programs from the
Alexa list. The columns “Call Sites” shows the
number of eval calls, the next three columns show
which techniques the Unevalizer uses to transform
the calls, and the “Pass” column shows which pro-
grams are transformed successfully.

I~
.9
¢ Sof
s £ EF
5 §5F
@ o ¥
Site 1T F & pass
berts-breakdown 1 - - - X
canvas-cycle 1 - - v
canvas-sketch 1 1 - - v
bild.de (1) T[- 1 - 7
bild.de (2) 1| - -l x
conduit.com 1 - -1 v
dailymotion.co.uk 1 1 - - v
fiverr.com 1 - -1 v
huffpost.com 1 - - - X
imdb. com 212 - - v
indiatimes.com 212 - - v
myspace.com 1 - -1 v
onet.pl (1) 1] - - - X
onet.pl (2) 1] - - - X
pconline.com.cn (1) | 1 | - - 1| V
pconline.com.cn (2) | 1 | - - - X
rakuten.co. jp 1{1r - - v
scribd.com 21 - - 2 v
sohu. com 2 - -2 v
telegraph.co.uk (1) | 1 | - - - X
telegraph.co.uk (2) | 2 | - 2 v
washingtonpost.com | 1 - - - X
wp.pl 1 1 - v
xing.com 3 - - - X
xunlei.com 616 - - v
zedo.com (1) 3 - 3 - v
zedo.com (2) 3 - 3 - v
zedo. com (3) 111 - v
Total 44115 9 9

columns show how many call sites are handled by each of the
three techniques presented in Sections 5.1, 5.3, and 5.4, re-
spectively. Note that the specialization technique builds on
top of constant propagation, but the numbers for “Const-
Prop” only include the cases that do not also require spe-
cialization.

We see that out of 44 call sites, constant propagation (Sec-
tion 5.1) alone is enough to transform 15 eval call sites. Us-
ing identifier detection (Section 5.3) we eliminate 9 more call
sites, and if we also add specialization (Section 5.4) 9 addi-
tional call sites are successfully transformed. These numbers
suggest that all the techniques we have presented are useful
in practice.

Example. An example of a successful transformation is
sohu. com, which uses eval to create a form of dynamic dis-



patch based on property names in objects. The two eval
calls appear in the same function _SoAD_exec:

function _SoAD_exec (o) {
if (eval("typeof(" + o.t + "_main)") == "function")
eval(o.t + "_main(o)");

}

The dataflow analysis determines from the call sites to the
function _SoAD_exec that o.t has the abstract value Id-
String. Using the techniques in Sections 4 and 5.3, the
sub-expression o.t+"_main" can be rewritten into a prop-
erty read operation on the global object. To guard against
potential clashes with identifiers in the local scope, the Un-
evalizer checks that no names in Dy, have the suffix "_main".
The second eval call site is transformed in a similar manner.
The resulting function looks as follows:

function _SoAD_exec(o) {
if (typeof (
(o.t + "_main") in global 7

global[o.t + "_main"]
throw new ReferenceError())

== "function")

((o.t + "_main") in global 7
global [o.t + "_main"]
throw new ReferenceError ()) (o);

}

In this code global refers to the expression that returns
the global object, as defined in Section 4. The conditional
expressions ensure that a ReferenceError is thrown if the
property is absent in the global object.

Threats to Validity. The fact that the Unevalizer success-
fully eliminates many nontrivial eval calls in some manually
extracted program slices and a few medium size complete
web applications obviously does not imply that all problems
related to eval are now solved. Our manual slicing may be
erroneous although we have strived to preserve all dataflow
that is relevant for the eval call sites. Ideally, we would of
course like to test our approach on a larger number of web
applications and on the complete application code without
slicing, but, as mentioned in Section 6.1, that requires a
more scalable dataflow analysis than the current version of
TAJS. With today’s state-of-the-art analysis techniques for
JavaScript, we see no better way of evaluating the Uneval-
izer than using the slicing approach. The programs included
in the evaluation are all from real web sites and have been
selected in a systematic and non-biased manner, following
the criteria described in Section 6.1 that have exposed the
most interesting cases of eval. We also point out that the
Unevalizer can leverage from future improvements of TAJS
or other dataflow analyses for JavaScript.

A second concern could be that the web sites from the
Alexa list, which was also the foundation for Richards et
al. [21], and the Chrome Experiments may not be represen-
tative for JavaScript web applications in general, however,
we believe the programs included in the evaluation give a
good indication of how eval is being used in practice.

6.3 Directions for Future Improvements

To answer Q3 we examine the cases where the Uneval-
izer fails to transform an eval call site. Overall we observe
two reasons for failure: insufficient precision of the dataflow
analysis on loop control structures (this accounts for 6 of the
11 failing eval call sites), and eval call sites where the argu-

ment is built from string concatenations that do not appear
syntactically inside at the function call (4 cases).

Loops seem to cause a loss of precision that often hinders
transformation. The following example from the web site
bild.de demonstrates such a case:

for (var libName in $iTXT.js.loader) {
currentLibName = libName;
eval(libName + ’_Load()’);

}

The loop iterates over all the properties of an object, which
is defined by a constant object literal elsewhere in the code.
The property names do not match IdStrings, however, so the
abstract value of 1ibName becomes T, which is insufficient
to transform the eval call site. Applying loop unrolling in A
to this example would enable better constant propagation,
which could in turn enable transformation of the call site.
Recall from Section 3 that we give special treatment to
string concatenations that appear syntactically in the eval
argument expressions. This works well for the majority of
our benchmarks, although the following example from pcon-
line.com.cn shows a situation where it is inadequate:

function showIvyViaJs(locationId) {

var _fconv = "ivymap[\’"+locationId+"\’]";
try {
_f = eval(_fconv);

} catch(e) {}
}

The string given to eval is created from concatenations,
but not at the call site, and the abstract domain Str for
string values in TAJS is not detailed enough to model the
possible values of _fconv with sufficient precision. The ab-
stract value V' then becomes T, which causes the Unevalizer
to give up. One way to improve this would be to extend
the constant propagation in A to propagate entire expres-
sions. In the example, this could propagate the expression
"ivymap[\’"+locationId+"\’]" directly into the eval call,
and then 7 would be able to handle it. Propagating expres-
sions in a sound way is not trivial, however, as the order of
evaluation must be preserved for certain operations.

Notice that both of the improvements suggested in this
section could be implemented entirely inside A without mod-
ifying T or the general Unevalizer framework.

7. CONCLUSION

The eval function is in practice not as evil as some men
claim. By incorporating an eval elimination refactoring into
a dataflow analysis, we have demonstrated that it is often
possible to eliminate calls to eval in a sound and automated
manner and thereby enable static analysis of JavaScript pro-
grams that use eval in nontrivial ways. Although we base
our proof-of-concept implementation, the Unevalizer, on the
TAJS dataflow analysis infrastructure, our approach is not
intimately tied to the inner workings of TAJS: any dataflow
analysis that can safely provide the necessary information
to the transformation component could be used. It is also
possible to apply other analyses to the resulting program
code, including many of those mentioned in Section 1.2.

Our experimental results suggest that the approach suc-
ceeds in eliminating typical uses of eval, but also that fur-
ther improvements are likely possible within the framework.



Our future work will focus on the challenges related to eval
calls that appear in loops and on extending constant prop-
agation to handle entire expressions, as suggested in Sec-
tion 6.3. Furthermore, now that many more JavaScript web
applications are within range of static analysis, it becomes
possible to explore new opportunities for improving other
aspects of static analysis techniques for JavaScript.
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