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The authors model the neural mechanisms underlying spatial cognition, integrating neuronal systems and

behavioral data, and address the relationships between long-term memory, short-term memory, and

imagery, and between egocentric and allocentric and visual and ideothetic representations. Long-term

spatial memory is modeled as attractor dynamics within medial–temporal allocentric representations, and

short-term memory is modeled as egocentric parietal representations driven by perception, retrieval, and

imagery and modulated by directed attention. Both encoding and retrieval/imagery require translation

between egocentric and allocentric representations, which are mediated by posterior parietal and

retrosplenial areas and the use of head direction representations in Papez’s circuit. Thus, the hippocampus

effectively indexes information by real or imagined location, whereas Papez’s circuit translates to

imagery or from perception according to the direction of view. Modulation of this translation by motor

efference allows spatial updating of representations, whereas prefrontal simulated motor efference allows

mental exploration. The alternating temporal–parietal flows of information are organized by the theta

rhythm. Simulations demonstrate the retrieval and updating of familiar spatial scenes, hemispatial neglect

in memory, and the effects on hippocampal place cell firing of lesioned head direction representations

and of conflicting visual and ideothetic inputs.
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One of the most intriguing challenges in cognitive neuroscience

is to understand how a higher cognitive function such as memory

arises from the action of neurons and synapses in our brains. Such

an understanding would serve to bridge between the neurophysi-

ological and behavioral levels of description via systems neuro-

science, allowing for the reinforcement of convergent information

and the resolution of questions at one level of description by

inferences drawn from another. Moreover, a theory that bridges the

cellular and behavioral levels can lead to the development of

experimental predictions from one level to another and improved

ability to relate behavioral symptoms to their underlying patholo-

gies. In terms of developing such an understanding of memory,

spatial memory provides a good starting point due to the ability to

use similar paradigms in humans and other animals.

We are often faced with the challenging task of deciding how to

act in the absence of complete sensory information, for example,

when navigating toward an unseen goal. To solve such tasks, we

must rely on internal representations of object locations within

their environment. Here we attempt to develop a model of the uses

of these internal representations in spatial memory, incorporating

data from single-unit recording systems, neuroscience and behav-

ioral studies, and describing how each relates to the other. Central

questions in the cognitive neuroscience of spatial memory concern

the frames of reference used for representations of location, for

example whether they are egocentric (relative to parts of the body)

or allocentric (relative to the external environment), the durations

over which different representations are maintained, the uses they

are put to, and how they interact with each other. However, there

is currently no clear consensus, with various investigators stressing

one or the other type of representation (e.g., cf. Poucet, 1993;

Wang & Spelke, 2002). To address these questions, we propose a

general organizational structure for spatial memory (see also Bur-

gess, 2006; Mou & McNamara, 2002) encompassing encoding and

retrieval of spatial scenes as well as some aspects of spatial

navigation, imagery, and planning. We then implement the key

components of this structure in a neurophysiologically plausible

simulation, to provide a quantitative model relating behavior to the

actions of networks of neurons. We provide example simulations

of four key test situations, showing that the model can account for

aspects of representational neglect, as well as spatial updating and

mental exploration in familiar environments, and can place cell

firing patterns seen in rats with lesions to the head direction system

and in normal rats navigating through environments that unexpect-

edly change shape (Gothard, Skaggs, & McNaughton, 1996). First,

we briefly review some of the data at each of these levels of

description that motivate the design of the model.
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Neuronal Representations

Data from electrophysiological recordings in behaving animals

provide perhaps the most direct evidence of the nature of the

representations at work in spatial cognition. We start with the

apparently allocentric representations associated with the mamma-

lian medial temporal lobe. View-invariant hippocampal “place

cells” fire selectively for an animal’s location in space (e.g.,

O’Keefe, 1976), but show little dependence on the animal’s ori-

entation during random, open field foraging. We refer to this

representation as allocentric, representing location relative to the

environment, even though the location represented is that of the

animal itself. In a linear track, place cells tend to be direction

specific, however, when the track environment is enriched with

place-unique cues, the place cells are much less directionally

selective (Battaglia, Sutherland, & McNaughton, 2004). O’Keefe

and Nadel (1978) argued that this collection of place-selective

neurons forms the basis of a cognitive map and provides the rat’s

internal allocentric representation of location within the environ-

ment. Evidence for the existence of place cells has also been found

in the hippocampus in nonhuman primates (Matsumura et al.,

1999; Ono, Nakamura, Nishijo, & Eifuku, 1993) and in humans

(Ekstrom et al., 2003). The representation of the complementary

spatial information—orientation independent of location—has

also been found; “head direction cells” (see, e.g., Taube, 1998) are

found along an anatomical circuit largely homologous to Papez’s

circuit (Papez, 1937) leading from the mammillary bodies to the

presubiculum via the anterior thalamus. A representation related to

place cells has also been found in the parahippocampal and the

hippocampal region of both nonhuman (Rolls & O’Mara, 1995)

and human primates’ (Ekstrom et al., 2003) “view cells,” which

fire when an animal is looking at a given location from a range of

vantage points.

The location of a place cell’s response depends on large, ex-

tended local landmarks rather than on discrete objects, whereas the

orientation of the overall place and head direction representations

depend on landmarks at or beyond the reachable environment (see

Barry et al., 2006; Burgess & O’Keefe, 1996; Cressant, Muller, &

Poucet, 1997). Thus, the location and shape of the firing fields of

hippocampal place cells can be explained if it is assumed that their

firing is driven by the activity of a population of boundary vector

cells (BVCs; Hartley, Burgess, Lever, Cacucci, & O’Keefe, 2000;

O’Keefe & Burgess, 1996). These neurons, hypothesized to exist

within parahippocampal cortex, show maximal firing when an

animal is at a given distance and allocentric direction from an

environmental landmark or boundary. The direct or indirect recip-

rocal connectivity of the hippocampal formation and parahip-

pocampal regions with each other and with the perirhinal cortex

(for a review, see Burgess et al., 1999), an area that is known to be

important for object recognition (Davachi & Goldman-Rakic,

2001; Murray & Bussey, 1999; Norman & Eacott, 2004), probably

allows for the positions and identities of landmarks visible at a

particular location to be bound to that location.

In parallel to the above allocentric representations, egocentric

representations, which are ubiquitous throughout the sensory, mo-

tor, and parietal cortices, are clearly directly involved in all aspects

of spatial cognition. Sensory representations will be egocentric,

reflecting the reference frame of the receptor concerned (e.g.,

retinotopic in the case of visual input), whereas motor output will

reflect the reference frame appropriate for the part of the body to

be moved (see, e.g., Georgopoulos, 1988). Coordinating these

representations, the posterior parietal cortices are heavily involved

in sensorimotor mappings. The posterior parietal cortex is known

to contain neurons that respond to stimuli in multiple reference

frames, especially areas near or within the intraparietal sulcus. In

particular, Galletti, Battaglini, and Fattori (1995) have found neu-

rons in the anterior bank of the parietal–occipital sulcus (V6A) in

the ventromedial parietal cortex that represent the positions of

visual stimuli in a craniotopic reference frame. Also, area 7a

contains neurons that exhibit egocentrically tuned responses that

are modulated by variables such as eye position and body orien-

tation (Andersen, Essick, & Siegel, 1985; Snyder, Grieve,

Brotchie, & Andersen, 1998). Such coding can allow transforma-

tion of locations between reference frames (Pouget & Sejnowski,

1997; Zipser & Andersen, 1988). Furthermore, head direction

selective neurons that exhibit responses tuned to various different

reference frames have been found in the posterior cortices of the

rat (Chen, Lin, Barnes, & McNaughton, 1994). Such properties

might allow for the establishment of the angular relationship

between different representational frames.

A number of single-unit recording studies have shown that areas

of the primate posterior parietal cortex, again in and around the

intraparietal sulcus, contain neurons that exhibit firing patterns

modulated by various combinations of head position, velocity,

acceleration, and visual stimuli (Andersen, Shenoy, Snyder, Brad-

ley, & Crowell, 1999; Bremmer, Klam, Duhamel, Hamed, & Graf,

2002; Klam & Graf, 2003). The nature of these interactions ap-

pears to be complex, but Bremmer et al. (2002) suggested that this

idiothetic modulation of parietal neuron firing might be related to

object tracking during self-motion. This argument is indirectly

supported by Duhamel, Colby, and Goldberg (1992), who have

shown that eye movements that bring the location of a previously

flashed stimulus into the receptive field of a parietal neuron elicit

a response from that neuron, even though the stimulus is no longer

present (see also Colby, 1999). Area 7a is the part of the parietal

cortex most strongly connected with the medial temporal lobe,

including efferent projections into the parahippocampus, presub-

iculum, and CA1 (Ding, Van Hoesen, & Rockland, 2000; Rock-

land & Van Hoesen, 1999; Suzuki & Amaral, 1994) and afferent

connections from entorhinal cortex and CA1 (Clower, West,

Lynch, & Strick, 2001). In addition, single-unit recordings from

monkey dorsolateral prefrontal and posterior parietal cortices sug-

gest that spatial working memory is, indeed, egocentric in nature

(Chafee & Goldman-Rakic, 1998; Funahashi, Bruce, & Goldman-

Rakic, 1989).

Finally, some hints of the temporal dynamics of neural process-

ing during navigation come from the observation that the theta

rhythm (i.e., 4–12 Hz) of the electroencephalogram invariably

accompanies voluntary displacement motion of the rat (O’Keefe &

Nadel, 1978). In addition, the phase of firing of place cells corre-

lates strongly with the rat’s location within the firing field

(O’Keefe & Reece, 1993) and independently of firing rate or

running speed (Huxter, Burgess, & O’Keefe, 2003). Recent results

indicate a possible role for theta in human navigation (Caplan et

al., 2003; Kahana, Sekuler, Caplan, Kirschen, & Madsen, 1999),

and several experiments indicate a role for theta phase (e.g.,

Pavlides, Greenstein, Grudman, & Winson, 1988) in modulating

hippocampal synaptic plasticity and theta power (Sederberg et al.,
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2003) or theta coherence between hippocampus and nearby neo-

cortical areas (Fell et al., 2003) in modulating encoding into

memory.

Lesions, Neuropsychology, and Functional Neuroimaging

The medial temporal lobes, and hippocampus in particular, have

long been known to be crucial for long-term memory (Eichenbaum

& Cohen, 1988; Scoville & Milner, 1957; Squire, 1986), together

with other elements of Papez’s circuit (Aggleton & Brown, 1999).

Within the spatial domain, neuropsychological studies have left

little doubt that the medial temporal lobe, particularly in the right

hemisphere, is critical for remembering the locations of several

objects within a visual scene over a significant delay (Crane &

Milner, 2005; Piggott & Milner, 1993; Smith & Milner, 1989).

Within a broader memory deficit, hippocampal damage seems to

specifically impair performance in tasks likely to require allocen-

tric representations of location or representations that can be

flexibly accessed from novel points of view rather than being

directly solved by use of egocentric representations. For example,

where locations must be remembered from a different point of

view to presentation, performance is impaired relative to location

memory from the same view even over short timescales (Abra-

hams, Pickering, Polkey, & Morris, 1997; Hartley et al., 2007;

Holdstock et al., 2000; King et al., 2002). More generally, accurate

spatial navigation to an unmarked goal location is impaired by

hippocampal damage in rats (e.g., Jarrard, 1993; Morris, Garrard,

Rawlins, & O’Keefe, 1982) and in humans (Bohbot et al., 1998;

Maguire, Burke, Phillips, & Staunton, 1996; Spiers et al., 2001).

Human neuroimaging studies also show involvement of the hip-

pocampus in accurate navigation (Hartley, Maguire, Spiers, &

Burgess 2003; Iaria et al., 2003; Maguire et al., 1998). Addition-

ally, neuroimaging of the perceptual processing of spatial scenes,

including plain walled environments, implicates the parahip-

pocampal cortex (Epstein & Kanwisher, 1998), a region associated

with landmark recognition (Aguirre & D’Esposito, 1999) and

navigation (Bohbot et al., 1998). See Burgess, Maguire, and

O’Keefe (2002) for a review.

Human neuropsychology has long recognized the parietal lobes

as playing a major role in spatial cognition. Parietal damage leads

to deficits in sensorimotor coordination such as optic ataxia, def-

icits in spatial manipulation such as mental rotation, and deficits in

spatial working memory (see, e.g., Burgess et al., 1999;

Haarmeier, Thier, Repnow, & Petersen, 1997; Karnath, Dick, &

Konczak, 1997). Visual processing in the temporal and parietal

lobes has been generally characterized respectively in terms of the

dorsal and ventral “what and where” (Ungerleider & Mishkin,

1982) or “what and how” (Goodale & Milner, 1992) processing

streams. The parietal region in the dorsal stream is concerned with

representing the locations of stimuli in the various egocentric

reference frames appropriate to sensory perception and motor

action and translating between these frames to enable sensorimotor

coordination. In contrast, the occipital and temporal visual regions

in the ventral stream are concerned with visual perceptual pro-

cesses related to object recognition, see neuronal representations

above.

Unilateral damage to the parietal cortex (most often on the right)

and surrounding areas commonly results in the syndrome of

hemispatial neglect: a reduced awareness of stimuli and sensations

on the contralateral side of space ( perceptual neglect). Of partic-

ular interest here is the phenomenon of representational ne-

glect—a lack of awareness of the contralateral side of internal

representations derived from memory. In the classic demonstration

(Bisiach & Luzzatti, 1978), patients were asked to imagine the

Piazza del Duomo in Milan (with which they were very familiar)

and to describe the scene from two opposite points of view.

Buildings to the left of the given point of view (e.g., facing the

Cathedral) were neglected, but those same buildings were de-

scribed when given the opposite point of view (e.g., facing away

from the Cathedral), indicating intact long-term memory of the

entire Piazza, despite neglect of the left of each imagined scene.

Perceptual and representational neglect depend, at least in part, on

different neural systems and can be dissociated, even within the

same patient (Beschin, Basso, & Della Sala, 2000). It is interesting

that representational, but not perceptual, neglect is associated with

impaired navigation to an unmarked location (Guariglia, Piccardi,

Iaria, Nico, & Pizzamiglio, 2005). Consistent with these findings

of parietal involvement in imagery, neuroimaging experiments

have shown heightened activity within the precuneus (i.e., medial

parietal cortex) during mental imagery (e.g., Fletcher, Shallice,

Frith, Frackowiak, & Dolan, 1996) and visuospatial working mem-

ory (e.g., Wallentin, Roepstorff, Glover, & Burgess, 2006). Trans-

cranial magnetic stimulation and fMRI studies also indicate that

areas surrounding the right intraparietal sulcus, including areas 7a

and 40, are essential in the generation and manipulation of ego-

centric mental imagery (Formisano et al., 2002; Knauff, Kassubek,

Mulack, & Greenlee, 2000; Sack et al., 2002).

Behavioral and single-unit studies indicate that memory for

locations in general, and the place cell representation of location in

particular, is automatically updated by self-motion, a process more

generally known as path integration or spatial updating (see

below). This process may reflect an interaction between the pari-

etal and hippocampal systems, as the parietal cortex appears to be

centrally involved (Alyan & McNaughton, 1999; Commins, Gem-

mel, Anderson, Gigg, & O’Mara, 1999; Save, Guazzelli, & Poucet,

2001; Save & Moghaddam, 1996). For example, Save, Paz-

Villagran, Alexinsky, and Poucet (2005) have shown that lesions

to the associative parietal cortex of rats result in altered place cell

firing, suggesting that egocentric sensory information must travel

through the parietal cortex in order to elicit appropriate place cell

firing. This is consistent with a number of experiments that dem-

onstrate that mental exploration/navigation depends on the poste-

rior parietal and extrahippocampal medial temporal regions in

primates and on homologous regions in the rodent brain (Ghaem et

al., 1997; Pinto-Hamuy, Montero, & Torrealba, 2004). The inter-

action between the parietal and medial temporal areas likely in-

volves the retrosplenial cortex, lesions of which selectively disrupt

path integration (Cooper, Manka, & Mizumori, 2001), and the

parietal–occipital sulcus, which has been associated with topo-

graphical disorientation (Ino et al., 2002) and cells coding for

locations in space (Galletti et al., 1995).

Prefrontal regions, as well as parietal ones, are implicated in

spatial working memory, with parietal areas predominantly asso-

ciated with storage and prefrontal areas with the application of

control processes, such as active maintenance or planning (Shal-

lice, 1988; R. Levy & Goldman-Rakic 2000; Oliveri et al., 2001),

the use posterior spatial representations. Thus, fMRI studies have

shown activation in both of these areas when subjects were re-
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quired to remember the locations of various objects for short

periods of time (Galati et al., 2000; Sala, Rämä, & Courtney,

2003). Manipulations of working memory may also involve mak-

ing or planning eye movements in order to direct attention to

spatial locations in imagery. In support of this notion, voluntary

eye movements disrupt spatial working memory (Postle, Idz-

ikowski, Della Sala, Logie, & Baddeley, 2006), whereas left-

hemispatial neglect patients show abnormal eye movements that

deviate about 30° rightward during visual search (Behrmann, Watt,

Black, & Barton, 1997) as well as while at rest (Fruhmann-Berger

& Karnath, 2006). Moreover, adapting prisms that shift the ne-

glected visual field toward the good side of space, which would

compensate for a rightward bias in gaze direction, ameliorate both

perceptual and representational neglect (Rode, Rosetti, & Boisson,

2001). Studies involving mental navigation and route planning

consistently find elevated activation in frontal regions, especially

on the left side (Ghaem et al., 1997; Ino et al., 2002; Maguire et al.,

1998). For example, Maguire et al. (1998) found additional acti-

vation in the left prefrontal cortex associated with the planning of

detours when subjects were navigating in a familiar virtual town in

which the most obvious route had suddenly been blocked. This

suggests that left prefrontal areas contribute to route planning,

perhaps guiding egocentric mental imagery within the temporal–

parietal systems activated by the basic navigation condition.

Cognitive Psychology

Given the electrophysiological and lesion evidence for parallel

egocentric and allocentric representations of location, we next

consider converging evidence from cognitive psychology in which

one, the other, or both may contribute to behavior. Simons and

Wang (1998; Wang & Simons, 1999) performed an elegant series

of experiments in which subjects were required to remember an

array of objects presented on a circular table. During the delay

period preceding the memory test, the table would either remain

stationary or rotate through a fixed angle. At the same time, the

subject would either remain stationary or walk through the same

angle around the table. Thus, the test stimuli could be aligned with

the studied view, with a rotated view consistent with the subject’s

motion, with both, or with neither. Subjects’ performance on a

memory task (detecting which object had moved) provided evi-

dence for the use of both (a) a visual-snapshot representation of the

presented array, and (b) an egocentric representation that is up-

dated to accommodate self-motion by showing an advantage

whenever the test array was aligned with either representation. The

latter spatial updating ability (Rieser, 1989) can be thought of as

a generalization of path integration, allowing an organism to keep

track of several locations, including its origin of motion during real

or imagined navigation in the absence of visual cues. The results

suggest that both of types of representation exist in the brain. It is

interesting to note that evidence suggests that allocentric represen-

tations of object locations (i.e., relative to visual landmarks exter-

nal to the array) are also used in this type of experiment, as shown

by a subsequent study incorporating a rotatable landmark (Bur-

gess, Spiers, & Paleologou, 2004). Parallel influences of egocen-

tric and allocentric representations are also indicated by human

search patterns within deformable virtual reality environments

(Hartley, Trinkler, & Burgess, 2004). In these experiments, the

locus of search can be predicted by a model based on the firing of

hippocampal place cells, indicating allocentric processing of loca-

tion. However, subjects also tended to adopt the same orientation

at retrieval as at encoding, indicating egocentric processing of

orientation.

Further evidence for the use of both egocentric and allocentric

representations of space can be found in reaction time data from a

number of experiments involving the recognition/recall of previ-

ously presented object configurations from novel viewpoints. Di-

wadkar and McNamara (1997) had subjects learn the locations of

objects on a desktop from a number of viewpoints before taking

part in a recognition test. When presented with a novel view of the

same or a different object configuration, subjects’ reaction time

was found to vary linearly with the angular distance between the

observed view and the closest trained view. Related results were

found when blindfolded subjects had to point to where a given

object would be from a specific imagined viewpoint: Accuracy

and/or reaction time reflected the distance and angle between the

studied viewpoint and the imagined viewpoint (Easton & Sholl,

1995; Rieser, 1989; Shelton & McNamara, 2001). These results

are consistent with spatial updating of an egocentric representa-

tion. However, the additional use of allocentric representations in

these tasks is indicated by improved performance for viewpoints

aligned with the walls of the room or the sequence of learning

(Mou & McNamara, 2002), with external landmarks (McNamara,

Rump, & Werner, 2003), and with the absence of a relationship to

distance or angle for objects configured into a regularly structured

array (Easton & Sholl, 1995; Rieser, 1989). In possibly related

findings, Wang and Spelke (2000) suggested that the high variance

of the error in pointing to different objects after blindfolded

disorientation indicates independent egocentric representations for

the location of each object. In the same experiment, the lower

variance in errors when pointing to features of the testing room

indicated a single coherent (allocentric) representation for the

layout of the room. Similarly, judgments of relative direction

between objects from an imagined location at a third object do not

increase in variance with disorientation, indicating use of a more

coherent representation in this task than that used for egocentric

pointing (Waller & Hodgson, 2006). See Burgess (2006) for fur-

ther discussion.

Theoretical Analyses

It has been proposed (e.g., Milner, Paulignan, Dijkerman,

Michel, & Jeannerod, 1999) that the relative contribution of ego-

centric and allocentric representations to spatial memory depends

on the timescale of the task concerned. Short-term retention of

perceptual information for the purpose of immediate action will be

best served by egocentric representations appropriate to the corre-

sponding sensory and motor systems. By contrast, long-term mem-

ory for locations will be best served by allocentric representations

(i.e., relative to stable landmarks) because the location and con-

figuration of the body at retrieval typically will be unrelated to that

at encoding (see Burgess, Becker, King, & O’Keefe, 2001, for

further discussion). This observation is consistent with the evi-

dence for the role of the parietal and prefrontal areas in supporting

egocentric representations and short-term memory and the role of

medial temporal lobe areas in supporting allocentric representa-

tions and long-term memory, reviewed above.
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For intermediate timescales (e.g., tens of seconds), it may be

possible to relate the configuration of the body at retrieval to that

at encoding via the egocentric process of path integration or spatial

updating referred to above. Pierrot-Deseilligny, Müri, Rivaud-

Pechous, Gaymard, and Ploner (2002) reviewed evidence suggest-

ing that spatial memory may have at least three important time-

scales. For the first approximately 20 s, they claim that a frontal–

parietal spatial working memory system is the dominant

mechanism, followed for approximately 5 min by a medium-term,

parahippocampally dependent memory system, and finally by a

hippocampally dependent long-term memory system that operates

only after delays of several minutes. Spatial scale might also be a

factor in determining which representations are used. For example,

in mammals, path integration becomes unreliable over long or

convoluted paths (see, e.g., Etienne, Maurer, & Seguinot, 1996),

whereas egocentric parietal and premotor representations may be

preferentially recruited for representations of locations in “peri-

personal” space that can be directly acted upon (e.g., Duhamel,

Colby, & Goldberg, 1998; Goodale & Milner, 1992; Graziano &

Gross, 1993; Ladavas, di Pellegrino, Farne, & Zeloni, 1998).

Along the above lines, Mou, McNamara, Valiquette, and Rump

(2004) proposed a transient egocentric representation of object

locations for immediate action and an allocentric representation of

the environment, including the subject’s own location, for actions

supported by information from long-term memory. On the basis of

the experiments probing memory for object location as a function

of differences between the studied, imagined, and actual views,

they argued that two types of spatial updating occur: spatial

updating of egocentric representations of object locations, and

spatial updating of the subject’s own location in the environmental

representation. A related proposal suggested transient egocentric

representations of single objects in parallel with a more coherent

enduring representation (Waller & Hodgson, 2006). (For a discus-

sion of the neural mechanisms supporting the integration of self-

motion and sensory information, see Guazzelli, Bota, & Arbib,

2001; Redish, 1999.)

In summary, evidence from psychology and neuroscience indi-

cates that spatial cognition involves multiple parallel frames of

reference, with short-term/small-scale tasks more likely to recruit

egocentric representations and long-term/large-scale tasks more

likely to recruit additional allocentric representations. However,

this proposed division of labor involving different reference

frames is neither absolute nor uncontroversial. Thus, Wang and

Brockmole (2003) have also argued that even long-term spatial

memory is purely egocentric. They found the current view to

influence the ability of students to point to an occluded but very

familiar landmark on the campus. Conversely, even short-term

memory can be shown to depend on the hippocampus when the

viewpoint is changed between study and test (King et al., 2002,

2004; Hartley et al., 2007) and on allocentric representations when

landmarks are parametrically manipulated (Burgess et al., 2004);

see Burgess (2006) for further discussion.

The Model: Overview

From the forgoing discussion, it appears that mammalian spatial

memory can make use of both egocentric and allocentric repre-

sentations in parallel, depending on the nature of the task. We now

propose a model of spatial cognition that accounts for the interac-

tion between long- and short-term memory processes in encoding,

retrieval, imagery, and planning. The model addresses data at

multiple levels of analysis, from single-unit recordings to large-

scale brain systems to behavior, and the relative roles played by

egocentric and allocentric representations and by visual and idio-

thetic inputs. We first provide a brief overview of the functional

architecture of our model, with further details of its implementa-

tion given in the next section and fully elaborated in the Appendix.

In our model, long-term spatial memory formation involves the

generation of allocentric representations in the hippocampus and

surrounding medial temporal lobe structures (perirhinal and para-

hippocampal cortices). The hippocampal place cell representation

is driven by convergent inputs from the dorsal and ventral visual

pathways. The ventral stream input consists of object features in

the perirhinal cortex, whereas the dorsal stream input consists of

BVCs in the parahippocampal cortex. These medial temporal lobe

areas are all mutually interconnected to permit pattern completion.

When cued with a partial representation of a place, such as a

specific landmark, the model thereby automatically retrieves the

full representation of that place, comprising the location of the

observer as well as the surrounding landmarks and their visual

appearance.

Both short-term spatial memory and imagery are modeled as

egocentric representations of locations in the precuneus, which can

be driven by perception or by reconstruction from long-term

memory (see below). The neural activations within this medial

parietal representation can be modulated by directed attention, to

capture the fact that one can attend sequentially to the spatial

locations of items in imagery just as in perception, presumably via

planned eye movements (see Postle et al., 2006). Both encoding

and retrieval require translation between the egocentric precuneus

and allocentric parahippocampal representations of landmarks.

This occurs via a coordinate transformation mediated by the pos-

terior parietal and retrosplenial cortices, reflecting the current head

direction.

Retrieval from long-term memory, cued by knowledge of posi-

tion and orientation relative to one or more landmarks, corresponds

to pattern completion of the parahippocampal representation of the

allocentric locations of landmarks around the subjects via its

connections with the hippocampal and perirhinal representations.

Thus, the medial temporal lobe acts as an attractor network within

which a representation of the visual features, distances, and allo-

centric directions of landmarks can be retrieved, which is consis-

tent with perception from a single location (represented in the

hippocampus). This representation is translated into the egocentric

precuneus representation, within which directed attention can

boost the activation of egocentrically defined locations of interest.

Finally, the additional activation can feed back to the parahip-

pocampal representation, again via posterior parietal translation,

and thence to the perirhinal representation so as to activate the

visual features of the attended landmark.

Motor efference drives the spatial updating of the egocentric

representation of the locations of landmarks. Specifically, modu-

lation of the posterior parietal egocentric–allocentric transforma-

tion by motor efference causes allocentric locations to be mapped

to the egocentric locations pertaining after the current segment of

movement. The reactivation of the BVCs by this shifted egocentric

representation then updates the medial temporal representation to

be consistent with the parietal representation. The bottom up
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(parietal to temporal) and top down (temporal to parietal) flows of

information are temporally organized into different phases of the

theta rhythm. Additionally, the generation of mock motor effer-

ence in the prefrontal cortex allows mental exploration in imagery

via mock spatial updating.

A central component of our model is circuitry that transforms

between different representations of the space surrounding an

animal. This proposed egocentric–allocentric transformation sug-

gests a solution to two puzzles regarding the functional anatomy of

memory and navigation. The first is the observation that Papez’s

circuit (including the mammillary bodies, anterior thalamus, ret-

rosplenial cortex and fornix, as well as the hippocampus) is both

crucial for episodic recollection, which is impaired by lesions

anywhere along it (see, e.g., Aggleton & Brown, 1999), and

provides the neural basis for head direction cells (Taube, 1998). A

second, related puzzle is the ubiquitous involvement of retrosple-

nial cortex and the anterior parietal–occipital sulcus in both nav-

igation (reviewed in Maguire, 2001) and memory (see, e.g., Bur-

gess, Maguire, Spiers, & O’Keefe, 2001). We propose (see also

Burgess, Becker, et al., 2001; Burgess, Maguire, et al., 2001) that

the segment of Papez’s circuit from the mammillary bodies to the

hippocampal formation via the anterior thalamus carries the head

direction information needed to transform the allocentric direc-

tional tuning of the BVC representation into an egocentric (head-

centered) representation suitable for mental imagery and that the

retrosplenial cortex/parietal– occipital sulcus may mediate or

buffer the stages of transformation between egocentric and allo-

centric representation (see also Ino et al., 2002). A related proposal

is that the retrosplenial cortex serves to integrate mnemonic and

path-integrative information (Cooper & Mizumori, 2001), which

maps onto our own proposal given the assumption of allocentric

long-term memory and egocentric spatial updating.

The Model: Architecture and Dynamics

In this section, we discuss the architecture of our model and then

describe the model dynamics and how spatial updating, mental

exploration, and learning are simulated. A simplified version of

our model with preliminary simulation results was described by

Becker and Burgess (2001). By lesioning the parietal region of the

model, the authors were able to simulate aspects of hemispatial

neglect. The model presented here builds on this earlier work by

deriving, in a more principled manner, the neural circuits for

allocentric representation and allocentric–egocentric transforma-

tions, and augments this work with parietal neural circuitry to

support spatial updating and mental navigation. The architecture of

our model rests upon three key assumptions:

1. The parietal window hypothesis: An egocentric window pro-

vides exclusive access into long-term spatial memory in the ser-

vice of mental imagery, planning, and navigation.

2. Allocentric coding in the medial temporal lobe: Allocentric

BVC representations are constructed in the parahippocampal re-

gion and project to hippocampal place cells where long-term

spatial memories are stored.

3. Transformation circuit: Access by the parietal window into

allocentrically stored spatial representations is mediated by a trans-

formation circuit; the same circuit also operates in the inverse

direction, such that the products of recall are mapped from allo-

centric into egocentric representations of space.

The Parietal Window Hypothesis

We hypothesized that a population of neurons maintains a

head-centered, egocentric map of space that can be driven either by

bottom-up sensory input or by top-down inputs from long-term

memory. This map represents the locations of all landmarks/

objects that are visible from an animal’s current location in space

or from a location that the animal recalls from previous experience.

This neuronal population, assumed to exist within the posterior

parietal cortex and very likely within the precuneus, will hence-

forth be referred to as the parietal window. We claim that the

contents of the parietal window are generated on the basis of some

combination of information from the senses (e.g., dorsal visual

stream) and from allocentric long-term spatial memory, with the

exact combination depending on the demands of the current task.

Manipulation of spatial information for the purposes of planning or

navigation, including spatial updating, occurs within the parietal

window.

The network model also includes circuitry that can manipulate

the contents of the parietal window so as to allow for spatial

updating or mental exploration. In the case of spatial updating, this

circuitry is activated by idiothetic information (proprioceptive cues

signaling the observer’s change in direction and location), whereas

in the case of mental exploration, it is activated by some mentally

generated equivalent (e.g., imagined rotation and translation dur-

ing path planning). The former ability allows the model to main-

tain an internal representation of its surroundings even with de-

graded or absent sensory input, whereas the latter provides a means

of recalling the locations of occluded landmarks and generating

navigational strategies for reaching them.

Allocentric Representations in the Medial Temporal Lobe

In contrast to the parietal window’s egocentric frame of refer-

ence, we postulate that an allocentric frame of reference is used in

the medial temporal lobe. The model’s egocentric reference frame

has its origin bound to the observer’s location, with its y-axis fixed

along the observer’s heading direction. The model’s allocentric

reference frame has its origin bound to the observer’s location (in

this sense, like place cell firing, it is not fully allocentric), but its

orientation is fixed relative to the external environment. Therefore,

both reference frames are similar in that they remain fixed with re-

spect to the observer so long as the observer undergoes transla-

tional motion only. However, when the observer’s head rotates

within the environment, the egocentric frame rotates with it,

but the allocentric frame remains stationary with respect to the

environment. An example of an object in the allocentric frame and

its corresponding location in the egocentric frame is shown in

Figure 1.

Consider the situation depicted in Figure 2 in which an observer

surrounded by six walls is located at the position marked “X,” with

a heading direction indicated by the arrow. If the walls of this

“two-room” environment are discretized uniformly into a set of

“landmark segments” (to simplify later calculations), then the

egocentric frame positions of the segments viewable from “X” can

be inferred readily. These positions are depicted by open circles in

the top panel of Figure 3. Representation of this egocentric infor-

mation by the parietal window neurons is accomplished by first

forming a one-to-one correspondence between the set of neurons
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and a polar grid covering the egocentric reference frame. This grid

is depicted by the closed circles in the top panel of Figure 3. Each

neuron in the grid is tuned to respond most strongly to an object or

landmark at a particular direction and distance relative to the

organism’s head, which is at the origin of the grid. The neuron’s

response falls off exponentially for objects located further away

from the neuron’s preferred distance and direction (see the Ap-

pendix for details). When multiple segments are present within a

neuron’s receptive field, they contribute additively to its firing

rate, up to a maximum firing rate of 1. The parietal window

representation of the information depicted in the top panel of

Figure 3 is shown in the bottom panel of the same figure, where the

firing rate of each neuron is plotted at the location of its corre-

sponding grid point.

We assume that the observer in Figure 2 aligns its allocentric

frame such that the y-axis is perpendicular to the wall labeled 1 and

the x-axis is parallel to the same wall. The locations of the

landmark segments in this frame, which will not depend on the

observer’s heading direction, are depicted in the top panel of

Figure 4. By forming a one-to-one correspondence between a set

of neurons and a polar grid centered at the origin of the allocentric

reference frame, it becomes possible to represent the configuration

of landmark segments by the firing rates of this neural population.

In analogy with the egocentric parietal window neurons, each

allocentric neuron in the grid is tuned to respond most strongly to

an object or landmark at a particular distance from the organism’s

head, which is fixed to the origin of the grid and allocentric

direction (relative to the fixed environment). Again, the neuron’s

response falls off exponentially for objects located farther away

from the neuron’s preferred distance and direction. Note that these

allocentrically tuned neurons are essentially the same as the BVCs

described in the introduction and are referred to as such from this

point on. The BVC representation of the information depicted in

the top panel of Figure 4 is shown in the bottom panel of the same

figure, where the firing rate of each neuron is plotted at the

location of its corresponding grid point. Although we assume that

these BVCs exist within the parahippocampal cortex, we note that

cells with BVC-like responses have been found in the subiculum

(Barry et al., 2006; Sharp, 1999), an alternative location to the

parahippocampal cortex but one that is less consistent with neu-

Figure 2. Map of the “two-room” environment used in the second set of

simulations. Solid rectangles represent environmental boundaries/

landmarks. Each grid point corresponds to a maximal firing location for

one hippocampal place cell. The “X” represents the model’s current loca-

tion and the arrow its heading direction.

Figure 1. Top: Egocentric reference frame in which the observer is

always at the origin, facing along the positive y-axis. A triangular landmark

sits in front and to the right of the observer in this frame. Bottom: The same

situation as above, but depicted in the allocentrically aligned reference

frame. In this frame, the observer is always at the origin, but the direction

of the y-axis is fixed to the external environment instead of the observer’s

heading direction. With the heading direction depicted (approximately 45°

away from the positive y-axis in the counterclockwise direction), the

triangular landmark lies directly on the positive y-axis and is rotated 45° in

the counterclockwise direction.
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roimaging results in humans showing parahippocampal processing

of spatial scenes including plain walled environments (Epstein &

Kanwisher, 1998).

To form long-term memories for specific spatial locations, spa-

tial input from BVCs and visual input from the perirhinal layer are

combined into a place cell representation. Although, in reality the

hippocampal formation consists of multiple spatially selective

regions (dentate gyrus, CA3, CA1), for simplicity, our model

hippocampus contains a single layer of recurrently connected place

cells. Their place preferences are arranged uniformly over a Car-

tesian grid that covers the relevant allocentric space for a given

environment (see Figure 2). In particular, a one-to-one correspon-

dence is formed between each of the model place cells and the set

of grid points so that a given place cell fires maximally when the

model is located at that cell’s corresponding grid point. These

model hippocampal neurons are reciprocally connected to the layer

of BVCs and to a layer of perirhinal identity neurons, thus allow-

Figure 4. Top: Allocentric reference frame. Each grid point corresponds

to the preferred boundary/landmark location of a BVC, which fires max-

imally when a landmark segment is located at that grid point’s coordinates.

The landmark segments for the discretized “two-room” environment, as

viewed from the model’s current location, are also shown. The dashed

vector points to the landmark segment at egocentric direction. In this map,

it is located at the same distance from the model, but its direction, �a, is

equal to �e plus the model’s current heading direction. Finally, the model’s

heading direction within the allocentric reference frame is indicated by the

solid arrow. Bottom: Activation of BVCs corresponding to the landmark

segment configuration. The firing rate of each neuron is plotted at that

neuron’s corresponding grid point, with lighter color indicating higher

firing rate.

Figure 3. Top: Egocentric reference frame. Each grid point corresponds

to the preferred boundary/landmark location of a parietal window neuron,

which fires maximally when a landmark segment is located at that grid

point’s coordinates. The landmark segments for the discretized “two-room”

environment, as viewed from the model’s current location, are also shown.

The landmark segment at egocentric direction, �e, is indicated by the

dashed arrow. Finally, the model’s heading direction, which is always the

same in egocentric space, is indicated by the solid arrow. Bottom: Acti-

vation of parietal window neurons corresponding to the landmark segment

configuration. The firing rate of each neuron is plotted at that neuron’s

corresponding grid point, with lighter shades indicating higher firing rate.
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ing environmental geometry and landmark identities to be bound

simultaneously to a given “place.” In addition, the layer of BVCs

is reciprocally connected to the layer of perirhinal neurons, thereby

allowing the association of landmark identities with allocentric

locations (see Figure 5 for a schematic of the full model). The full

reciprocal connectivity between the three medial temporal lobe

components of the model allows for the recall of a landmark’s

identity when attention is directed toward the parietal window

representation of that landmark’s location. This process of recall is

described in the next section.

Within our gross simplification of hippocampal circuitry, the

model’s single layer of place cells is most consistent with area

CA3, an area that is heavily recurrently connected, and that ex-

hibits place-selective firing. In our model, this recurrent connec-

tivity allows for recall/pattern completion, as it is often argued to

do in CA3 (Brun et al., 2002; Nakazawa et al., 2002). Another

gross simplification in our model is the strictly spatial function of

the hippocampus. Although the hippocampus is known to be

important in spatial memory, its more general contribution to

episodic memory is well established (for a review, see Burgess,

Maguire, & O’Keefe 2002).

Transformation Circuit

The assumption in our model of egocentric access to allocen-

trically stored spatial information has an important implication:

There must be circuitry that transforms between these representa-

tions. In order to be able to recall the locations and identities of

environmental boundaries relative to one’s own location and ori-

entation, long-term allocentric internal representations of space

must be transformed into egocentric representations. Conversely,

in order for sensory input to cue such recall, or for it to enter

long-term allocentric storage in the first place, the inverse trans-

formation from egocentric to allocentric representation must be

performed. That is, a visual stimulus at a retinocentrically encoded

location must be transformed into an allocentrically encoded lo-

cation in order to match against or store within spatial long-term

memory. We assume that sensory information is first transformed

into the head-centered egocentric parietal window reference frame

and then to the allocentric BVC representation. The transformation

from the parietal window representation to the BVC representa-

tion, and its inverse, can be accomplished very simply if absolute

heading direction is known. Consider, for example, that you are

facing west (90° in allocentric angular coordinates, where north is

Figure 5. Schematic of the model. Each box or oval represents a set of neurons in a different brain region. Thin,

solid arrows represent full bottom-up interconnectivity between the neurons in the connected regions, whereas the

dashed arrows represent full top-down interconnectivity. Thick, solid arrows represent full connectivity, which is

unaffected by the bottom-up/top-down cycling. The thick dashed line from the inhibitory interneuron population (I)

represents inhibition that is unaffected by the bottom-up/top-down phases. A given perirhinal (PR) neuron fires

maximally when the model attends to a landmark segment with a particular identity. Hippocampal neurons are

associated with a Cartesian grid covering allocentric space such that a given neuron fires maximally when the model

is localized at its corresponding grid point. Boundary vector cells (BVCs) or parietal window (PW) neurons are

associated with a polar grid covering allocentric/egocentric space. A given BVC/PW neuron fires maximally when a

landmark segment is a certain distance and allocentric/egocentric direction away from the model. A given head

direction (HD) neuron fires maximally for a given head direction. The transformation layer neurons are responsible

for transforming allocentric BVC representations of space into egocentric PW representations. A second set of

top-down weights (curved, dashed arrow) from the transformation layer to PW are gated by egocentric velocity signals

to allow for spatial updating/mental exploration. Retrospl. � retrosplenial transformation layer.
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0°), and there is an object to your left (90° in egocentric angular

coordinates, where straight ahead is 0°); the object’s allocentric

direction can be calculated simply by adding the heading direction

to the object’s egocentric direction to obtain 180°—similarly, if

the object is known to be located to the south (an allocentric angle

of 180°) then its egocentric direction can be calculated by sub-

tracting the heading direction from the object’s allocentric direc-

tion. Thus, in our model the egocentric–allocentric transformations

are mediated by input from head direction cells that provide the

necessary modulation of firing rates by head direction (Snyder et

al., 1998), and the same neural circuitry can then perform the

transformation in either direction. The computation is a bit more

complicated than a simple subtraction or addition of angles be-

cause angular directions are encoded across populations of nar-

rowly direction-tuned neurons; nonetheless, it can be accom-

plished in a single layer of neurons whose activities are nonlinearly

modulated by head direction (cf. Pouget & Sejnowski, 1997). See

Figure 6 for a schematic of the full transformation circuit.

When an animal first enters a new environment, we assume that

salient perceptual features reliably orient the head direction sys-

tem. We model the head direction system as a set of neurons

configured in a ring via lateral connections to behave as a one-

dimensional continuous attractor, as in previous models (e.g.,

Skaggs, Knierim, Kudrimoti, & McNaughton, 1995; Stringer,

Figure 6. Top: Transformation circuit in bottom-up mode. A representation of the egocentric positions of all

viewable landmark segments is shown in the parietal window (PW). Rotated representations are projected onto

the various transformation sublayers, which are inhibited by current head direction (HD) activity via a population

of inhibitory interneurons (I). One transformation sublayer receives direct excitation from the HD system, thus

allowing its representation to project forward to the boundary vector cells (BVCs). Bottom: Transformation

circuit in top-down mode. The allocentric BVC representation of the environment is projected identically onto

each of the transformation sublayers. Each of these identical representations would be rotated through different

angles by the transformation to PW weights, but excitation and inhibition from the head direction system allows

only the correct sublayer to maintain sufficient activity to drive PW neurons.
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Trappenberg, Rolls, & de Araujo, 2002; Zhang, 1996). The con-

tinuous attractor property implies that the network will stabilize on

a single bump of activity corresponding to a single head direction,

and this bump can move continuously through 360° to reflect

self-motion or perceptual inputs. Moreover, the reliability of the

input mapping implies that if the animal returns to the same

environment in the future, the head direction system will be

oriented in exactly the same fashion and will exhibit the same

firing pattern as it did on the first exposure to the environment.

The egocentric-to-allocentric transformation is accomplished by a

circuit that combines head direction information with egocentric spa-

tial input from the parietal window. The transformation circuit, as-

sumed to be in the retrosplenial cortex/intraparietal sulcus, is com-

prised of a set of N identical neural subpopulations, each tuned to a

specific head direction. Each subpopulation encodes a rotated ego-

centric map consistent with the direction of its preferred heading.

Thus, connections between the parietal window and any one of the

transformation subpopulations are weighted such that a rotated ver-

sion of the egocentric spatial information contained in the parietal

window is projected onto that transformation sublayer. In our model,

there are 20 such sublayers corresponding to evenly spaced allocentric

directions. Each transformation sublayer then projects an identical

copy of its activation pattern onto the layer of BVCs. By setting

connections from the layer of head direction cells to the transforma-

tion neurons such that only the sublayer corresponding to the current

head direction is active, the transformation from egocentric to allo-

centric coordinates is accomplished. See Figures 5 and 6. In this way,

when the animal’s head rotates within the environment, head direction

cell activity and parietal window activity vary in time, but so long as

the animal undergoes no translation, activity projected to BVC neu-

rons remains constant. The gating function of the head direction cells

is accomplished via a combination of direct excitation from the head

direction cells to the appropriate transformation sublayer and indirect

uniform inhibition of all transformation layers by a population of

inhibitory interneurons driven by head direction cell activity. This

circuitry allows a localized bump of activity in the head direction

layer to select the set of transformation units corresponding to that

head direction.

The egocentric–allocentric transformation results in a single

viewpoint-independent representation of each location in an envi-

ronment. The allocentric representation consists of a distributed

pattern of activation across the boundary vector cell layer. To

encode this pattern as a distinct place memory, and to permit

subsequent cued recall, this pattern can be learned by an autoas-

sociative memory system. A retrieval cue, such as incomplete

egocentric sensory or mentally generated spatial information, can

then feed forward through the transformation circuit and reactivate

the correct allocentric representation of the model’s real or imag-

ined surroundings. Conversely, the place memory can generate a

viewpoint-specific mental image if we assume that the connections

in the transformation circuit operate with equal weights in both

directions. The recalled allocentric representation can thereby be

converted back into egocentric mental imagery of the environment

via the same neural circuitry.

Model Dynamics

Neurons in our model are rate coded (i.e., their activations

represent average neural firing rates rather than individual spikes)

and exhibit a continuous dynamic governed by “leaky-integrator”

equations. The complete mathematical details of the model, along

with these dynamical equations, can be found in the Appendix.

Here we present a more intuitive description of the model’s overall

behavior. For now, the issue of biologically realistic learning is

ignored and it is assumed that the model has already learned about

the spatial environments it encounters. The actual ad hoc training

procedure used to set the model weights for this work will also be

described briefly in a subsequent section, with full details pre-

sented in the Appendix. In a subsequent section, we also discuss

general principles that might underlie the learning of egocentric–

allocentric transformations in biological systems.

At the highest level of dynamics, our model operates in alter-

nating bottom-up and top-down stages, each lasting for 15 arbi-

trary time units. This periodic alternation in dynamics is based on

modeling work by Hasselmo, Bodelón, and Wyble (2002), who

argued that the hippocampal theta rhythm regulates the communi-

cation of this structure with interconnected brain regions. In par-

ticular they argued that during troughs in the rhythm, the hip-

pocampus primarily receives input from surrounding structures but

that during peaks, it primarily transmits information to these struc-

tures. We implement this alternating dynamics in our model both

because of the evidence supporting its existence and because it

allows the model to account for more experimental data than it

otherwise could. In particular, without these distinct phases the

model would have to engage in both bottom-up and top-down

processing at the same time. We have found that a functional

version of such a model exhibits states that strongly resist change

in response to external inputs.

During the top-down phase, activity from the hippocampal layer

feeds back to perirhinal cortex and also to the parietal window via

the BVC and transformation layers. In addition, during this phase,

the parietal window receives input from the senses, which we

assume can be down regulated if the model is performing mental

exploration or recall of a familiar environment without actually

changing its vantage point (see Figures 5 and 6). During the

bottom-up phase, the activity of the window is “frozen” to the last

pattern present during the top-down phase. This activity pattern,

which is the model’s current representation of the geometry of

egocentric space, is hypothetically maintained by a frontal–parietal

short-term memory system (which we do not model here), consis-

tent with evidence presented earlier. The frozen information from

the parietal window feeds forward during the bottom-up phase to

the hippocampal layer along with information from perirhinal

cortex, thus influencing the current hippocampal attractor state. In

principle, rigid freezing of the parietal window representation

during the bottom-up phase is not necessary, but such an approach

eliminates the need for additional neural circuitry in the model.

An animal would need to recall the details of an environment

stored in long-term memory for two main reasons. First, there

could be transient environmental conditions that impede sensory

input and thus leave the animal with little direct access to spatial

information. Second, the animal might need to remember what

would be around it at an imagined location for the purposes of

planning. For the former case, we assume that the model has

enough sensory information to orient the head direction system.

Although we only deal with visual information here, the model

could be extended easily to include other cues such as vestibular

input for this purpose as well. Once the head direction system is
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oriented, the available but incomplete sensory input to the parietal

window and perirhinal cortex can flow to the hippocampus in a

bottom-up phase and activate an attractor state for the complete

corresponding allocentric representation. During the next top-

down phase, this attractor state reconstructs the environmental

geometric information in the parietal window. Once the model has

reconstructed the geometry of the environment, it must be able to

identify the boundaries/landmarks that surround it. This is assumed

to occur via directed attention to a spatial location. We simulate

this in our model as extra activation (calculated from Equation

A17) being directed to the area of interest in the parietal window.

The boundary within the focus of attention in the parietal window

will generate a corresponding focus of activation on its allocentric

location within the BVC layer. The associative pathways within

the medial temporal lobe can then retrieve the object’s identity in

the perirhinal cortex.

As a concrete example of spatial attention, if the model is

instructed (perhaps by some prefrontal brain region controlling

planned eye movements, not modeled here) to identify a boundary

to its egocentric left, then extra activation is directed to the parietal

window neurons that represent space to the egocentric left. This

activation then flows through the transformation circuit, to the

BVC layer, and finally to the perirhinal layer. The extra activation

from the parietal window increases the firing rate of all perirhinal

neurons corresponding to boundary identities that the model could

encounter to its left when it has the current heading direction. The

correct boundary identity, consistent with the subject’s current

location, can then be disambiguated by allowing the top-down

connections in the model to operate at a low level (5% of the

normal top-down value) even during a bottom-up phase. In this

way, the place cell activity can provide the requisite disambigua-

tion. For consistency, we also allow bottom-up connections to

operate at the same reduced level during top-down phases.

In cases in which an animal needs to recall the details of its

surroundings from a particular imagined point of view, we assume

that the suggestion of (in the case of humans) or the memory of a

highly salient environmental feature located at some point in the

animal’s egocentric space might be enough to orient the head

direction system. The correct perirhinal units could also be acti-

vated by this process, and activity corresponding to the location of

the feature could be sent to the parietal window. During the next

bottom-up phase, the processes of pattern completion and directed

attention would then follow as described above.

Spatial Updating and Mental Exploration

The recall processes described in the previous section are useful

only if an animal requires stationary “snapshots” of an environ-

ment. However, a moving animal, often faced with partially or

fully occluded sensory information, requires an accurate, real-time

representation of its surroundings. Similarly, if an animal wishes to

plan a route through a familiar environment, the ability to perform

mental exploration of the surrounding space would be useful.

A key part of our overall theory is that parietally generated

egocentric mental imagery can be manipulated via real or mentally

generated idiothetic information in order to accomplish spatial

updating or mental exploration in familiar environments. A de-

tailed neural mechanism for accomplishing such tasks in the case

of pure short-term or working memory has been described else-

where (Byrne & Becker, 2004). Here we are concerned primarily

with the updating process applied to medial temporal lobe depen-

dent long-term memory. For this case, we assume that rotational

and forward-translational egomotion signals act upon the egocen-

tric parietal window representation of space via different mecha-

nisms. In the case of rotation, the egomotion signal causes head

direction cell activity to advance sequentially through the head

direction map, thus rotating the image that is projected into the

parietal window from the BVCs. This velocity-modulated updating

of head direction is similar to the model described by Stringer et al.

(2002). The potential for such one-dimensional continuous attrac-

tor networks to account for multiple aspects of the head direction

cell assembly has been investigated in detail by Conklin and

Eliasmith (2005); Goodridge and Touretzky (2000); Hahnloser

(2003); Redish, Elga, and Touretzky (1996); among others. How-

ever, a detailed summary of such work is beyond the scope of this

article. For the case of forward translation, the egomotion signal

gates the top-down connections from the parietal transformation

layer to the parietal window such that the “normal” top-down

weights connecting these regions are down regulated, whereas a

second, alternate set of top-down weights are up regulated. With

no forward velocity signal, the normal top-down connections per-

form reconstruction of a head-centered egocentric representation

of the model’s current spatial surroundings in the parietal window

by using information originating from place cell activity. Once up

regulated by the velocity signal, the alternate set of top-down

connections performs an almost identical function, except that the

representation of space reconstructed in the parietal window is of

the model’s current surroundings but shifted backwards slightly in

the model’s egocentric space. When the next bottom-up phase

begins, the shifted spatial information, represented as parietal

window activity, flows through the transformation and BVC layers

to activate place cells that correspond to the location slightly ahead

of the model’s current location. This process repeats itself during

the next top-down/bottom-up cycle until the velocity signal dissi-

pates, resulting in a continuous relocation of the model’s internal

representation of its location in space. Further details of this

updating procedure can be found in the Appendix.

Learning in the Model

The purpose of our model is to reproduce experimental data and

to generate novel predictions of spatial behavior in adult animals,

rather than to account for learning in a biologically realistic man-

ner. Hence, we use a simplistic Hebbian learning procedure that

associates together prespecified activation patterns in each layer of

the model, in order to train all of the model connection strengths

except for those involved with spatial updating/mental exploration.

The latter connection strengths are calculated as described in the

Appendix. Briefly, learning for the remainder of the weights

involves positioning the model at numerous random locations and

heading directions within an environment while, at each of these

locations, sequentially directing attention to each landmark seg-

ment viewable from the current location. For each attending event

at each location, appropriate activation patterns are imposed upon

the model layers and connection strengths between neurons are

updated via a simple correlational rule. Once training is complete,

weights are normalized. A detailed description of the training

procedures is provided in the Appendix.
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It should be noted that the transformation circuitry in our model

is only trained once, but the medial temporal component is re-

trained on each unique environment in the simulations reported

here. Training on multiple environments with the relatively small-

scale models used here can result in a degradation of information

when it travels through the transformation circuitry and activation

of an incorrect hippocampal attractor state. This problem could be

addressed by including a greater number of model neurons in the

transformation layer. Additionally, a larger scale version of the

medial temporal lobe portion of the model should, in principle, be

capable of storing multiple environments in distinct subsets of

place cells (a possible role for the dentate gyrus and CA3 recurrent

connections; McNaughton & Morris 1987; Samsonovich & Mc-

Naughton, 1997). There is no reason to expect that the simulta-

neous storage of attractor states corresponding to multiple envi-

ronments would affect any of the results we obtain from the model

in this article.

Simulation 1: Recall of Landmarks and Geometry in

Hemispatial Neglect

Method

In order to simulate representational neglect (see introductory

section and Bisiach & Luzzatti, 1978), we first tested the ability of

the intact model to recall environmental geometry and landmark

identity. This was accomplished by first training the medial tem-

poral component of the model on the simplified cathedral square

depicted in the upper left panel of Figure 7. During training, the

allocentric reference frame was taken to be aligned with this

depiction of the environment so that its y-axis would be perpen-

dicular to the inward facing walls of Buildings 1 and 3 but parallel

to the inward facing walls of Buildings 2 and 4. In reality, it is

likely that the orientation of the allocentric reference frame within

the environment would be set by the head direction system align-

ment when the animal first experiences the environment. Once

training was complete, the model was cued to imagine itself facing

the cathedral in the trained environment by injecting appropriate

activation into the head direction, parietal window, and perirhinal

identity layers. Cuing activation for the parietal window was

calculated by applying Equation A5 to a discretized linear bound-

ary, representing the front of the cathedral, located directly in front

of the model in the egocentric reference frame. Similarly, cuing

activation for the perirhinal neurons was calculated from Equation

A3, with the cathedral (Building Identity 1) being the attended

landmark. Finally, it was assumed that the cathedral is sufficiently

salient that cuing its location relative to the subject is enough to

orient the head direction system. Thus, activation for the head

direction layer was calculated from Equation A6, with the heading

direction (�) set to zero, indicating perfect alignment between

egocentric and allocentric reference frames. The cuing activations

were applied to the model for two full bottom-up/top-down cycles,

after which they were down regulated, and the retrieved attractor

states in the head direction system and the hippocampal place cell

layer maintained the model’s parietal window representation of the

imagined geometry of the environment.

In order to “ask” the model to identify the boundaries that would

be visible from the current viewpoint (see Figure 7), we simulated

the focus of attention along four different directions: left, right,

forward, and backward. In each direction, the corresponding acti-

vation calculated from Equation A17 was injected directly into the

parietal window. During a subsequent bottom-up phase, this acti-

vation flowed forward through the transformation and parahip-

pocampal layers to activate the correct perirhinal identity neuron.

For example, in the case of rightward attention, the correct re-

sponse would be perirhinal activity corresponding to Building 2

(see the Appendix for details).

Next, the model was cued to imagine itself in the square facing

away from the cathedral. This was accomplished by focusing

attention on a boundary directly behind the model in the parietal

window, while simultaneously activating the perirhinal neurons

representing the visual features of the cathedral and the allocentric

head direction 180° away from the current egocentric frame.

Figure 7. Top four panels: Activation in the various model layers aver-

aged over a full cycle after it was cued to face the cathedral (Building 1).

Upper left: Environmental boundaries are represented by gray walls su-

perimposed upon the hippocampal place cell representation. Here, the

firing rates of all hippocampal place cells are presented, with each shown

at its corresponding grid point within the environment. Bottom left: The

head direction (HD) activity peak indicates that the model was facing

“forward” relative to the stored allocentric map. Therefore, parietal win-

dow (PW) activity (bottom right), which is the model’s representation of its

surrounding egocentric space, was highly similar to parahippocampal (PH)

boundary vector cell activity (upper right), which corresponds to the

model’s allocentric representation of space. The various symbols superim-

posed upon the egocentric PW representation indicate the attention direc-

tions. Bottom: Activation in perirhinal (PR) identity neurons at the end of

the first bottom-up phase after attention is directed in the PW. For example,

when attention is directed to the egocentric right (“�”), PR neuron 2,

which corresponds to Boundary/Building 2, is the most active identity

neuron.

352 BYRNE, BECKER, AND BURGESS



Once it was confirmed that the model could identify surround-

ing landmarks from different viewpoints, hemispatial neglect was

simulated by performing a random knock out of 50% of the

parietal window neurons representing the left side of egocentric

space and then repeating exactly the same procedures as just

described for testing the intact model.

Results and Discussion

The ability of the intact model to recall environmental geometry

and landmark identity, when cued that it was facing the cathedral,

is shown in Figure 7. The top four panels show the activity in the

various network layers averaged over one full cycle after the

removal of the cuing activity. Although the spatial resolution of the

model’s representation of the environment is coarse, the geometry

represented in the parietal window is roughly correct. The bottom

panel of Figure 7 shows the activity of perirhinal neurons at the

end of a bottom-up phase. Perirhinal activity is plotted with open

circles for leftward attention, asterisks for forward attention,

crosses for rightward attention, and triangles for backward atten-

tion, indicating that the model can identify all landmarks correctly.

Performance of the intact model when cued that it was facing away

from the cathedral is shown in Figure 8. The resultant activities of

the various network layers averaged over a full cycle after down

regulation of cuing inputs are shown in the top four panels. Once

again the model formed the correct egocentric representation of

spatial information in the parietal window and directed attention

resulted in the correct identification of the surrounding boundaries.

For example, when attention was directed to the egocentric right,

the identity of Building 4 was activated in the perirhinal layer.

Building 4 would be to the right of the model if it were facing

away from the cathedral.

Results of the simulations with the lesioned model, simulating

hemispatial neglect, are shown in Figures 9 and 10 and corre-

sponding to Figures 7 and 8, respectively. From these results, it is

clear that the model could identify landmarks to its right, but not

to its left, regardless of its imagined heading direction. These

simulation results are consistent with a central tenet of our model,

namely, that allocentric representations of space are formed in

long-term memory and are transformed into egocentric views as

needed, in the service of memory recall and imagery. Moreover,

our model provides a mechanistic explanation for patterns of

deficits observed in perceptual and representational neglect pa-

tients, a previously perplexing phenomenon in neuropsychology.

Both the long-term memory representation and the transformation

mechanism are intact, whereas the egocentric representation pro-

jected from long-term memory, and/or the transformation mecha-

nism itself, is faulty. This could arise in patients either from a

lesion to the pathway from the transformation circuit to the parietal

window (resulting in pure representational neglect) or from a

lesion to the parietal window itself (resulting in both perceptual

and representational neglect). Pure perceptual neglect in the ab-

sence of representational neglect could arise from a lesion along

the sensory or motor pathways projecting into and out of posterior

parietal cortex. Testing of these predictions based on currently

available data is difficult because of the extensive lesions suffered

by most patients suffering from unilateral neglect. For the case of

perceptual neglect, recent studies indicate that a disconnect be-

tween parietal cortex and prefrontal areas (Doricchi & Tomaiuolo,

2003; Thiebaut de Schotten et al., 2005) or between parietal cortex

and medial temporal regions (Bird et al., 2006) is critical to a

realization of the phenomenon. However, we are unaware of any

data that so clearly indicate which regions of the brain must be

damaged in order to induce pure representational neglect, the focus

of the current set of simulations.

Simulation 2: Spatial Updating During Physical and

Mental Navigation

One of the key functions of the model is its ability to perform

spatial updating of its internal representations of location, given a

motion signal. Spatial updating is critical for navigation in the

absence of perceptual input (path integration), for mental imagery

involving viewpoint changes, and for path planning. Spatial up-

dating should allow relatively normal navigation and place cell

firing over short durations in the absence of perceptual input, and

it should account for data on spatial updating such as that of Wang

and Brockmole (2003), described in the introductory paragraphs.

In our model, path integration occurs outside of the hippocampus

through updating the parietal egocentric representation. Further,

the same machinery accounts for the process of mental navigation

Figure 8. Top four panels: Activation in the various model layers aver-

aged over one full cycle after it was cued to face away from the Cathedral.

The head direction (HD) activity peak indicates that the model was facing

“backwards” relative to the stored allocentric map. Therefore, parietal

window (PW) activity is rotated 180° relative to boundary vector cell

activity. The various symbols superimposed upon the egocentric PW

representation indicate the directions in which attention was directed.

Bottom: Activation in perirhinal (PR) neurons at the end of the first

bottom-up phase after attention is directed in the PW. PH � parahippocam-

pal.
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by generating an imagined motor signal in place of the efference–

proprioceptive–vestibular signal generated by actual motion. This

should allow the model to address performance and reaction time

data in tasks in which the subject is asked to respond from a

different imagined viewpoint and/or location (e.g., Diwadkar &

McNamara, 1997; Easton & Sholl, 1995; Rieser, 1989; Shelton &

McNamara, 2001) or asked to simulate some aspects of spatial

planning.

Method

In order to simulate spatial updating or mental navigation, the

medial temporal component of the model was trained on the

“two-room” environment shown in the upper left panel of Figure

11, with the allocentric reference frame taken to be aligned with

the vertical axis of the environment as depicted. The training

procedure and architecture for this component of the model were

identical to those used in the previous set of simulations, except

that in addition, within the parietal window, the velocity-gated

translational weights given by Equation A9, and the rotational

head direction weights, trained as described in the Appendix, now

come into play.

After training was complete, the model was first cued to a

location near to and directly facing Wall 1. Such cuing would be

equivalent to asking the model to imagine itself facing Wall 1 in

the two-room environment. This was accomplished as in the pre-

vious simulations by injecting appropriate activations into perirhi-

nal, head direction, and parietal window neurons for two full

cycles. Attention was then focused along four different directions,

leftward, rightward, forward, and backward, to demonstrate that

the model could identify the surrounding landmarks from memory.

Next, we simulated spatial updating after several steps of imag-

ined egomotion. The same situation could arise during real navi-

gation if an animal spontaneously loses sensory information about

its real surroundings (e.g., navigating in the dark). In either case,

attractor states in the head direction system and in the hippocampal

formation of our model are able to maintain an internal represen-

tation of the real/imagined surroundings. Mental exploration or

spatial updating based on this self-sustaining internal representa-

tion was simulated in the model by a series of eight egomotion

steps. This egomotion, if assumed to be generated by real idio-

thetic information, would correspond to spatial updating, or if

generated by a mental equivalent, would correspond to mental

exploration. In the first step, to simulate making a 180° turn, a

counterclockwise rotational velocity signal lasting for 150 time

units gated the rotational head direction weights until the model’s

egocentric representation of space rotated by a full 180°. In the

second step, to simulate forward egomotion, a translational veloc-

ity signal lasting 135 time units gated the transformation to parietal

window translational weights, causing the model’s egocentric rep-

resentation of the locations of boundaries to translate backwards.

Similarly, a further six egomotion steps were performed to com-

plete the simulation.

Figure 10. Top four panels: Activation in the various model layers

averaged over one full cycle after the lesioned model was cued to face

away from the cathedral. Bottom: Activation in perirhinal (PR) neurons at

the end of the first bottom-up phase after attention is directed in the parietal

window (PW). PH � parahippocampal; HD � head direction.

Figure 9. Top four panels: Activation in the various model layers aver-

aged over one full cycle after the lesioned model was cued to face the

cathedral. Bottom: Activation in perirhinal (PR) neurons at the end of the

first bottom-up phase after attention is directed in the parietal window

(PW). PH � parahippocampal; HD � head direction.
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As a control, we compared spatial updating in imagined versus

sensory-driven navigation. Although the model’s ability to per-

form spatial updating/mental exploration on internally maintained

representations of space is of primary interest, it must also function

in a consistent way during real navigation through a familiar

environment with intact sensory information. Thus, we simulated

the same situation as above but in the presence of accurate sensory

cues during the eight steps of egomotion. In this case, sensory

information corresponding to visible boundaries calculated from

Equation A5 was simultaneously injected into the parietal window

during egomotion.

Results and Discussion

The ability of the model to retrieve the appropriate context in the

two-room environment, when asked to imagine itself facing Wall

1, is shown in Figure 11. Network activity averaged over a full

cycle after down regulation of the cuing inputs can be seen in the

top four panels of Figure 11. The results of the four directed

attention events are shown in the bottom panel of Figure 11,

indicating that the model could also identify the surrounding

landmarks.

The performance of the model after several steps of imagined

egomotion is shown in Figures 12 and 13. Figure 12 shows

activation in the various network layers averaged over one full

cycle following the first two egomotion steps. The remaining six

steps brought the model’s internal representation of space to that

shown in Figure 13, where it was nearby and facing Wall 2. Three

directed attention events show that the model could correctly

identify surrounding boundaries from this new viewpoint (see

bottom panel of Figure 13).

In the case of sensory-driven navigation, the analogous results to

Figures 11, 12, and 13 are shown in Figures 14, 15, and 16,

respectively. Results of the sensory-driven simulations after eight

steps of egomotion are nearly indistinguishable from the corre-

sponding results with imagined egomotion.

The fact that an egocentric translational velocity signal causes

spatial updating/mental navigation to occur at a constant velocity

is discussed in more detail with respect to Simulation 4 and in the

General Discussion. Here we simply note that it is consistent with

the reasonably accurate (if scaled) correspondence between mental

navigation times and actual navigation times (see, e.g., Ghaem et

al., 1997; Kosslyn, 1980).

Simulation 3: Place Cell Firing With Head Direction Cell

Lesions

In Simulations 1 and 2, we compared our model against behav-

ioral data. The purpose of Simulations 3 and 4 was to evaluate the

adequacy of our model in explaining and predicting data at the

level of single-unit recordings. For this third set of simulations, the

static model, that is in the absence of egomotion, is evaluated with

respect to place cell firing after lesions to the head direction

system. In Simulation 4, the model is evaluated under conditions

of cue conflict between direct sensory and path-integrative inputs.

Calton et al. (2003) have shown that rats with lesions to the

anterodorsal thalamic nuclei or to the postsubiculum, two locations

where head direction cells have been found, show altered place cell

Figure 12. Activation in the various model layers averaged over one full

cycle after the application of the rotational velocity signal for 150 time

units followed by a forward translational velocity signal for 135 time units.

PH � parahippocampal; HD � head direction; PW � parietal window.

Figure 11. Top four panels: Activation in the various model layers

averaged over one full cycle after it was cued to localize itself in the

“two-room” environment facing Wall 1. Environmental boundaries are

represented by gray walls superimposed upon the hippocampal represen-

tation. The various symbols superimposed on the parietal window (PW)

representation indicate the sequential attention directions. Bottom: Activa-

tion in perirhinal (PR) neurons for the various attention conditions at the

end of the first bottom-up phase after attention is directed in the PW. PH �

parahippocampal; HD � head direction.
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firing characteristics when compared with intact animals. Al-

though variations in place cell firing properties between the two

lesioned groups were seen, there were a number of characteristics

in common to both groups. Specifically, place cells in both groups

showed roughly normal in-field firing but elevated out-of-field

firing. Additionally, this out-of-field firing showed dependence on

heading direction.

In order to understand how our model could address the results

of Calton et al. (2003), it is useful to return briefly to the descrip-

tion of how incoming sensory information activates the correct

place cell attractor states. Recall, we have assumed that incoming

information about environmental geometry first reaches the ego-

centric parietal window representation before being transformed

via the transformation layer into an allocentric BVC representa-

tion. The BVC pattern, in conjunction with perirhinal activity, then

activates the appropriate hippocampal attractor state. This trans-

formation relies upon a gating mechanism driven by the head

direction system that will be clearly disrupted if head direction

cells are destroyed. Thus, under normal circumstances, a given

pattern of activity in the head direction system allows only one

transformation sublayer to project activity onto the BVC layer.

However, if the former is damaged, its gating function will be

compromised, reducing the activity received by the BVC layer

from the correct transformation sublayer and increasing the activ-

ity from other sublayers. Depending on the extent of the lesion to

the head direction system, the garbled BVC representation could

still overlap significantly with the representation required to acti-

vate the appropriate attractor state given the model’s current sen-

sory information, or it could be that the overlap is very small. In

intermediate cases, the correct hippocampal place cells might

receive enough activation to fire, but other neurons might be

driven past their firing thresholds as well.

Method

A realistic simulation of the effects of lesions to the head

direction cells in our model is not possible because of the use of a

single inhibitory interneuron that causes each head direction cell to

inhibit all transformation sublayers equally. A more realistic cir-

Figure 13. Top four panels: Activation in the various model layers

averaged over one full cycle at the end of the eight step sequence of

egomotion. Bottom: Activation in perirhinal (PR) neurons for the various

attention conditions at the end of the first bottom-up phase after attention

is directed in the parietal window (PW). PH � parahippocampal; HD �

head direction.

Figure 14. Results for the simulation in which sensory information about

the environment is being continuously input to the parietal window (PW)

representation throughout the duration of the simulation. PH � parahip-

pocampal; HD � head direction.

Figure 15. Results for the simulation in which sensory information about

the environment is being continuously input to the parietal window (PW)

representation throughout the duration of the simulation. PH � parahip-

pocampal; HD � head direction.
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cuit would use a population of inhibitory interneurons that were

connected randomly within the constraint that they would achieve

the same gating function (in combination with excitatory head

direction connections to the transformation layer). We did not use

such a population because, given the unnatural training methods

used, it would have behaved like a single unit anyway. With a

more natural configuration, partial lesions to the head direction

system would result in reduced excitation to the selected transfor-

mation sublayer and decreased inhibition to random regions of the

overall transformation layer. To simulate the equivalent effect in

our model, for each lesioned head direction, the excitatory head

direction input to the corresponding transformation sublayer was

reduced, whereas the inhibitory input to a random selection of

other transformation sublayers was decreased (see the Appendix

for details).

Because the lesioning procedure does not involve the medial

temporal structures, the latter region was trained once on the “box”

environment shown in Figure 17. The model was then localized at

numerous positions within the environment by injecting appropri-

ate egocentric sensory information from all of the environmental

boundaries into the parietal window neurons. At each location, the

sensory input was maintained for one top-down/bottom-up cycle,

and the activity of a selected place cell was recorded and averaged

over the bottom-up cycle. This procedure was performed for two

simulated head directions, one of which corresponded to perfect

alignment between egocentric and allocentric representations and

the other of which corresponded to perfect antialignment between

the two representations.

Results and Discussion

The average firing rates for a model place cell recorded when

the lesioned model was localized at numerous locations within a

rectangular subregion of the “box” environment are depicted in

Figures 17 and 18. In Figure 17, these rates correspond to the

aligned heading direction, whereas in Figure 18 the results corre-

spond to the antialigned simulation condition. Clearly, the firing

field of the model neuron varied with simulated head direction, and

moreover, its peak-firing location for either head direction did not

correspond to the location where the cell would have attained its

maximal firing rate in the nonlesioned model (marked with an “X”

in both figures). In addition, for the aligned condition, the cell

exhibited a firing maximum in one location but with an additional

area of elevated firing near “X.” These data are qualitatively

similar to the data shown in Figure 4B of Calton et al. (2003).

Figure 16. Results for the simulation in which sensory information about

the environment is being continuously input to the parietal window (PW)

representation throughout the duration of the simulation. PH � parahip-

pocampal; HD � head direction.

Figure 18. Activity of a single place cell from the model with a simulated

head direction consistent with perfect antialignment between parietal win-

dow and boundary vector cell representations of space. Note also that the

recorded cell would fire maximally at the “X” for all head directions in the

nonlesioned model.

Figure 17. Activity of a single place cell recorded from the model with

a simulated head direction cell lesion. Recordings were made when the

model was localized at numerous points within the dashed rectangle. In this

simulation the model’s head direction was consistent with perfect align-

ment between parietal window and boundary vector cell representations of

space. Note also that the recorded cell would fire maximally at the “X” for

all head directions in the nonlesioned model.
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Our model makes two unique predictions regarding the outcome

of experiments similar to those of Calton et al. (2003). First, a

place cell that has a prelesion preference for a location about which

there is a high degree of rotational symmetry (e.g., the center of a

cylinder) should maintain its place preference postlesion. Con-

versely, place cells that show prelesion preferences for locations of

low rotational symmetry should tend to show shifts in their pre-

ferred locations after a lesion. An example of this latter effect is

seen clearly in the simulation presented in Figures 17 and 18.

Second, the relative firing rates for place cells when measured at

locations of high rotational symmetry should demonstrate little

dependence on head direction after a lesion. For example, if Cell

A demonstrates a high postlesion firing rate at the center of a

cylinder for a given head direction, and if Cell B demonstrates a

low firing rate at that location and head direction, then for all other

head directions Cells A and B should show similar relative firing

rates at that location. Conversely, the relative firing rates for place

cells when measured at locations with lower levels of rotational

symmetry should exhibit higher levels of head direction depen-

dence after a lesion.

In order to understand these predictions, one only needs to note

that each transformation sublayer contains a representation of the

same egocentric space but rotated about the origin. Therefore, if

the egocentric parietal window representation shows a reasonable

degree of rotational symmetry at a given location, then allowing

extra regions of the overall transformation layer to project to the

BVCs will not have a large effect on the resultant geometric

information represented there, regardless of head direction. Hence,

a place cell that fires maximally/minimally at such a location

before a head direction system lesion would still receive high/low

levels of stimulation there after a lesion; moreover, because of the

rotational symmetry, it will do so for all head directions.

Simulation 4: Place Cell Firing With Conflicting Visual

and Path-Integrative Inputs

The basis of the medial temporal component of our model was

derived from a simple feed-forward model of place cell firing

(Hartley et al., 2000; O’Keefe & Burgess, 1996) driven by input

from BVCs. This earlier model included a number of simplifica-

tions, one of which was that BVCs and therefore place cell firing

rates were independent of firing history. However, memory in

general, and path integration in particular, make important contri-

butions to place cell firing, in addition to immediate sensory

perception such as vision, olfaction, et cetera. For example, place

cells can continue to fire normally in the dark (O’Keefe, 1976);

path integration, distant visual cues, and multimodal local cues can

be pitted against each other to control the orientation of place cell

firing (Jeffery, Donnett, Burgess, & O’Keefe, 1997; Jeffery &

O’Keefe, 1999); and congenitally blind rats show normal place

fields once they have explored the polarizing environmental cues

(Save, Cressant, Thinus-Blanc, & Poucet, 1998).

Here we have coupled the medial temporal model to a parietal

system capable of spatial updating. An obvious test of this ex-

tended model is to determine whether it can capture the joint

effects of path integration and sensory perception on place cell

firing, thereby extending the simple feed-forward place cell model.

Another line of evidence for the differential contributions of path

integration and sensory perception to place cell firing comes from

Gothard et al. (1996), who examined the activity of hippocampal

place cells in rats running along a linear track. By varying the track

length during recording sessions, they were able to pit sensory and

locomotor cues against each other. In our final set of simulations,

we sought to compare the performance of the model to Gothard et

al.’s data.

Gothard et al. (1996) trained rats to run back and forth along a

narrow, elevated track with food cups at either end. One food cup

was fixed directly to one end of the track, and the other was fixed

to the floor of a sliding box that could be in any one of five

locations (Box 1–Box 5), thereby changing the overall track length

(see the left panel of Figure 19). Rats were habituated to the

apparatus in the maximum length, or Box 1 state, for 3 to 5 days

prior to recording. During a recording session, an animal was

placed in the box at one of the five positions and allowed to run to

the fixed food cup (outbound journey). The box was then moved

to a new position before the rat turned around to make the return

journey (inbound journey). Most cells fired prederentially in one

direction of running, consistent with previous experiments on

linear tracks (McNaughton, Barnes, & O’Keefe, 1983; O’Keefe &

Reece, 1993). The firing profile for each cell was calculated

separately for all types of journey (e.g., Box 1–out, Box 2–out,

Box 1–in, Box 2–in) and was compared with the corresponding

Box 1 profile. Specifically, the amount by which the peak firing

location for a given cell was shifted from its preferred location in

the Box 1 condition was plotted against the corresponding shift of

the box relative to its Box 1 position (see Figure 19). This measure

is sensitive to whether the place field shifts with the movable box

or remains at a fixed location relative to stationary cues, but note

that deformations in firing field shape occurred, such as bimodal

fields as well as simple shifts. By fitting a regression line to the

data for a given cell across box positions, a displacement slope,

normalized to range between 0 and 1, was calculated. A slope of

0 corresponds to firing peaked at the same location relative to the

fixed food cup in all conditions, whereas a slope of 1 corresponds

to peak firing at the same location relative to the movable box,

regardless of its position. Thus the movable box controls the

location of firing fields with a large displacement slope, whereas

the fixed food cup and other room cues control the location of

fields with small displacement slopes.

Gothard et al.’s (1996) displacement slope results for inbound

and outbound selective neurons are shown in Figure 20 along with

some sample firing fields. Neurons that fired near the box or the

cup in the original configuration continued to fire near the box or

cup in the other configurations. Similarly, cells that fired in be-

tween the two cups did so in all configurations, except on the

shortest journeys when they did not fire at all. However, for most

of the distance traveled on a given journey, place cell firing

appeared to be predominantly controlled by the landmark which

the animal was moving away from. For outbound journeys, firing

peaked near to the box in the Box 1 configuration have displace-

ment slopes around 1, and this value gradually decreases to zero

for neurons with peak firing positions farther away from the box.

However, the slope value remains above 0.5 for peak firing loca-

tions much more than for those halfway down the track from the

box. This additional influence of the cue from which the rat is

running is also clearly evident for the inbound journeys in which

most neurons, excepting those with peak firing very close to the
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box, are controlled by the cup, showing displacement slopes close

to zero.

The BVC model of place cell firing (Hartley et al., 2000;

O’Keefe & Burgess, 1996) predicts much of Gothard et al.’s

pattern of data, for example, that the location of maximal firing

will tend to remain a fixed distance from the nearer of the two

boundaries and how the fields stretch, develop subpeaks, reduce in

firing rate, and disappear when the component BVCs fail to

coincide in one or other new configuration. However, the in-

creased influence of the boundary behind the rat compared with

the one in front is not captured by this model (also noted in

O’Keefe & Burgess, 1996). These results appear to require an

interaction between BVCs responsive to the inconsistent visual

cues and path-integrative locomotor information (see also Redish

et al., 2000), consistent with the idea that both path-integrative and

perceptual inputs are required to determine the hippocampal rep-

resentation of location (O’Keefe & Nadel, 1978). Here we inves-

tigate the behavior of the model, which now includes both BVCs

and motion-related spatial updating, in the Gothard et al. paradigm.

We model initial place cell firing when the animal is placed at

either end of the apparatus, as consistent with the place cell firing

for that location within the full-length track. This assumption is

reasonable given that the majority of local cues available at either

location are consistent with this representation. These cues consist

of the three box walls for the box and all the other room cues at the

fixed food cup. Upon leaving the start position for a given trial,

input from both locomotion-related updating and from visual cues

combine to update the animal’s internal representation of its po-

sition. Within the full-length track (Box 1) condition of Gothard et

al.’s (1996) experiment, neuronal activity follows a “normal”

continuous trajectory through the set of states representing all

intermediate locations within the full-length track and terminating

with the state corresponding to the destination end of the track. At

each stage, the perceptual input from both ends of the track is

consistent with the internally updated input from the previous step.

In the remaining conditions (Box 2–Box 5) the visible landmark

ahead is closer to the rat than would be consistent with the

motion-updated representation; this causes previously unimodal

place fields to reduce in peak activity and to deform, showing a

compromise between firing at a fixed distance from both ends of

the track. At the start of an outbound journey, the cues behind the

rat and the ideothetically updated internal representation predom-

inantly control place cell firing, but as the rat proceeds along the

track there is an increasing influence of the nearer than expected

Figure 19. Left: Linear track apparatus used by Gothard et al. (1996). Top middle: Rat on outward journey

from box to fixed cup for the five different box positions. Top right: Hypothetical average firing patterns for a

place cell in each of the five outward conditions plotted against relative position along the track in the box1

condition (0 is the position of the box in the box1 condition, whereas 1 is the position of the fixed cup). The

dashed diagonal line is the regression line used to calculate displacement slope, which is 1.0 for this cell because

it fires near the box in all conditions. The vertical dashed line shows the location of peak firing on the box1-out

trials. Bottom middle: Rat on inward journey from fixed cup to the box for the five different box positions.

Bottom right: Hypothetical average firing patterns for a place cell in each of the five inward conditions plotted

against relative position along the track in the box1 condition. This cell fires near the fixed cup in all conditions,

giving a displacement slope of 0.0. From “Dynamics of Mismatch Correction in the Hippocampal Ensemble

Code for Space: Interaction Between Path Integration and Environmental Cues,” by K. M. Gothard, W. E.

Skaggs, and B. L. McNaughton, 1996, Journal of Neuroscience, 16, p. 8028. Copyright 1996 by the Society for

Neuroscience. Adapted with permission.
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destination end. At some point past the midpoint of the track, there

will be a transition in the cues—from the cues behind the rat to the

cues in front of the rat—controlling place cell firing. For the

shortest track conditions, some place cells with fields near to the

“transition point” may not fire at all, having roughly equal inputs

from both ends on the full-length track, which entirely fail to

overlap on the short track. In this case, the inferred location of the

rat will jump from one reference frame to the other rather than

making a smooth transition.

Before describing our simulations of Gothard et al.’s (1996)

experiment in detail, we note one further piece of data. The

preceding explanation predicts that if sensory information about

the nearer than expected destination end of the track is degraded,

then the internally updated representation of landmark positions

should take precedence in the control of place cell firing for an

even longer portion of the journey. Consistent with this, when rats

performed Gothard et al.’s linear track task in darkness, it was

found that the cue from which the rat was running maintained

control over place cell firing for a greater portion of the journey

than it did in the light (Gothard et al., 2001).

Method

To simulate the key aspects of the linear track environment of

Gothard et al. (1996), we trained our model on a symmetric

environment consisting of two “boxes” that open toward each

other, as in the lower left/middle panels of Figure 21. Because of

the absence of surrounding room cues, either box can be consid-

ered the movable box. In this way, we were able to perform one set

of simulations representing both outbound and inbound journeys.

Medial temporal and parietal connections were set in the same

manner as for the previous simulations. Before performing actual

simulations of the Gothard et al. data, the forward translational

velocity of the place cell representation under application of an

egocentric velocity signal had to be calibrated. This was accom-

plished by applying the velocity signal after cuing the model to

localize itself near Box 1, facing Box 2 (see Figure 21), until place

cell firing indicated localization near Box 2. The model’s repre-

sentation of its own location within the environment was calcu-

lated at any given instant by averaging the coordinates associated

with maximally active place cells. By fitting a regression line to

the roughly linear position-time data (see the rightmost panel of

Figure 21), a velocity of 0.044 space units per time unit was found.

Such a simulation would correspond to the model mentally ex-

ploring this familiar environment or performing spatial updating

during actual locomotion in the absence of visual cues.

In the next step of the simulation, the model was cued to a

location two units away from Box 1 along the direction toward

Box 2, facing Box 2. To simulate a shortened track, sensory input

Figure 20. Upper left: Averaged firing profiles of four outward selective neurons in each condition. Rectangles

represent the movable box. Upper right: Displacement slopes for multiple outward selective cells plotted against

their peak firing positions in the box1 condition. Positions are relative to full track length, with 0 representing

the box position in the box1 condition and 1 representing the position of the fixed food cup. Lower panels:

Equivalent results for inward selective cells. From “Dynamics of Mismatch Correction in the Hippocampal

Ensemble Code for Space: Interaction Between Path Integration and Environmental Cues,” by K. M. Gothard,

W. E. Skaggs, and B. L. McNaughton, 1996, Journal of Neuroscience, 16, p. 8031. Copyright 1996 by the

Society for Neuroscience. Reprinted with permission.
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corresponding to Box 2 was applied directly to the parietal window

layer at either 0, 2, 4, 6, or 7 units closer to the egocentric origin

than what would be consistent with the model’s learned represen-

tation for that location (see the top and bottom panels at the left of

Figure 22 for an example). For our initial set of simulations,

sensory information corresponding to Box 1 was not applied

because we assumed that this landmark did not have the salience

of the target landmark and a rat’s field of view is only approxi-

mately 300°. Locomotion was simulated by turning on the forward

velocity signal (corresponding to a velocity of 0.044 space units/

time unit) and moving the sensory input corresponding to Box 2

toward the origin of the parietal window coordinate system at the

same speed. When this sensory input came within one unit of the

origin, its movement was stopped, the velocity signal was turned

off, and the model was allowed to relax for 50 time steps before

sensory input was down regulated.

During locomotion, the rat’s head tends to bob up and down, so

that it might receive visual information from Box 1. With this in

mind, we performed a second set of simulations identical to those

just described but with input representing Box 1 also being applied

to the parietal window component of the model. For these simu-

lations, the additional input representing Box 1 was initially con-

figured so as to represent this landmark at 2 units behind the

animal. During simulated locomotion, this “sensory” input was

moved through the parietal window coordinate system at the same

speed and in the same direction as the input representing Box 2.

Finally, we performed simulations identical to those above but

with weakened overall connection strengths for the connections

terminating on the BVC layer (see Table 1 for parameter values).

The motivation for this was that a smaller proportion of space was

filled with landmark segments in the linear-track environment than

in the previous two environments. This was found to result in a

very low-resolution representation of space due to reduced lateral

inhibition in the BVC, transformation, and parietal window layers.

However, results for both sets of simulations (with and without

weakened parameters) are qualitatively similar, except for one

difference as discussed below. Furthermore, a more realistic sim-

ulation in which the BVC and parietal window layers covered a

more extensive region of space would have allowed for the inclu-

sion of distal landmarks (room walls, etc.). Such inclusion would

have generated increased lateral inhibition and a sharper represen-

tation of space without the need for altering any connection

strengths.

Results and Discussion

Results for the 6-unit-closer trial with no Box 1 sensory infor-

mation are shown in Figure 22. Of particular interest is the fact that

the maximum velocity of the place cell activity was 0.058 space

units/time unit or about 32% faster than when no inconsistent

sensory input was present (see the rightmost panel of Figure 22).

Therefore, as with the data reported by Gothard et al. (1996), place

cell activity was initially under the control of the nearest landmark,

but during locomotion it “caught up” to what it should have been

had it been primarily under the influence of the target landmark

(Box 2).

In addition to recording the trajectory of place cell activity, the

activity of 11 cells, representing equally spaced locations within

the environment, were recorded. If the simulation trials are con-

sidered as outward journeys, then we can plot the firing profiles in

Figure 21. Left, top/bottom: Activation in parietal window (PW)/hippocampal neurons near the beginning of

a top-down phase after the model was cued to localize itself 2 units away from Box 1 facing Box 2.

Environmental boundaries are represented by gray walls superimposed on the hippocampal representation.

Middle, top/bottom: Activation in PW/hippocampal layer near the beginning of a bottom-up phase after

application of forward velocity signal. Right: The model’s representation of its location within the environment

as a function of time. Arb. � arbitrary; Ave. � average; PC � place cell.
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a way similar to that used by Gothard et al. (1996) to calculate

displacement slopes. In Figure 23, the firing profiles for 4 of the 11

recorded place cells in the condition with no Box 1 sensory

information are shown along with displacement slopes for all 11 in

both conditions. The same information is plotted in Figure 24 for

the weak BVC input simulations. For the weak BVC input condi-

tion, place cell activity of the navigating model in the shortest

track-length trial hopped from one representation of location

within the longest environment to another, resulting in a complete

lack of firing from one of the four selected cells. Given the

symmetry of our environment, displacement slope data can be

determined for inward journeys by transforming the data for out-

ward journeys as follows:

DS(x)31 � DS(1 � x), (1)

where DS(x) is the displacement slope for a neuron with peak

firing position, x, in the Box 1 condition, and x is normalized to

range between 0 (at the movable box) and 1 (at the fixed food cup).

The transformed curves are shown in the lower right panel of

Figures 23 and 24. Notice that both sets of simulation-generated

displacement slopes show patterns consistent with Gothard et al.’s

results. In particular, the landmark that the animal is moving away

from maintains considerable control over place cell firing until the

target landmark is nearly reached. For the normal BVC input

conditions, this effect is similar regardless of whether we assume

the animal has access to sensory information from both Box 1 and

Box 2. For the weak BVC input simulations, we obtain a stronger

effect if we assume the model has sensory input from both boxes.

Table 1

Model Parameters

Parameter Value

�� 5 (50 for the inhibitory interneuron)
�inh

H 2.1
�inh

PR 9
�inf

BVC 0.2
�inh

HD 6
�inh

TR 0.1
�inh

PW 0.1
�H 21
�H,BVC 140
�H,PR 25
�BVC,H 900a

�BVC,PR 1
�PR,H 6,000
�PR,BVC 75
�TR,BVC 54
�TR,PW 63
�BVC,TR 900b

�PW,TR 880
�HD 15
�TR,HD 85
�TR,I 90
�I,HD 10
���HD 2
���TR �PW,TR

a Decreased to 150 for weakened boundary vector cell (BVC) input sim-
ulation on linear track. b Decreased to 540 for weakened BVC input
simulation on linear track.

Figure 22. Left, top/bottom: Activation in parietal window (PW)/hippocampal neurons near the beginning of

a top-down phase after the model was cued to localize itself 2 units away from Box 1 facing Box 2. Additional

activation has been applied directly to PW neurons representing Box 2 at a position 6 units closer to the origin

than expected. Environmental boundaries are represented by gray walls superimposed on the hippocampal

representation. Middle, top/bottom: Activation in PW/hippocampal layer near the beginning of a top-down phase

after the model comes within 1 unit of Box 2. At this point, the velocity signal is switched off, and the sensory

input ceases to move. Right: The model’s representation of its location within the environment as a function of

time. Arb. � arbitrary; Ave. � average; PC � place cell.
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In summary, our model performs in a manner consistent with the

Gothard et al. (1996) data. In a subsequent experiment, the influ-

ence of the cue from which the rat is running was seen to last for

a constant time, rather than for a constant distance, through the run

(Redish et al., 2000). This indicates either a time-limited useful-

ness for path integration (see, e.g., Etienne, Maurer, & Seguinot,

1996), or (as argued for in Redish et al., 2000) some temporal

inertia in place cell firing that is possibly due to attractor dynamics

(which can be seen under other experimental circumstances; e.g.,

Wills, Lever, Cacucci, Burgess, & O’Keefe, 2005). Simulations

comparing time and distance in this way were not performed (we

used constant velocity) and remain for future work.

Finally, we compared our full model with a model lacking path

integration. By considering only the part of the full model con-

Figure 23. Top: Activity from 4 of 11 selected model place cells (maximal firing coordinates for the selected

cells: xi � { � 4.75 � 	i � 1
}i�1
11 and yi � 0.25 for all i in five simulated conditions (Box 1–Box 5, without

Box 1 sensory input) plotted against relative position in the longest track-length condition (Box 1 condition).

Rectangles represent Box 1 and Box 2. Bottom, left/right: Displacement slopes calculated from the 11 sampled

model place cells during outward/inward journeys. Open squares represent results from full-model simulations

with only Box 2, and triangles represent results from full-model simulations with Box 1 and Box 2 sensory input.

Circles represent results from the simple boundary vector cell explanation. The dashed line is what would be

expected if landmarks exerted control over place cell firing in direct proportion to their proximity to the animal.

Figure 24. Results for the simulations with weakened boundary vector cell input parameters. Note the hopping

behavior of place cell activity in the shortest track-length condition. Open squares represent results from

full-model simulations with only Box 2, and triangles represent results from full-model simulations with Box 1

and Box 2 sensory input. Circles represent results from the simple boundary vector cell explanation. The dashed

line is what would be expected if landmarks exerted control over place cell firing in direct proportion to their

proximity to the animal.
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sisting of the BVCs, the place cells, and the feed-forward connec-

tions from the BVC to the place cell layer, we were able to verify

that the simple BVC explanation of Gothard et al.’s (1996) results

does not produce the noted asymmetry. Specifically, we simulated

navigation along each track length by providing direct input to the

BVC neurons corresponding to the Box 1 and Box 2 landmarks

and then translated this input through the BVC coordinate system

at 0.044 space units/time unit. In this way, BVCs, and hence place

cells, were driven directly by sensory input, and the model’s

current representation of space was not affected by previous rep-

resentations of space or idiothetic information. Displacement slope

curves for these simulations were calculated as above and plotted

in the lower two panels of Figure 23 and 24. Notice that these

curves are approximately symmetric about the midpoint of the

full-length track. Thus the simple BVC model, in which distances

to boundaries in allocentric directions are the only concern, is

insufficient to produce the dependence on running direction noted

in Gothard et al. (1996), O’Keefe and Burgess (1996), or Redish et

al. (2000).

In the current model, perceptual inputs and motion-related up-

dating combine to influence the animal’s internal representation of

location, and the operation of this mechanism seems to be consis-

tent with the relevant existing data from place cell recording. The

functional architecture of the current model was largely informed

by thinking about imagery and planning in human spatial memory;

however the simulations reported here indicate that it is also able

to explain data at the single-unit level of description.

General Discussion

We have outlined a model of the neural mechanisms underlying

spatial cognition, focusing on long-term and short-term spatial

memory and imagery, egocentric and allocentric representations,

visual and ideothetic information, and the interactions between

them. We proposed specific mechanisms by which long-term

spatial memory results from attractor dynamics within a set of

medial temporal allocentric representations, whereas short-term

memory results from egocentric parietal representations driven by

perception, retrieval, and imagery, and can be investigated by

directed attention. However, perhaps our main novel contribution

is to propose specific mechanisms by which these systems interact.

Thus we propose that encoding and retrieval require translation

between the egocentric and allocentric representations, which oc-

curs via a coordinate transformation in the posterior parietal and

retrosplenial cortices and reflects the current head direction. In our

model, the hippocampus effectively indexes information by real or

imagined location, allowing reconstruction of the set of visual

textures and distances and allocentric directions of landmarks

consistent with being at a single location (see also King et al.,

2004). In turn, Papez’s circuit translates this representation into an

egocentric representation suitable for imagery according to the

direction of view (and also translates from egocentric perception

during encoding of the allocentric representation). For partially

related models, see Becker and Burgess (2001); Burgess, Becker,

et al. (2001); Recce and Harris (1996); and Redish (1999). We

further propose that modulation of the allocentric-to-egocentric

translation by motor efference allows “spatial updating” of ego-

centric parietal representations, which in turn can feedback to

cause updating of the medial temporal representations. Finally, the

generation of mock motor efference (e.g., representing planned eye

movements) in the prefrontal cortex allows mental exploration in

imagery, making a potential contribution to spatial planning. The

temporal coordination of the alternating interaction of the temporal

and parietal regions was assumed to be provided by the theta

rhythm.

For concreteness, and to demonstrate the actual ability of the

theory to bridge between single-neuron and systems neuroscience

and behavioral data, we implemented it as a fully specified neural

network simulation for the case of long-term, hippocampally de-

pendent, spatial memory and its interaction with short-term work-

ing memory and imagery. Our simulations provide straightforward

explanations for a number of experimental results. The first pro-

vides a neural implementation of the idea that representational

neglect results from a damaged egocentric window into an intact

long-term spatial memory system (see also Baddeley & Leiber-

man, 1980). From the model architecture, we are able to suggest

that unilateral lesions to the precuneus, retrosplenial cortex, pari-

etal area 7a, areas connecting 7a or the retrosplenial cortex with the

parahippocampal gyrus, or combinations of these areas have the

potential to generate representational neglect. However, currently

available patient data makes this prediction difficult to test. The

second simulation provides a neural implementation of self-

motion-related spatial updating of object locations in memory and

of imagined navigation and route planning. The third shows that

our interpretation of the role of head direction in memory is

consistent with the effects of lesions to the head direction system

on single-unit responses in the hippocampus. With this interpreta-

tion, we are also able to make two simple predictions about the

outcomes of similar experiments, thus allowing the translation

component of our model to be tested directly. The final simulation

shows that our proposed mechanism for integrating sensory infor-

mation and self-motion also provides an explanation for single-

unit responses in situations of conflicting sensory and ideothetic

information (Gothard et al. 1996). In the following, we discuss the

implications, predictions, and limitations of the model with respect

to the wider literature on the neural bases of spatial cognition and

memory more generally.

Temporal–Parietal Interactions, Planning, and Imagery

Our specific model of the temporal–parietal interaction has

some straightforward implications for functional anatomy. Thus, it

explains why Papez’s (mammillar–anterior–thalamic–medial–

temporal) circuit is required for episodic recollection into rich

visuospatial imagery (Aggleton & Brown, 1999) and also provides

the head direction signal in rats (Taube, 1998). It also suggests a

functional role for the retrosplenial cortex and the intraparietal

sulcus, which are well positioned to integrate or buffer the trans-

lation between egocentric and allocentric representations (Burgess,

Becker, et al., 2001) or, correspondingly, between path-integrative

and mnemonic information (Cooper & Mizumori, 2001). Cooper

and Mizumori (2001) and Maguire (2001) have provided evidence

that lesions to the retrosplenial cortex, an area interconnected with

the parietal and medial temporal regions (Kobayashi & Amaral,

2003; Wyss & Groen, 1992), do indeed impair the navigation of

rats and humans under such circumstances. In humans, the inti-

mate link between spatial imagery and navigation is made clear by

the correlation of impairments in these two faculties following
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unilateral damage (Guariglia et al., 2005). Finally, our model

proposes a role for the theta rhythm in coordinating the flow of

information between medial temporal and parietal components of

the model. Thus, top-down activation from medial temporal to

parietal areas occurs at one phase of theta, whereas bottom-up

activation from parietal to medial temporal areas occurs at the

opposite phase of theta. A related proposal relates hippocampal

encoding and retrieval to opposing phases of theta (e.g., Hasselmo

et al., 2002), corresponding to our bottom-up and top-down

phases, respectively. In our model, spatial updating occurs over

repeated top-down and bottom-up cycles, as each (top-down)

translation from allocentric to egocentric representations maps to

locations adjusted for the subject’s velocity and then passes

(bottom-up) back to update the allocentric representation.

In order to plan routes through complex environments, the brain

must make use of long-term memories of the layout of those

environments. Route planning also requires the ability to perform

mental navigation: to imagine both moving in a given direction

and the consequences of that action. Thus the task in our second set

of simulations, involving mentally generating a velocity signal or

“mock motor efference,” could be viewed as mental exploration of

a familiar environment. This exploration would be useful for path

planning and many other tasks. For example, this may be how

people accomplish the task of Wang and Brockmole (2003). Recall

that in this task subjects were led along a path through a familiar

environment and asked to point to occluded landmarks at various

predetermined times. It was found that when subjects could not

accurately point to a given landmark, they often could do so if

allowed to walk to some point further along the path from which

the landmark was still occluded. Within the framework of our

model, subjects may have been mentally navigating from their

current location to a location from which the occluded landmark

was visible. By integrating the direction of the mentally generated

velocity signal, a pointing direction could be generated. However,

if the mental path was too long or complex, then the calculation

would be swamped by cumulative error. In physically moving

further along the path, subjects may have been simplifying the task

by reducing the amount of mental navigation required.

Within the framework of route planning, a final prediction of the

model presented here is that damage to connections between

parietal and medial temporal cortices would impair the ability of

an organism to navigate to occluded landmarks in familiar envi-

ronments. This is because, without access to long-term spatial

memory, the parietally supported egocentric window would only

have access to short-term memory and direct sensory information,

rendering the organism unable to mentally explore the familiar

environment beyond regions very recently encountered. Equally,

we might expect to see increased theta coherence between tempo-

ral and parietal regions as a function of this type of actual, or

mental, navigation.

Differences Between Spatial Updating and Path

Integration in the Temporal and Parietal Cortices

Path integration can be defined as the ability of an organism to

keep track of its current location, on the basis of idiothetic infor-

mation alone, relative to its starting point as it moves around,

whereas spatial updating refers to the ability to also keep track of

other locations, again on the basis of idiothetic information alone,

within the environment (see, e.g., Etienne et al., 1998; Loomis et

al., 1993; Mittelstaedt & Mittelstaedt, 2001; Morrongiello, Tim-

ney, Humphrey, Anderson, & Skory, 1995). However, either pro-

cess could operate by individually updating the required egocentric

location(s) relative to the organism or by updating an allocentric

representation of the organism’s location relative to the environ-

ment. Both types of updating are probably available in parallel,

with the former suitable for small numbers of locations and short

movements and the latter for updating multiple locations and

longer movements, when perceptual support from the environment

is unavailable. Thus spatial updating over short timescales and

small movements (e.g., less than 135° rotation) in unfamiliar

environments appears to operate on transient egocentric parietal

representations, showing independent accumulations of errors in

the locations of different objects (Waller & Hodgson, 2006; Wang

& Spelke, 2000). In contrast, spatial updating over longer dura-

tions or movements or in very familiar environments appears to

operate on a coarser but enduring allocentric representation (Mou,

McNamara, Rump, & Xiao, 2006; Waller & Hodgson, 2006). See

Burgess (2006) for further discussion.

Corresponding to these two types of spatial updating, separate

models have been proposed for the mechanisms within each (tem-

poral or parietal) region. Byrne and Becker (2004) proposed a

purely parietal mechanism for motion-related updating of the

egocentric locations in the parietal window, which would be con-

sistent with single-unit recording and effects of lesions within this

region (see the present introductory section). On the other hand,

strictly medial temporal mechanisms have been proposed for up-

dating the location of the subject relative to the environment (see,

e.g., Howard, Fotedar, Datey, & Hasselmo, 2005; O’Keefe &

Nadel, 1978; Redish, Rosenzweig, Bohanick, McNaughton, &

Barnes, 2000; Samsonovich & McNaughton, 1997). These latter

models are supported by the recently discovered “grid cells” in the

entorhinal cortex (Hafting et al., 2005), which appear well suited

to this task, with the hippocampus potentially required when path

integration has to be tied to environmental locations (O’Keefe &

Burgess, 2005; McNaughton et al., 2006). See Whishaw and

Brooks (1999) and Save, Guazzelli, and Poucet (2001) for related

discussion of the hippocampal contribution to path integration.

Our model primarily concerns the interaction of parietal and

medial temporal representations and assumes a single spatial up-

dating mechanism derived as an extension of this interaction. Our

second set of simulations provides a detailed mechanism by which

the parietal cortex might make use of stored spatial representations

in the medial temporal lobe to provide egocentric representations

of an arbitrary number of locations within a familiar environment

and to update these locations following real or imagined self

motion. Other tasks (such as pointing to a recently seen object or

imagery for objects or actions as opposed to environmental layout)

will be purely parietal and are not addressed by our model. Even

within tasks that depend on both regions, such as those simulated,

our model will not capture the finer distinctions between spatial

updating driven more strongly by one region than the other.

Similarly, we do not distinguish the processing of discrete objects,

likely more strongly represented in parietal areas, from the pro-

cessing of extended boundaries, likely key to driving the hip-

pocampal representation. The BVC representation used provides

the appropriate dependence of hippocampal representations on
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environmental geometry but probably does not correspond so well

to some aspects of egocentric parietal representations.

The provenance of the model. We have presented a working

model of spatial cognition without really addressing how the brain

might have “learned” such a solution. Although a number of

models of hippocampal learning have been presented (see, e.g.,

Becker, 2005), principles underlying the learning of egocentric–

allocentric transformations have not been firmly established. In

recent work, we have attempted to elucidate more biologically

realistic principles upon which such learning could be based (By-

rne & Becker, 2006). Specifically, we have proposed two rela-

tively simple learning principles that, when applied to a transfor-

mation circuit similar to the one presented here, reliably result in

the generation of allocentric representations of space. The first

principle is that of minimum reconstruction error. That is, for a

given heading direction, the representation produced at the medial

temporal lobe level should, through top-down connections, be able

to reproduce the corresponding egocentric input. The second prin-

ciple is the maximization of temporal inertia in medial temporal

representations. This is motivated by empirical evidence that both

hippocampal pyramidal cells (Redish, McNaughton, & Barnes,

2000) and, under certain circumstances, superficial (Klink &

Alonso, 1997) and deep layer (Egorov, Hamam, Fransén, Has-

selmo, & Alonso, 2002) entorhinal cells exhibit a resistance to

rapid changes in firing rate. We speculate that spatial representa-

tions that vary as little as possible in time should maximize

accuracy and precision in storage, as well as allowing more rapid

spatial updating or mental exploration, because the medial tempo-

ral representations would have to vary less rapidly to keep up with

the retrieval demands. We have tested the utility of these learning

principles in two very different models, one trained by direct

minimization of a cost function by using steepest descent learning

and one consisting of a coupled network of restricted Boltzmann

machines trained sequentially by contrastive Hebbian learning

(Hinton, 2002; Hinton et al., 2006). Both models were able to learn

allocentric representations of space at the medial temporal lobe

output layer and to generate good reconstructions of the egocentric

input layer.

Implications beyond spatial memory. Although we have con-

centrated on the role of the hippocampus in spatial memory, this

structure is also known to be important in the maintenance of more

general episodic memories (for recent reviews, see, e.g., Becker,

2005; Burgess et al., 2002; Eichenbaum, 2001; for models see

Howard et al., 2005; Marr, 1971; McClelland, McNaughton, &

O’Reilly, 1995; McNaughton & Morris, 1987; Treves & Rolls,

1992). In our model, hippocampal place cells bind the outputs of

various BVCs and visual feature units together to form an allo-

centric map of an environment. The attractor dynamics of the

medial temporal system then performs retrieval by allowing only

those conjunctions of visual feature, distance, and allocentric di-

rection that are consistent with being in a single location (repre-

sented in the hippocampus). This information is then rotated, with

the aid of Papez’s circuit, to form an egocentric parietal image for

conscious inspection that corresponds to a specific direction of

view. Our model is highly consistent with the pattern of fMRI

activation in retrieving the spatial context of an event (Burgess,

Maguire, et al., 2001; King, Hartley, Spiers, Maguire, & Burgess,

2005). Having defined this functional anatomy in the context of

spatial memory, we suspect similar processing occurs much more

generally during any detailed mental imagery for environmental

layouts derived from long-term knowledge. This would be consis-

tent with reports of deficits in detailed imagery for novel or future

events in amnesic patients (Hassabis, Kumaran, Vann, & Maguire,

2006; Klein, Loftus, & Khilstrom, 2002; but see also Bayley, Gold,

Hopkins, & Squire, 2005) and similar patterns of activation for

thinking about past and future events (Addis, Wong, & Schacter,

2006; Okuda et al., 2003). This function might relate to charac-

terizations of episodic or autobiographical memory in terms of

retrieval of rich contextual information or feelings of “reexperi-

encing,” as distinct from the imagery for simple objects and

actions which is preserved in amnesia (e.g., Rosenbaum, McKin-

non, Levine, & Moscovitch, 2004).

For simplicity, our simulations concerned a single familiar en-

vironment. However, retrieval from the best matching of several

familiar environments could be mediated, as described by our

model, by distinct subsets of place cells (McNaughton & Morris,

1987; Samsonovich & McNaughton, 1997), providing a distinct

attractor representation of each environment (Wills et al., 2005). In

this way, the hippocampus might be described as providing the

spatial context appropriate to recollection (O’Keefe & Nadel,

1978), explaining its role, for example, in context-dependent fear

conditioning but not in fear conditioning itself (Kim & Fanselow,

1992; Phillips & LeDoux, 1992). An interesting prediction here is

that two situations can be identified as having different “contexts”

requiring hippocampal disambiguation, that is if they elicit

“remapped” (Muller, 1996) patterns of place cell firing as occurs

rapidly with dramatic multimodal changes (Wills et al., 2005) or

more slowly with unimodal changes (Lever et al., 2002).

Of course, hippocampal neurons are probably not limited to the

spatial functions we have focused on here. For example, rat CA1

and CA3 pyramidal neurons can also respond to various nonspatial

cues (see, e.g., Huxter, Burgess, & O’Keefe, 2003; Young, Fox, &

Eichenbaum, 1994). This ability to connect nonspatial and spatial

information may allow the association of location within an envi-

ronment to various other elements of experience, that is providing

a spatial–temporal context to support context-dependent episodic

memory more generally (see, e.g., chaps. 14 and 15 in O’Keefe &

Nadel, 1978). We also note that the ability to perform spatial

updating of the imagined viewpoint may both aid the process of

search during episodic retrieval and the binding of places into

remembered trajectories, or sequences, in memory for more ex-

tended dynamic episodes (see also Howard et al., 2005; Jensen &

Lisman, 1996; W. Levy, 1996; Wallenstein, Eichenbaum, & Has-

selmo, 1998). Howard et al.’s (2005) temporal context model

(TCM) of memory for lists of items provides an example of how

such associations across time might occur. The TCM works by

associating items to a slowly varying context representation con-

taining history-dependent information relating to the items them-

selves. Howard et al. noted that this model is broadly compatible

with a spatial function for the medial temporal lobe in providing a

mechanism for path integration by representing the recent history

of movements. In our model, the medial temporal lobe could be

thought of as providing the spatial context of events by represent-

ing the actual surrounding spatial scene. Generation of more gen-

eral representations of context, such as temporal contexts, would

be one way in which our model might be extended to include the

involvement of the medial temporal lobe in memories for trajec-

tories through space or in nonspatial memory.
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Finally, although we have concentrated on spatial memory, the

question of how long-term memory and short-term or working

memory interact is equally pertinent to nonspatial memory. For

example, although much has been learned about both long-term

and working memory for verbal stimuli, the interaction of these

two systems is a topic of much current interest (e.g., Baddeley,

2000; Burgess & Hitch, 2005). By staying within the spatial

domain, where there is much data at the single-unit level, we have

provided a detailed model of one form of the interaction between

long-term medial temporal and short-term parietal systems. How-

ever, our proposals for the functional roles and interactions of the

regions in question should generalize to the generation of dynamic

visuospatial imagery from stored verbal knowledge. Given the

slight lateralization of visuospatial processing to the right hemi-

sphere (e.g., Piggott & Milner, 1993; Smith & Milner, 1989;

reviewed in Burgess et al., 2002), we would hope that some of the

mechanisms considered here might generalize to the interaction of

left medial temporal lobe long-term memory systems for narrative

memory (e.g., Frisk & Milner, 1990) and parietal short-term mem-

ory systems for verbal working memory.
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Appendix

Implementation of the Model

Mathematical Details

In presenting the mathematical details of the training procedure

for the model, each component (medial temporal, transformation,

etc.) is considered separately. Following this, the dynamical equa-

tions governing the model’s behavior during simulation are pre-

sented.

Medial Temporal Component

Before the model was trained on a particular environment, the

landmarks/boundaries of that environment were discretized by

overlaying them on a Cartesian grid with a linear dimension of

approximately 3 grid points/unit length. Any grid point that fell

within half a lattice spacing of a boundary was then marked as a

landmark segment. This set of landmark segments, examples of

which have been presented in Figures 3 and 4 in text, constituted

the training data for the current environment. Training proceeded

with the model being positioned at random locations within the

environment, while, at each location, attention was sequentially

directed to each landmark segment that was potentially viewable

from that location. For each of these attending events at each

location, appropriate firing rates were imposed on all neurons in

the medial temporal layers, and connection strengths between

neurons were incremented via a Hebbian learning rule. The pro-

cedure for calculating the firing rates during the training phase are

now considered.

For the hippocampal layer, a one-to-one correspondence was

established between the model neurons and the points on a Car-

tesian grid, such that each neuron fired maximally at its preferred

location. The grid points were spaced with linear density of 2 grid

points/unit length covering the relevant allocentric space for each

of the environments simulated (see Figure 2 in text for an exam-

ple). When the model was located at the location with coordinates

(x, y), the firing rate of the ith hippocampal neuron was calculated

via

Ri
H

� e
	xi�x
2 � (yi�y)2

0.52 , (A1)

where 	xi,yi) are the coordinates of that neuron’s preferred location.

Next, for the BVC layer, a one-to-one correspondence between the

set of BVCs and a radial grid centered at the model’s current

location and covering allocentric space (see Figure 4) was formed.

For all environments, this grid had a radial resolution of 1 grid

point/unit length to a maximum of 16 units and an angular reso-

lution of 51/2� grid points/rad. The contribution of a landmark

segment with allocentric coordinates 	r,�a) to the firing rate of the

ith BVC neuron was calculated via

Ri
BVC

�

1

r
e���i

a
��a

�
�2

e ��ri�r

r
�2

, (A2)

where 	ri,�i
a) are the allocentric coordinates of that neuron’s cor-

responding grid point, and � and r are chosen to have values of

	0.005
1/ 2 and 	0.1
1/ 2, respectively. The total firing rate of the ith

BVC neuron was obtained by summing Equation A2 to a maxi-

mum value of 1 over all landmark segments viewable from the

current location. The particular values chosen for � and r allow

for reasonable spatial resolution with the model architecture; how-

ever, the exact values of these parameters are not critical. In fact,

with a sufficiently high number of neurons covering space, the

only constraint on these values would be the desired spatial reso-

lution of the model. It should be noted that the above definition of

BVCs simplifies that of Hartley et al. (2000) and O’Keefe and

Burgess (1996), for which the sharpness of the distance tuning

decreased with the preferred distance, ri, of the cell. However, a

similar effect of increased influence for nearby versus distant

boundaries is achieved through the increased angle subtended by a

nearby boundary, which therefore controls the firing of a larger

proportion of the BVC population (see Barry et al., 2006). Finally,

boundary/landmark identity neurons were modeled by associating

each perirhinal neuron with an environmental landmark identity.

Thus, the firing rate of the ith perirhinal neuron is given by

Ri
PR

� CPR

� � 1 if i is the index of the attended landmark

0 otherwise , (A3)

where CPR is set to 1.

Once firing rates for a given training step (attending event) were

imposed upon all medial temporal layers, the model weights were

updated via the Hebbian learning rule

Wij
�,� (t � 1) � Wij

�,� (t) � Ri
� (t) Rj

� (t), (A4)

where � and � are layer labels chosen from �BVC,H,PR�, and

W ij
�,�(t) is the weight connecting the jth neuron in layer � to the ith

neuron in layer � at training step t. After the completion of the

training session, each neuron’s vector of incoming weights from

each other layer was normalized to sum to unity. Each hippocam-

pal neuron’s vector of incoming weights on recurrent connections

was normalized by dividing by its maximum incoming recurrent

weight. Note that no learning rate parameter was required in

Equation A4 because of the weight normalization after learning.

Parietal Component

The parietal component of the model, including the parietal

window, the transformation layer, the head direction system, and

the connections within/between these regions and from/to the BVC

layer, was trained separately from the medial temporal component

because the former needed training only once. For each training

step a heading direction, �, was randomly chosen from the set of

heading directions, �2�i/ 20�i�0
19 , corresponding to the set of trans-

formation sublayers. Next, a linear boundary of random location

and orientation in allocentric space was discretized in the same

way as landmark boundaries were in the medial temporal training

procedure described above. The length of this linear boundary was

chosen proportional to the distance between its midpoint and the

allocentric origin in order to sample sparsely distributed neurons

distant from the origin as frequently as densely distributed neurons
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near the origin. BVC firing rates were then calculated for the

discretized boundary by using Equation A2 and were identically

imposed on the BVC layer and the transformation sublayer corre-

sponding to the randomly chosen rotation angle, �. By rotating the

linear boundary through � about the allocentric origin, the ego-

centric positions of the individual landmark segments for this

boundary were then found. As with the BVC layer, firing rates of

the parietal window neurons in the presence of the boundary were

found by first forming a one-to-one correspondence between the

set of parietal window neurons and a radial grid centered at the

model’s current location and covering egocentric space (see Fig-

ure 3 in text). The contribution of a single landmark segment with

egocentric coordinates 	r,�e) to the firing rate of the ith such neuron

was calculated via

R i
PW

�

C PW

r
e���i

e
��e

�
�2

e��ri�r

r
�2

, (A5)

where 	ri,�i
e) are the egocentric coordinates of that neuron’s cor-

responding grid point, CPW is set to 1, and � and r are chosen as

in Equation A2. The total firing rate of the ith parietal window

neuron was calculated by summing Equation A5 to a maximum

value of 1 over all landmark segments viewable from the current

location. Finally, the head direction layer is a one-dimensional

continuous attractor (e.g., Skaggs et al., 1995; Stringer, Trappen-

berg, et al., 2002; Zhang, 1996) composed of 100 neurons uni-

formly covering 360° of angular head direction space, with the

firing rate of the ith such neuron calculated via

Ri
HD

� C HDe
(�i��)2

0.18852, (A6)

where �i is the preferred heading direction of that neuron and

where CHD is set to 1.

Once firing rates were imposed on each layer for a given head

direction and linear boundary, all connection weights were incre-

mented according to Equation A4. After 400,000 such training

iterations, the vector of incoming weights for each parietal neuron

from each other layer was normalized to sum to unity. Weights

from the transformation layer to the parietal window were clipped

so that the smallest 30% were set to zero. This was done so that the

weight matrices became sparse, a manipulation that decreased

required simulation time considerably. For normalization pur-

poses, all transformation sublayers were taken as part of the same

layer. The vector of weights on incoming recurrent connections for

each head direction neuron was normalized by dividing by the

maximum incident weight value for that neuron. Although all

weights in the parietal component of the model were trained on a

discrete set of 20 transformation angles, the model was found to

interpolate accurately between these values.

Velocity Integration

In order to maintain a localized packet of self-sustaining activity,

the head direction system must have a set of recurrent excitatory

connections, each originating from a particular head direction cell

representing and terminating on another cell that represents a nearby

or equal direction. Overall, connections from any given head direction

cell must be balanced in such a way that that cell’s activity equally

excites neurons representing directions to either side of the current

direction. The training procedure described in the previous section

results in the formation of just such a set of weights. An applied

angular velocity signal can move an activity bump around in this

network in a continuous fashion by modulating an appropriately

formed second set of self-excitatory connections (Zhang, 1996). Any

connection in this set also originates from a cell representing a

particular direction and terminates on another cell that represents a

nearby direction, but these “rotational” connections are asymmetric so

that activity in the presynaptic head direction cell preferentially ex-

cites cells corresponding to nearby directions that are to one side of

the current direction. In principle, the angular velocity of the shift is

proportional to the size of the asymmetric component (Zhang, 1996);

however, for simplicity, we simulate rotations of fixed velocity, with

an angular velocity signal that simply gates the use of a fixed set of

“rotational” connections in either sense (clockwise or counterclock-

wise). We achieved such a weight distribution by moving a bump of

activity around the head direction neurons at a constant velocity in

order to simulate rotational egomotion. During this simulated rotation,

the velocity-gated weights on recurrent connections within the head

direction layer were updated by the trace Hebbian learning rule given

by

W ij
��HD (t � 1) � Wij

��HD	t) � Ri
HD 	t)R� j

HD (t), (A7)

where W ij
��HD	t) is the velocity-gated weight from the j th to the i th

head direction neuron at training step t, where R� j
HD	t) is given by

R� j
HD (t) � �

k�1

100

e�k�tRj
HD(t � 	k � 1
 �t), (A8)

and where �t � 0.05 time units. After training, the velocity-gated

head direction weights were normalized in the same way as the

nonvelocity-gated recurrent head direction weights. A similar

model of the head direction cell ensemble has been described in

detail by Stringer, Trappenberg, et al. (2002).

Translation, which can occur in parallel with rotation in our

model, is accomplished by introducing a second set of velocity-

gated “translational” weights from the transformation sublayers to

the parietal window. The original “static” set of weights is respon-

sible for projecting a rotated image of BVC activity onto the

parietal window during top-down phases and becomes inactive

during translational motion. Instead, the translational set of

weights projects a similar rotated image onto parietal window

neurons, but it is displaced by a small amount in egocentric space.

This is accomplished by setting the translational weights as

Wij
��TRn

� �
k

e�
(xk

e
�xi

e
)2�(yk

e
�yi

e
�1.5)2

 (ri)2 W kj
PW,TRn, (A9)

where 	xi
e,yi

e) � 	ricos�i
e,risin�i

e) are the maximal firing coordi-

nates of the ith parietal window neuron in the egocentric map, and

Wkj
PW,TRn is the static weight connecting the jth neuron in the nth

transformation sublayer and the kth neuron in the parietal window

layer. Although  in this equation could be set to a constant, we

(Appendix continues)
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found that with our limited resolution for landmark representation

at larger distances, a more practical form was given by

 (ri) � 0.45 log�1 �

5ri

16� . (A10)

Because feedback connections propagate the displaced parietal

window activity resulting from the up-regulated weights of Equa-

tion A9 back to the place cell layer during bottom-up phases, BVC

and place cell firing shifts to reflect the new parietal window

activity. This, in turn, results in a further shifting of the activity

projected back onto the parietal window in the next top-down

phase. Thus, translation of both the egocentric and allocentric

representations of space continues until the velocity signal is

removed and the original static weights are up-regulated again. As

with the rotational connections, we simulate only a single speed of

motion. A more complete model might simulate different speeds of

translation by using a number of different sets of connections from

the transformation layer to the parietal window, each correspond-

ing to a slightly different displacement, and each gated by separate

signals for the corresponding speeds. Alternatively, it might titrate

the influence of static and translational weights according to speed

of movement. However, because of their intense computational

requirements, we have not explored these more detailed models

here.

Dynamics

During simulations, all neurons in our model were of the “leaky-

integrator” variety and all dynamical equations were integrated by

using the simple Euler method with a time step of 0.05 units. For

the medial temporal part of the model (perirhinal, BVC, and

hippocampal), we have

dA
�

dt
� � A

�
� �inh

�
1̂ � R

�

� ��,H�H
W

H,H
� R

H
� �

���

��,�(t)��,�
W

�,�
� R

�

� ��,BVC�BVC,TR�
n

�BVC,TRn(t) W
BVC,TRn

� R
TRn

� ��,PR I
PR, (A11)

where A
� is the activation vector for layer �; W

�,� is the weight

matrix connecting layer � to layer �; ��,� is a scalar, representing

the overall strength of the connection from layer � to layer �; � is

the Kronecker delta function (unity for equal arguments, zero

otherwise); �inh
� represents an inhibitory bath of interneurons to

which all neurons in a given layer are reciprocally connected with

equal weight; 1̂ is a square matrix with all elements equal to one;

and I
PR is an externally applied source of input (see below)

representing direct lower level input into the perirhinal layer.

Bottom-up/top-down dynamics are governed by the � functions, of

which �H,�(t) and �BVC,TRn(t) are 1 during a bottom-up phase and

0.05 during a top-down phase, ��,H	t) is 1 during a top-down phase

and 0.05 during a bottom-up phase, and the remaining �s in

Equation A11 are always 1. The length of each of the bottom-up/

top-down phases is 15 time units. Finally, the firing rate of the ith

neuron in layer � is given by a sigmoid function of its activation,

as follows

Ri
�

�

1

1 � exp � � 0.2	Ai
�

� ��)}
, (A12)

where �� acts as a threshold. Exact numerical values for all

unspecified parameters are presented in Table 1.

The dynamics of the parietal window and head direction layers

are given by Equation A13 (see below) and

dA
HD

dt
� � A

HD
� �inh

HD
1̂ � R

HD

� �HD
W

HD,HD
� R

HD
� ��,on�

� � HD
W

� � HD
� R

HD
� I

HD,

(A14)

respectively, whereas the dynamics of the ith neuron in the nth

transformation sublayer are given by

dA
TRn

dt
� � A

TRn
� � inh

TR
1̂ � R

TRn
� � TR,HD

W
TRn, HD

� R
HD

� � TR,I
1RI

� �
��{BVC,PW}

� TR,�(t)� TR,�
W

TRn,�
� R

�, (A15)

where W
��TRn and W

��HD are the “translational” transformation

layer to parietal window weights and the “rotational” recurrent

head direction weights respectively, where � TR,�(t) is 1 for

� � BVC during a top-down phase or for � � PW during a

bottom-up phase, and 0.05 otherwise, and where 1 is a vector of

ones. Finally, the dynamics of the inhibitory interneuron are given

by

dAI

dt
� � AI

� �I,HD
1 � R

HD. (A16)

Parameters in the model were chosen so that the fourth term on

the right-hand side of Equation A15 was a constant for all head

direction cell activity packets maintained in our simulations by

either attractor dynamics or injected current. This constant was

equal to the maximum value of W
TRn,HD. Therefore, the fourth

term on the right-hand side of Equation A15 could have been

eliminated by simply subtracting a constant from W
TRn,HD so that

their maximum value was zero. With such a simplification, the

model could be interpreted as having only inhibitory direct con-

dA
PW

dt
� � �A

PW
� �inh

PW
l̂ � R

PW
� �

n

[��,off�
PW,TR

W
PW,TRn

� ��,on�
��TRn W

��TRn]�RTRn
� I

PW during top-down

0 during bottom-up
� (A13)
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nections from head direction to the transformation layer, without

any inhibitory interneurons. Note also that all neurons in the model

interact with their connected neighbors in an identical fashion.

Apparent differences in the form of the above dynamical equations

are superficial and reflect the fact that the various network layers

have unique patterns of connectivity with their neighbors.

In addition to calculating neuronal firing rates for training

purposes, Equations A3, A5, and A6 were also used to calculate

the cuing/sensory or mentally generated inputs IPR, IPW, and IHD.

For this purpose, CPR, CPW, CHD, � and r were set to 60, 60, 40,

	0.01
1/ 2, and 	0.1
1/ 2, respectively. When the weak BVC termi-

nating weights were used in Simulation 4, CPW was increased to

100 during calculation of sensory input. Again, the exact values of

the listed parameters were not critical but were found to generate

localization quickly. In fact, a relatively wide range of parameter

values would have produced qualitatively similar results.

Finally, after the model has been cued to “imagine” itself in a

certain location and orientation, or during mental exploration/

spatial updating, attention can be directed in any egocentric direc-

tion in order to identify surrounding landmarks. To simulate fo-

cused attention in the direction, �, an input given by

Ii
PW

� C PWe
(�i

e
��)2

A
2 (A17)

was applied directly to neurons in the parietal window layer, where

A was set to �5 for all attending events, except during the

identification of Building 1 in Simulation 1. In the latter case, an

increased value of �45 was used for A (this stronger attention

signal would have resulted in the correct identification of the

remaining buildings as well and would not have affected any of the

results presented here). The value CPW was set to 40 for our

simulations.

Simulation of Head Direction Cell Lesions

Input from the head direction cell system to transformation

neurons was recorded for all head directions by storing the com-

bined value of the third and fourth terms of the right side of

Equation A15 in a vector, IHDrec	�
. Each element of this vector

corresponds to one transformation layer neuron and is a function of

the head direction, �. Thus, the third and fourth terms of the right

side of Equation A15 could be replaced by IHDrec	�
 during

simulation. For a given value of �, all values of IHDrec	�
 are less

than or equal to zero, with only elements corresponding to trans-

formation layer neurons in the “selected” sublayer being close to

zero. All other values are strongly negative, reflecting the gating

function of the head direction system.

In order to simulate a head direction cell lesion for a “realistic”

model in which inhibition for gating is accomplished via a large

population of inhibitory interneurons, a two-part modification of

IHDrec was used. First, all values of IHDrec greater than a cut-off of

33% larger than the minimum value were set to the cut-off (the

average minimum value was �96, so the cut-off was �64). This

modification was intended to simulate the loss of direct excitation

to the “selected” transformation sublayer. Second, random regions

of each transformation sublayer were selected (see below) and the

IHDrec elements corresponding to those neurons were increased in

value to the level of the cut-off. The exact random transformation

layer regions selected for this manipulation varied with head

direction. This modification was intended to simulate the loss of

inhibition resulting from lowered levels of stimulation to the

inhibitory neuron population.

In selecting random regions of the transformation layer for

reduced inhibition, a one-to-one correspondence between the neu-

rons in each transformation sublayer and a radial grid was formed

(as described earlier in the training section). A circle with ran-

domly located center and a radius of 7.5 units was formed for each

sublayer and all neurons corresponding to grid points within the

circle were selected for reduced inhibition. These circular regions

were randomly reselected for each head direction.
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