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Abstract

Background: Glioblastoma is the most frequent and most malignant primary brain tumor with a poor prognosis. The
translation of therapeutic strategies for glioblastoma from the experimental phase into the clinic has been limited by
insufficient animal models, which lack important features of human tumors. Lentiviral gene therapy is an attractive
therapeutic option for human glioblastoma, which we validated in a clinically relevant animal model.

Methodology/Principal Findings: We used a rodent xenograft model that recapitulates the invasive and angiogenic
features of human glioblastoma to analyze the transduction pattern and therapeutic efficacy of lentiviral pseudotyped
vectors. Both, lymphocytic choriomeningitis virus glycoprotein (LCMV-GP) and vesicular stomatitis virus glycoprotein (VSV-
G) pseudotyped lentiviral vectors very efficiently transduced human glioblastoma cells in vitro and in vivo. In contrast,
pseudotyped gammaretroviral vectors, similar to those evaluated for clinical therapy of glioblastoma, showed inefficient
gene transfer in vitro and in vivo. Both pseudotyped lentiviral vectors transduced cancer stem-like cells characterized by
their CD133-, nestin- and SOX2-expression, the ability to form spheroids in neural stem cell medium and to express
astrocytic and neuronal differentiation markers under serum conditions. In a therapeutic approach using the suicide gene
herpes simplex virus thymidine kinase (HSV-1-tk) fused to eGFP, both lentiviral vectors mediated a complete remission of
solid tumors as seen on MRI resulting in a highly significant survival benefit (p,0.001) compared to control groups. In all
recurrent tumors, surviving eGFP-positive tumor cells were found, advocating prodrug application for several cycles to even
enhance and prolong the therapeutic effect.

Conclusions/Significance: In conclusion, lentiviral pseudotyped vectors are promising candidates for gene therapy of
glioma in patients. The inefficient gene delivery by gammaretroviral vectors is in line with the results obtained in clinical
therapy for GBM and thus confirms the high reproducibility of the invasive glioma animal model for translational research.
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Introduction

Glioblastoma is the most frequent and most malignant primary

brain tumor. Despite advances in neurosurgery, radiation and

chemotherapy, the prognosis of patients remains poor with

a median survival of 14 months [1].

A major drawback in translational brain cancer research has

been the lack of suitable animal models. Syngeneic- or xenograft

tumors based on glioblastoma cell lines cultured as monolayers

grow as circumscribed and highly angiogenic lesions in vivo [2],

lacking the invasive tumor cells, which represent an important

feature of human glioblastoma. The invasive cells migrate away

from the initial tumor mass and can cause recurrent tumors in

different regions of the brain. Thus, these cells represent a major

therapeutic target.

A recently established model in which glioblastoma biopsy-

based spheroids are serially passaged in the brains of nude rats

shows highly invasive and angiogenic features [3]. Therefore, this

model is well suited for the study of new therapeutic strategies.

Still, reports using this or other clinically relevant models for

experimental therapy are scarce. Recently, we analyzed the

therapeutic potential of the HSV-1-based oncolytic Herpes vector

G207 in the biopsy spheroid-based GBM model. The tumor

volume in treated animals was reduced compared to control

groups, but there was no significant survival advantage [4]. In

contrast, the same therapy was more effective in a cell line- based

PLoS ONE | www.plosone.org 1 July 2009 | Volume 4 | Issue 7 | e6314



animal model [5] and as a result is currently investigated in

a phase I/II clinical study [6]. In the present investigation we used

the invasive xenograft model to evaluate transduction and

therapeutic efficacy of lentiviral pseudotyped vectors.

Gammaretroviral vectors derived from the Moloney murine

leukemia virus (MMLV) have been the most frequently used

retroviruses for gene therapy of brain tumors [7–10]. However,

despite promising results in animal models, clinical trials using

retroviral vector supernatants or retroviral packaging cells have

failed [11–13]. One major drawback of gammaretroviral vectors is

the exclusive transduction of dividing cells, since in human gliomas,

the majority of tumor cells do not divide within a given treatment

window. Therefore, lentiviral vectors with their ability to also

transduce non-dividing cells are attractive candidates for the

treatment of brain cancer. In previous studies, we have developed

gammaretroviral and lentiviral vectors pseudotyped with the

glycoproteins (GP) of the lymphocytic choriomeningitis virus

(LCMV) [14,15]. These vectors have a broad host range and can

be concentrated by ultracentrifugation for in vivo applications. In

addition, LCMV-GP is not cytotoxic, and stable recombinant

packaging cell lines can be established [16,17]. Recently, we showed

that lentiviral LCMV-GP pseudotypes efficiently delivered trans-

genes to rat glioma cells in vivo, while resident neurons were not

transduced [18]. Furthermore, we showed a significant therapeutic

effect of LCMV-GP pseudotyped lentiviral vectors in the cell-line

based 9L rat gliomamodel using the suicide gene HSV-1-tk. VSV-G

lentiviral pseudotypes also showed a significant efficacy, similar to

that of LCMV pseudotypes, which was mainly mediated by

a bystander effect of transduced normal brain cells [19].

In the presented work, we showed that both, VSV-G and

LCMV-GP pseudotyped lentiviruses efficiently transduced human

glioma cells in vitro and in vivo, whereas gammaretroviral

transduction was inefficient. The gene transfer to glioma cells

was efficient for both lentiviral pseudotyped vector types.

However, it was more specific using LCMV-GP pseudotyped

vectors, as VSV-G pseudotypes also transduced host brain cells in

invasive areas. Analysis of transduced tumor cells revealed that

both lentiviral vectors targeted CD133-positive as well as CD133-

negative cancer cells. Furthermore, transduced glioblastoma cells

expressed the stem cell markers nestin and SOX2. Importantly,

when evaluated for therapeutic application using HSV-1-tk as

a transgene, both lentiviral vectors mediated complete tumor

regression on MRI, resulting in a highly significant survival benefit

(p,0.001) compared to the control groups.

Materials and Methods

Ethics Statement
The collection of human biopsy tissue was approved by the

regional ethical committee. The handling of the animals and the

surgical procedures were done in accordance with the Norwegian

Animal Act and the local ethical committee approved the protocol.

Cell lines
The human embryonic kidney cell line 293T (ATCCnumber CRL-

11268) and the TE671 cell line were obtained from the American

Type Culture Collection (ATCC, Manassas, VA) and maintained in

Dulbbeco’s modified eagle medium (DMEM) supplemented with 10%

fetal calf serum (FCS) and 1% glutamine. All cell lines were grown at

37uC in a humidified atmosphere of 5% CO2.

Tissue culture
Tumor fragments from glioblastoma multiforme patients were

obtained during surgery. Tissue specimens were taken from viable

tumor areas that corresponded to regions with contrast enhancement

on preoperative MRI-scans. The specimens were transferred to test

tubes containing complete growth medium, and spheroids were

prepared as previously described [20]. The same method was applied

for tumor material passaged in nude rats. Briefly, tissue samples were

minced into ,0.5 mm fragments and placed into 80 cm2 tissue

culture flasks (Nunc, Roskilde, Denmark) base-coated with 0.75%

agar (Difco,Detroit,MI). The spheroidsweremaintained in a standard

tissue culture incubator with 5% CO2 and 100% relative humidity at

37uC. The medium was changed once a week. Spheroids with

diameters between 400 and 600 mm were selected for in vitro

experiments and for intracerebral implantation.

Dissociation of tumors
Tumors were dissociated using the Neuronal Dissociation Kit

(Miltenyi, Bergisch-Gladbach, Germany) according to the manu-

facturer’s protocol.

Flow cytometric analysis and cell sorting
Cells were analyzed and sorted on a MoFlo cell sorter (Beckman

Coulter, USA; former Cytomation, USA), equipped with a Co-

herent Enterprise 621 argon-ion laser tuned to 488 nm (used at

180 mW), and 635 nm Diode (25 mW). Two mg/ml propidium

iodide – PI (Molecular Probes) were added to the samples before

flow sorting to facilitate dead cell discrimination. The GFP and PI

were excited at 488 nm and fluorescence was measured through

530/40 BP and 613/20 BP optical filters (all filters from Omega

Optical, Brattleboro, VT, USA), respectively. Doublets were

discriminated using a forward light scatter (FSC) versus pulse

width. FL3 channel (in logarithmic mode) with FSC were used to

display and gate out PI positive/dead cells. FSC and side light

scatter (SSC) signals were detected and shown in linear mode.

GFP+ cells were defined on SSC versus FL1 (in logarithmic mode)

dot plot after exclusion of dead cells and debris as described above.

For analysis of CD133 expression cells were stained with

allophycocyanin (APC) conjugated monoclonal CD133/1

(AC133) antibodies (Miltenyi, Bergisch-Gladbach, Germany),

according to the manufacturer’s general protocol for immunoflu-

orescent staining (for 10 min in the dark at 4uC). CD133-APC was

excited at 635 nm, the fluorescence was measured through 670/

30 BP optical filter, and alive CD133+ cells were defined on SSC

versus FL6 (in logarithmic mode) dot plot. Non-stained cell

suspension was used as a control.

GFP+ tumor cells were sorted in ‘‘purify 1’’ mode into

polypropylene round-bottom Falcon tubes (Becton Dickinson

Labware Europe, France) containing culture media, that were

placed on ice. Aliquots from some samples at the end of the sorting

were removed and reanalyzed for control of the sort purity that

was greater than 98%.

Culture of sorted cells
Sorted cells were either cultured in neurobasal medium

(Invitrogen, Carlsbad, CA) with B27 supplement (20 ml/ml;

Invitrogen), Glutamax (10 ml/ml; Invitrogen), fibroblast growth

factor 2 (20 ng/ml; Peprotech, Rocky Hill, NJ), epidermal growth

factor (20 ng ml; Peprotech) or transferred to DMEM supple-

mented with 10% fetal calf serum (FCS) and 1% glutamine and

grown on cover slips in 24 well plates.

Immunofluorescence staining of spheroids/adherent
cells
Spheroids/adherent cells were stained with human-specific

mouse-anti-nestin antibodies (Millipore, Billerica, MA), goat-anti-
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SOX2 antibodies (R&D), mouse-anti-b2tubulinIII (Millipore)

antibodies and mouse-anti-GFAP antibodies (Millipore). Primary

antibodies were incubated overnight at 4uC. Alexa-Fluor647-goat-

anti-mouse und Alexa-Fluor647-donkey-anti-goat antibodies (Dia-

nova, Hamburg, Germany) were used as secondary antibodies over

night at 4uC (for spheroids) or for 2h at room temperature (for

adherent cells). Spheroids were examined under a fluorescence

microscope (Nikon, Tokyo, Japan) and adherent cells were analyzed

by confocal scanning laser microscopy (Zeiss, Jena, Germany).

Lentiviral and Retroviral vectors
The lentiviral vector plasmid pRRL.sinCMVeGFPpre was

published by Naldini et al. [21]. The construction of the lentiviral

vector pRRL.sinCMV-TK/eGFPpre has been described pre-

viously. The retroviral vector pMP71-eGFP-pre has been de-

scribed previously [22].

Preparation of lentiviral and retroviral vector
supernatants
The 293T cell line was used for transient lentiviral vector

production. The lentiviral vector plasmid pRRL.sinCMV-TK/

eGFPpre (5 mg) or pRRL.sinCMVeGFPpre (5 mg), the HIV gag-

pol-REV expression plasmid pCMV-dR8.91(12.5 mg) [21] and

2 mg of the envelope expression plasmid pHCMV-LCMV-GP

[14] or pCMV-G [23] were cotransfected into 293T cells and

concentrated as described previously [18]. For the production of

retroviral vectors, 293T cells were transfected with 7.5 mg of

pMP71-eGFP-pre, 12.5 mg of pSV-Mo-MLVgagpol, and 2 mg of

the envelope expression plasmid pHCMV-LCMV-GP [14] or

pCMV-G [23]. Vectors were harvested and concentrated as

described previously [24].

Titration of viral vector supernatants
Vectors were titered on TE671 cells as described previously

[18].

Implantation of glioblastoma spheroids
Intracranial implantation of glioblastoma spheroids was done as

described previously [25].

Vector infusion
Three weeks to one month after implantation, the animals were

anesthetized and prepared for vector injection. The skin was

withdrawn to reveal the location of the craniotomy. 2 times 10 mL

of vector stocks were delivered into the centre of the tumors using

a glass syringe (model 701, Hamilton, Bonaduz, Switzerland)

secured in a microprocessor-controlled infusion pump (UMP 2–1,

World Precision Instruments, Aston, Stevenage, UK). The

injection coordinates were estimated after analyzing MRI images

for each individual lesion. Vector infusion was done by convection

enhanced delivery in the course of 25 min (200 nl/min for

10 min, followed by 400 nl/min for 10 min, and finally 800 nl/

min for 5 min). After infusion, the needle was left in place for

5 min to avoid vector reflux. The needle was slowly retracted and

the skinfolds were closed with polyamide surgical thread.

Following surgery, rats were allowed to recover in an incubator

set at 35uC before returning them to the cages.

Treatment of rat gliomas
Rats bearing glioblastoma xenografts were treated by daily i.p.

injections of 50 mg/kg ganciclovir (GCV, Roche, Basel, Switzer-

land).

Analysis of rat brains
Animals were euthanized and perfused with sterile saline and

thereafter with 4% paraformaldehyde. Brains were removed,

suspended in 30% sucrose for three days, and then snap frozen in

isopentane chilled with dry ice. Coronal sections (12 mm) were

prepared on a cryostat. For immunofluorescence analysis, sections

were stained with human-specific anti-nestin antibodies (Millipore)

for human glioblastoma cells, mouse-anti-NeuN (Millipore)

antibodies for neurons, rat specific mouse-anti-nestin antibodies

(Millipore) for astrocytes and progenitor cells. Primary antibodies

(dilution 1:200) were incubated overnight at 4uC. Biotinylated

goat-anti-mouse and goat–anti-rabbit (Vector Laboratories, Bur-

linghame, CA) were used as secondary antibodies (dilution 1:100)

for 2 h at room temperature. Sections were incubated with

Extravidin-Cy3 (Sigma, St. Louis, MO) as fluorochrome (dilution

1:200) for 1 h at room temperature. The sections were examined

under a fluorescence microscope (Nikon) and analyzed by confocal

scanning laser microscopy (Zeiss, Jena, Germany).

For analysis of transduction efficacy, consecutive sections (every

20.-30.) throughout the tumors were examined under a fluores-

cence microscope (Nikon) with an automated stage using

106magnification. The transduction volume was calculated using

Nikon Lucia imaging software.

Immunostaining of paraffin sections
Paraffin embedded formalin-fixed tissue sections from rat brain

and patient material were placed in xylene bath for 263 minutes,

absolute ethanol 263 minutes, 96% ethanol 262 minutes and

finally in distilled water for 30 seconds for removal of paraffin and

rehydration. Epitope retrieval was performed by heating the

sections at 99uC for 20 minutes in 10 mM citrate buffer at pH 6.0.

The sections were incubated with a monoclonal human-specific

anti-nestin antibody 1:200 in TBS/1%BSA over night at 4uC. A

biotinylated goat-anti-mouse antibody (Vector Laboratories) was

used as secondary antibody (dilution 1:100) for 1 h at room

temperature followed by ABC-complex incubation for 30 min.

Sections were developed with with 393-diaminobenzidine (DAKO

Cytomation), following the manufacturer’s instructions.

Magnetic resonance imaging
Using a Bruker Pharmascan 7 Tesla MR scanner (Bruker

Biospin, Billerica, MA), axial T2-weighted RARE sequences were

acquired (repetition time, 4,200 ms; echo time, 36 ms; slice

thickness, 1 mm; field of view, 3.2 cm; matrix size, 2566256;

20 slices). During scanning, the animals were kept under

anesthesia with 1.5% isofluorane (Schering-Plough, Kenilworth,

NJ) mixed with 50% air and 50% O2.

Statistical analysis
Survival was analyzed by a log-rank test based on the Kaplan-

Meier test using SPSS software. Differences between pairs of

groups were determined by the Student’s t-test. P values,0.05

were considered significant.

Results

Lentiviral pseudotyped vectors efficiently transduce
glioblastoma spheroids in vitro

Human glioblastoma spheroids derived either directly from the

patient (low generation) or from serial in vivo passages in the brains

of nude rats (high generation), were infected with lentiviral

LCMV-GP (56104 in 10 ml) or VSV-G pseudotyped lentiviral

vectors (both 56104 particles in 10 ml) or with retroviral MLV-
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based vectors pseudotyped with LCMV-GP (16105 particles in

10 ml). The vectors were prepared in the same way for in vitro and

in vivo experiments (see materials and methods). Both lentiviral

vectors transduced patient spheroids and high generation

spheroids very efficiently (Figure 1). In contrast, retroviral vectors

transduced only a few single cells in high generation spheroids

(Figure 1) and failed to transduce patient spheroids (data not

shown). In conclusion, both lentiviral vectors are much more

efficient in transducing human glioblastoma spheroids in vitro than

retroviral vectors.

Lentiviral pseudotyped vectors efficiently and specifically
transduce glioblastoma cells in vivo

To compare the transduction efficiency of lentiviral and

gammaretroviral vectors in vivo, we used a xenograft model that

reflects the angiogenic and invasive features of human glioblasto-

ma in situ. The xenograft also expresses the neural progenitor

marker nestin and closely recapitulates the histology of the patient

tumor (Figure 2). The vectors were injected into the center of

progressively growing lesions using microprocessor-controlled

stereotactic infusion. The injection coordinates were estimated

after analyzing MRI images for each individual lesion. The

injection volume applied was 2610 ml and the vector titre 16107/

ml for all vectors. Transduction efficiency was evaluated 7 days

after vector injection. Both lentiviral pseudotyped vectors showed

very efficient transduction of the tumors (Figure 3A,D). When

analyzed at higher magnification, both LCMV-GP and VSV-G

pseudotyped lentiviral vectors showed efficient transgene delivery

to nestin-positive tumor cells in solid (Figure 3B,E) and invasive

tumor areas (Figure 3C,F). In contrast, the retroviral vector only

transduced a few scattered tumor cells near the injection site

(Figure 3 G,H). For a quantitative comparison of transduction

efficiency between the two lentiviral pseudotyped vectors, the

GFP-positive areas were measured on histological slides (see

material and methods). The total volume of transduced tumor

tissue was 7.0563.51 mm3 for LCMV-GP pseudotyped vectors

and 4.0562.04 mm3 for VSV-G pseudotyped vectors (Figure 3I).

Although there was a difference in the mean, it was not statistically

significant (p = 0.269) due to high interindividual differences

(standard deviations).

To analyze transduction specificity, histological sections of

invasive tumor areas were stained for rat specific markers NeuN

(for neurons) and nestin (for astrocytes and progenitor cells).

LCMV-GP pseudotyped lentiviral vectors exclusively transduced

tumor cells in all invasive areas (Figure 4A), while normal brain

cells were not transduced (Figure 4B,C). Also VSV-G pseudotyped

vectors showed specific transduction of tumor cells in some

invasive areas (Figure 4D,E), however, they also transduced a few

host brain cells at other sites (Figure 4G,H).

Lentiviral pseudotyped vectors transduce cancer-stem-
like glioma cells
To analyze the potential of both lentiviral vectors to infect

cancer stem-like cells, transduced tumors were enzymatically

dissociated and CD133 expression was measured by flow

cytometry. Both vectors transduced CD133-positive and

CD133-negative cells (Figure 5A). Although there were high

interindividual differences in the fraction of total CD133-positive

tumor cells in the different xenografts, both vectors showed

similar efficiency in transducing CD133-positive cells, which was

Figure 1. Transduction of glioma spheroids by lenti- and retroviral vectors. Human glioblastoma spheroids derived from a patient biopsy
or after serial passaging in nude rats (high generation) were infected by lentiviral vectors pseudotyped with LCMV-GP (56104) or VSV-G (56104) or by
retroviral vectors pseudotyped with LCMV-GP (16105). All vectors were expressing the marker gene eGFP. Spheroids were analyzed by confocal
microscopy for eGFP expression 7 days after infection. Pictures show eGFP (green), phase contrast and an overlay of both. Low gen.: spheroids
directly derived from patient material (low generation). High gen.: spheroids derived from serial in vivo passages in the rat brain (high generation).
Original magnification 1006.
doi:10.1371/journal.pone.0006314.g001
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slightly higher than the overall fraction of CD133-positive cells

(table 1).

The GFP-positive cells from tumors transduced with LCMV-GP

or VSV-G pseudotyped lentiviral vectors were sorted and cultured

in neural basal medium supplemented with EGF and bFGF.

Transduced tumor cells from both vectors were able to form

spheroids (Figure 5B,E). Spheroids expressed the stem cell markers

nestin and SOX2 (Figure 5C,D,F,G). Sorted cells were also plated

under serum conditions. The cells continued to show significant

expression of the stem cell markers nestin and SOX2, but also of the

differentiation markers GFAP and b-tubulinIII (Figure 5H-O).

Lentiviral pseudotyped vectors expressing the suicide
gene HSV-1-tk mediate an efficient therapeutic effect in
vivo

To evaluate the therapeutic efficacy of both lentiviral pseudo-

tyoped vectors in the invasive xenograft model, vectors expressing

the suicide gene HSV1-tk fused to eGFP were injected into

established tumors when visible on MRI using the same method as

described for the in vivo tropism study. The animals were treated

daily with 50 mg/kg ganciclovir for 30 days starting 7 days post

vector injection. Tumor growth was measured every 7–14 days by

MRI. After 4 weeks of treatment, 7 out of 8 animals in both the

Figure 2. Glioblastoma patient biopsy and xenograft tumor show similar histopathology. Paraffin sections of the patient tumor and the
xenograft tumor were stained with H&E (A-D) or immunostained with human-specific anti-nestin antibodies (E,F). Patient tumor (A) and xenograft
tumor (B) show angiogenic features of human glioblastoma with palisading necrosis (arrow) and vascular proliferates (arrowheads). Higher
magnification of the patient (C) and xenograft tumor (D) demonstrate similar tumor cell morphology with polymorphic nuclei in the vicinity of
a tumor necrosis. Patient (E) and xenograft tumor (F) show strong nestin expression of tumor cells. Single tumor cell infiltration into the white matter
is observed in the xenograft tumor (F). The patient biopsy was derived only from the solid tumor core. A,B,E,F: Original magnification 1006. C,D:
Original magnification 2006.
doi:10.1371/journal.pone.0006314.g002
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Figure 3. Lentiviral vectors efficiently transduce human glioma cells in vivo. Intracranial gliomas were infected with LCMV-GP or VSV-G
pseudotyped lentiviral vectors or with LCMV-GP pseudotyped retroviral vectors expressing eGFP 3–4 weeks after spheroid implantation and analyzed
by fluorescence (A,D,G) or confocal scanning laser microscopy (B,C,E,F,H) 7 days after infection. The confocal images show overlay of eGFP (green
fluorescence) and human-specific nestin (red fluorescence). Tumors were efficiently transduced by lentiviral LCMV-GP (A-C) and VSV-G (D-F)
pseudotyped vectors, while retroviral vectors only transduced few scattered tumor cells (G,H; arrows). Transduced glioma cells expressed human-
specific nestin in solid (B,E,H) and invasive tumor areas (C,F; arrows). (I) Transduction efficiency of lentiviral vectors was compared quantitatively by
measuring the volume of transduction on histological sections using a fluorescence microscope and Nikon imaging software. LCMV transduced
tumors (n = 3) showed a higher transduction volume than VSV transduced tumors (n = 3), however, the difference was not statistically significant
(p = 0.269). A,D: Original magnification 406. C,E,G;H: Original magnification 1006. D, F: Original magnification 2006.
doi:10.1371/journal.pone.0006314.g003
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LCMV- and the VSV-pseudotype treated groups had a complete

remission on MRI (Figure 6). One animal in each group had

a stable disease until the end of GC treatment. All animals in the

control groups developed large tumors during the treatment

period of 30 days (Figure 6). Both, LCMV- and VSV-pseudotype

treated animals had a highly significant survival advantage

(p,0.001) compared to the control groups (Figure 7A). There

was no statistically significant difference in survival between the

two treatment groups.

Upon cessation of prodrug administration, all animals de-

veloped recurrent tumors, which could be classified into three

different groups (Figure 7B-E, table 2). The animals showed either

Figure 4. Specificity of tumor cell transduction by lentiviral vectors. Intracranial gliomas were infected with LCMV-GP- or VSV-G-
pseudotyped lentiviral vectors expressing eGFP 3–4 weeks after tumor implantation and analyzed confocal laser scanning microscopy 7 days after
infection. Transduction of invasive tumor cells was analyzed after staining with human-specific nestin antibodies. Host neurons and astrocytes were
labeled using antibodies against NeuN and GFAP. Invasive areas showed single cell invasion by tumor cells (A-C, E, F) or a subependymal
accumulation of tumor cells (D,G,H). LCMV pseudotyped vectors specifically transduced invasive glioma cells (A-C). VSV-G pseudotyped vectors
showed specific transduction of tumor cells in some invasive areas (D-F), but also transduction of single normal brain cells in others (G,H; arrows).
Transduced normal brain cells were mostly detected by morphologic criteria (more processes), as the staining (GFAP or NeuN) not always matched
with the transduced cells. A,D: nestin staining, magnification 2006. B,E,G: GFAP staining, magnification 2006. C,F,H: NeuN staining, magnification
2006.
doi:10.1371/journal.pone.0006314.g004
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Figure 5. Lentiviral vectors transduce cancer stem-like cells. Intracranial gliomas were infected with LCMV-GP or VSV-G pseudotyped
lentiviral vectors expressing eGFP 3–4 weeks after tumor implantation. Tumors were excised when large lesions appeared on MRI and were
enzymatically dissociated. The transduction of CD133 positive cells was measured by flow cytometry. (A) LCMV-GP and VSV-G pseudotyped vectors
transduce CD133 positive and negative tumor cells. The fraction of transduced (GFP-positive) cells is slightly higher in CD133 positive cells (right
column) compared to CD133 negative cells (middle column). GFP+ cells were sorted, cultured in the presence or absence of serum and analyzed by
fluorescence (B-G) or confocal microscopy (H-O). LCMV-GP (B) and VSV-G (E) transduced cells form spheroids upon culture in serum-free neural basal
medium supplemented with EGF and bFGF. Transduced spheroids express the neural stem cell markers nestin (C,F) and SOX2 (D,G). Transduced cells
cultured in serum-containing medium express the stem cell markers nestin (H,L) and SOX2 (I,M), but also the differentiation markers GFAP (J,N) and
beta-tubulinIII (K,O). The pictures C,D,E,F,H-O show overlay of the virus-delivered transgene (eGFP, green) and detected antigen (Alexa-647, red).
doi:10.1371/journal.pone.0006314.g005

Table 1. Transduction of CD133+ cells by lentiviral vectors.

Virus Animal Total CD133+ cells (%) Transduced CD133+ cells (%) (GFP gated) Factor* (Increase)

LCMV 1 4.50 5.69 1.264

2 37.53 41.50 1.106

VSV 1 14.20 16.50 1.162

2 16.98 20.31 1.196

*Increase in percentage of transduced CD133+ cells compared to total fraction of CD133+ cells.
doi:10.1371/journal.pone.0006314.t001

Figure 6. Tumors treated with lentiviral vectors and ganciclovir show complete remission on MRI. Representative three-dimensional MRI
(T2 RARE). (A,F,K,P) Lentiviral LCMV-GP vectors with ganciclovir treatment. (B,G,L,Q) Lentiviral VSV-G vectors with ganciclovir treatment. (C,H,M,R)
Lentiviral LCMV-GP vectors without ganciclovir treatment. (D,I,N,S) Lentiviral VSV-G vectors without ganciclovir treatment. (E,J,O,T) ganciclovir
treatment only. Time points after tumor implantation: (A-E) 1 day before vector injection. (F-J) 1. week ganciclovir treatment. (K-O) 2. week ganciclovir
treatment. (P-T) 4. week ganciclovir treatment.
doi:10.1371/journal.pone.0006314.g006
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1) local recurrences or 2) local and/or contralateral recurrences or

3) recurrences in other distant brain areas. There was no clear

difference in the recurrence pattern between the two vector types,

but LCMV-pseudotyped vector-treated animals had more contra-

lateral recurrences, whereas VSV-G pseudotyped vector-treated

animals had more local recurrences (Figure 7B-E, table 2).

Histopathological and confocal microscopic analysis of the lesions

revealed GFP-positive cells in all recurrent tumors demonstrating

that not all transduced glioma cells were killed by ganciclovir

treatment (Figure 7F-M). In VSV-G pseudotype-treated animals,

the GFP-positive surviving cells were found in invasive areas

(Figure 7F,G), the corpus callosum region (Figure 7H) and also in

some regions of distant recurrences. One animal also showed

a focus of transduced normal brain cells at the tumor border that

survived GC treatment (Figure 7I). In the LCMV group, most

GFP- positive cells were found in the ipsilateral hemisphere, in

solid and invasive tumor areas (Figure 7J,K,L), with only a few

cells seen in the contralateral hemisphere (Figure 7M).

Discussion

Future success of glioma gene therapy will depend on more

potent vector systems that show higher transduction efficiency

than the systems that are available today. In addition, the

application of representative animal models that recapitulate both,

the invasive and angiogenic features of patient tumors, is vital in

order to minimize the huge discrepancies between the experi-

mental results and clinical outcomes previously observed for gene

therapeutic strategies for brain cancer.

To this end, we applied one of the most clinically relevant

animal models for glioblastoma known. This model was

established several years ago [20] and its growth pattern as well

as geno- and phenotypic similarity to glioblastoma in patients has

been extensively characterized [3]. A striking difference of our

model compared to other cell-line based models is the highly

invasive behaviour of the lesions, similar to glioblastoma in

patients. Our model is based on spheroids derived from patient

biopsies that are passaged serially in the brains of nude rats. First

generation tumors are highly invasive and grow without signs of

angiogenesis. Late generation tumors show an angiogenic

phenotype, but are still invasive. Our in vitro experiments revealed

that both lentiviral vectors transduced spheroids derived from both

low and high generation tumors very efficiently. In contrast,

retroviral vectors transduced only high generation spheroids and

displayed a much lower efficiency of gene transfer than both

lentiviral vectors. This difference can only be attributed to the

vector backbone, as the glycoprotein which is responsible for virus

entry into the cell was the same for the retroviral and one of the

lentivral vectors applied (LCMV-GP). The most important feature

that distinguishes lentiviral from retroviral vectors is their ability to

infect non-dividing cells. It is known that glioma spheroids,

especially primary biopsy spheroids, contain a significant fraction

of non-dividing cells, which cannot be transduced by retroviral

vectors. It has previously been shown that the cultured biopsy

spheroids show a similar cell proliferation as seen in glioblastoma

patients [20].

Previous studies have demonstrated that retroviral vectors

can very efficiently transduce highly proliferative monolayer

cultures of glioma cell lines [14]. However, monolayer cultures

change their geno- and phenotypic characteristics under long

term culture and thus are not a suitable model to answer

clinically relevant questions [26].

For in vivo experiments, we selected a high generation xenograft

that showed both angiogenic and invasive features and re-

capitulated the histology of the patient lesion. Furthermore, this

xenograft showed a high level of nestin expression similar to the

patient material. In translational research it is crucial to assure that

the experimental tumors truly reflect the corresponding patient’s

tumor properties to avoid using non-relevant animal models.

However, this strategy is not common practice yet, based on the

simplicity of using established cell lines for in vivo experiments.

We showed a high transduction efficiency of lentiviral vectors

for glioma cells in vivo, whereas retroviral vectors transduced a few

scattered tumor cells near the injection track. This is in contrast to

in vivo studies by others where retroviral vectors were very efficient,

but as mentioned above, the models applied were non-invasive,

based on cell lines cultured as monolayers [27]. Of note, the results

of clinical studies using retroviral vectors showed the same low

transduction efficiency as observed in our model system [12]. This

finding provides further evidence that the glioma model used here

has a higher predictive value for the performance of a novel

therapeutic approach in the clinic than previous animal models.

The tropism for glioma cells was more specific with LCMV-GP

lentiviral pseudotyped vectors, as VSV-G pseudotyped lentiviral

vectors also transduced few normal brain cells in invasive areas. In

previous studies using a rat glioma model, we also showed a more

Figure 7. Therapeutic efficiency of LCMV-GP and VSV-G pseudotyped lentiviral vectors in vivo. Intracranial gliomas were injected with
LCMV-GP or VSV-G pseudotyped lentiviral vectors expressing HSV-1-tk fused to eGFP 3 weeks after tumor implantation. 7 days after vector infection,
animals in both treated groups and in one control group were treated with ganciclovir for 30 days. (A) Kaplan-Meier survival curve. The survival
benefit for both treatment groups compared to control groups was statistically significant (P,0.001; log-rank test). There was no significant
difference in survival between the two treatment groups. (B-D) Representative MRI (T2 RARE) of recurrent tumors in the LCMV- (B,C) and VSV-treated
(D,E) group. (B) Invasive contralateral recurrence. (C) Invasive local and contralateral recurrence. (D) More circumscribed local recurrence. (E)
Macroscopic picture of a rat brain with a recurrence in the cerebellum (red circle), treated with VSV-G pseudotyped vectors and GC. (F-M) Sections of
recurrent tumors were stained with antibodies against human-specific nestin and analyzed by fluorescence (F,J) or confocal microscopy (G-I,K-M).
Pictures show overlay of nestin (red) and eGFP transgene (green). (F-I) Recurrent tumors of animals treated with VSV-G pseudotyped lentiviral vectors.
(F) Recurrent tumor with GFP-positive cells in the invasive area. (G) Higher magnification of (F). (H) GFP-positive tumor cells in the corpus callosum
region. (I) GFP-positive normal brain cells at the tumor border. (J-M) Recurrent tumors of animals treated with LCMV-GP pseudotyped lentiviral
vectors. (J) GFP-positive tumor cells in residual small lesion from the primary tumor. The recurrent tumor is growing from the contralateral
hemisphere over the corpus callosum to the ipsilateral hemisphere (arrows). (K) Higher magnification of (J). (L) GFP-positive tumor cells in the solid
ipsilateral recurrent lesion. (M) Few GFP-positive cells in a contralateral recurrent tumor. F,J: Magnification 406. G,K,M: Magnification 2006. H,I,L:
Magnification 1006.
doi:10.1371/journal.pone.0006314.g007

Table 2. Recurrences after gene therapy with lentiviral
vectors.

Virus Local recurrence

Contralateral and/or

local recurrence

Other distant

recurrence

LCMV 1 7 0

VSV 4 2 2

doi:10.1371/journal.pone.0006314.t002
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specific transduction of glioma cells by LCMV-GP pseudotyped

vectors compared to VSV-G pseudotyped vectors [18,19]. In fact,

in these studies, the VSV-G pseudotyped vectors transduced

normal brain cells at a much higher frequency than in this study.

This can be explained by the mode of vector delivery, because in

the previous studies, we injected the vectors both into the tumor

core as well as into tumor border areas. In the present study, we

injected the vectors into the tumor core only using convection

enhanced delivery. We used this method because it results in

a high distribution volume of drug and vector and is currently used

as a delivery method in clinical studies [28]. In addition, the tumor

model we apply here is highly invasive and lacks a sharply

demarcated brain tumor/normal brain interface, present in the rat

glioma model. Another explanation could be the species difference

as we used human glioma cells in this study in contrast to rat

glioma cells in the previous work. VSV-G pseudotyped vectors

might have a higher tropism for human glioma cells than for rat

normal host cells. However, as the receptor for VSV-G is

unknown [29], this remains a hypothesis.

The targeting of cancer stem cells or cancer stem-like cells in

human tumors including glioblastoma has recently evolved as

a major aim in cancer therapy. These stem cells are suggested to

initiate cancer and might be resistant to therapy, thus being

responsible for tumor recurrence [30–32]. Yet, recent studies have

initiated a controversial discussion whether cancer stem cells really

exist [33,34]. Therefore, we use the term ‘‘cancer stem-like cells’’

in our study to designate cells which have certain stem-like

properties described previously. We showed that both lentiviral

vectors transduced CD133-positive and CD133-negative cells.

CD133-positive cells have been identified as cancer initiating cells

and cancer stem cells in many different cancers including

glioblastoma [30,35]. However, more recent reports questioned

these findings showing that CD133-negative popopulations can

include cancer initiating cells as well [36,37]. The efficient

targeting of CD133-positive and CD133-negative glioma cells

has also been described for adenoviral vectors [38,39].

We further demonstrated that sorted cells from tumors trans-

duced either by lentiviral LCMV-GP or VSV-G pseudotyped

lentiviral vectors had the ability to form spheroids upon culturing

in neural basal medium supplemented with EGF and bFGF.

Spheroids from both sorted cell populations expressed the neural

stem cell markers nestin and SOX2 and showed the ability to

express the differentiation markers GFAP and b-tubulinIII under

serum conditions. These properties have been described for neural

progenitor cells [40] as well as for cancer stem-like cells in human

glioblastoma [26]. Thus, the cell populations transduced by

LCMV or VSV pseudotyped lentiviral vectors showed features of

cancer stem-like cells which might be an important target for

therapy.

In a therapeutic approach using the suicide gene HSV-1-tk

fused to eGFP, we demonstrated a highly significant therapeutic

effect for both lentiviral vectors compared to control groups. Using

MRI to follow tumor growth, we detected complete remission in 7

out of 8 animals for LCMV-GP and VSV-G pseudotyped vectors

after 30 days of ganciclovir treatment. HSV-1-tk has been reported

to be an effective therapeutic gene in previous studies [19,41]. The

limited success in clinical studies has been a result of inefficient

gene delivery systems rather than lack of efficacy of the suicide

mechanism [11]. However, there is still space for improvement of

the prodrug delivery such as application length, treatment

intervals and route of delivery. Tai et al. demonstrated that

multiple cycles of prodrug application are superior over one cycle

of prodrug [42]. In our study, we still detected GFP-positive tumor

cells after one cycle (30 days) of ganciclovir administration in

treated animals indicating that application in cycles might also

improve the therapeutic effect in this setting. Further, these results

demonstrate that vector-transduced tumor cells retain the ability to

invade brain tissue and migrate even to distant brain regions.

In conclusion, the present study demonstrates an efficient

transduction and therapy of experimental human glioblastoma by

lentiviral vectors. The inefficient gene transfer by gammaretroviral

vectors is in line with the results obtained in clinical trials and thus

confirms the high relevance of the spheroid-based glioma animal

model for translational research.
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