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Abstract— In this paper, we solve the problem of estimating
dense and accurate depth maps from a single moving camera.
A probabilistic depth measurement is carried out in real time
on a per-pixel basis and the computed uncertainty is used to
reject erroneous estimations and provide live feedback on the
reconstruction progress. Our contribution is a novel approach
to depth map computation that combines Bayesian estimation
and recent development on convex optimization for image
processing. We demonstrate that our method outperforms state-
of-the-art techniques in terms of accuracy, while exhibiting
high efficiency in memory usage and computing power. We
call our approach REMODE (REgularized MOnocular Depth
Estimation) and the CUDA-based implementation runs at 30Hz
on a laptop computer.

I. INTRODUCTION

We present a method to compute an accurate, three-

dimensional reconstruction of the scene observed by a mov-

ing camera and provide, in real time, information about the

progress and the reliability of the ongoing estimation process.

This problem is highly relevant in robot perception, where

cameras are valuable and widespread sensors. From a single

moving camera, it is possible to collect appearance and range

information about the observed three-dimensional scene. In

a multi-view stereo setting, the uncertainty on the depth

measurement depends on the noise affecting image forma-

tion, on the camera poses, and the scene structure. Knowing

how these factors affect the measurement uncertainty, it is

possible to achieve arbitrarily high levels of confidence by

collecting measurements from different vantage points. Such

a capability is particularly valuable in robotics. For instance,

if the camera is mounted on a robotic arm, the available high

level of mobility can be exploited to disambiguate scene

details and occlusions at a wide range of distances. The

monocular setting is also an appealing sensing modality for

Micro Aerial Vehicles (MAVs), where strict limitations apply

on payload and power consumption. In this case, the high

agility turns the platform into a formidable depth sensor, able

to deal with a wide depth range and capable of achieving

arbitrarily high confidence in the measurement. Inevitably,

this high flexibility comes at a cost. The pose of the camera

must be known and its accuracy influences the reconstruction

quality. For a camera, information resides in the changing

of the intensity gradient and this modality naturally fails in

presence of low informative scenes that produce untextured

images. It is therefore crucial to know how reliable each

measurement is.
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Fig. 1. In monocular dense reconstructions, the probabilistic approach
to depth estimation produces compact and efficient representations. Highly
parallelizable implementations are achieved by estimating the depth for
every pixel independently. A smoothing step is nonetheless required to
achieve robustness against noise and mitigate the effect of erroneous
measurements. Figures (a) and (b) show the result of Bayesian depth
estimation from multiple views; (c) and (d) show the same result after the
de-noising step that we propose in this paper.

A. Related Work

The problem of reconstructing the scene from images

collected by a moving camera has been studied for more

than two decades and is known as Structure from Motion

in computer vision [1] and Monocular SLAM in robotics

[2]. The growing interest for dense reconstructions has

renewed the attention in multi-view stereo techniques [3],

[4], [5], [6], where the involved computational complexity

used to prevent applications in robot perception. In robotics,

the use of RGBD cameras is favouring the development

of techniques for highly-detailed [7] and spatially-extended

reconstructions [8], their applicability being limited to short

range measurements and indoor environments. The literature

in dense stereo is vast and we refer to [9] for a comparison.

However, few relevant works have addressed real-time, dense

reconstruction from a single moving camera and they shed

light on some important aspects. Figure 1 illustrates the

problem we address in this paper. If, on one hand, estimating

the depth independently for every pixel leads to efficient,

parallel implementations, on the other hand the authors of

[10], [11], [12] argued that, similar to other computer vision

problems, such as image de-noising [13] and optical flow

estimation [14], a smoothing step is required in order to
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deal with noise and spurious measurements. In [11], smooth-

ness priors were enforced over the reconstructed scene by

minimizing a regularized energy functional based on aggre-

gating a photometric cost over different depth hypothesis

and penalizing non-smooth surfaces. The authors showed

that the integration of multiple images leads to significantly

higher robustness to noise. A similar argument is put forth

in [12], where the advantage of photometric cost aggregation

[15] over a large number of images taken from nearby

viewpoints is demonstrated. Regularized energy functionals

also play an important role in recent methods for volumetric

reconstruction [16], [17], [18], where the three-dimensional

surface of a scene is generated by fusing several depth maps

obtained from multi-view stereo. Depending on the scene

appearance and the used stereo baselines, the computed depth

maps are potentially noisy and a robust fusion method helps

mitigate the effect of wrong depth estimations.

However, despite the ground-breaking results, these ap-

proaches present some limitations when addressing tasks

in robot perception. Equally weighting measurements from

small and large baselines, in close and far scenes, causes the

aggregated cost to frequently present multiple or no minima.

Depending on the depth range and sampling, these failures

are not always recoverable by the subsequent optimization

step. Furthermore, an inadequate number of images can lead

to a poorly constrained initialization for the optimization and

erroneous measurements that are hard to detect. It is not

clear how many images should be collected, depending on

the motion of the camera and the scene structure. Finally,

the number of depth hypotheses controls the computational

complexity, and the applicability is, thus, limited to scenes

bounded in depth.

B. Contributions and Outline

The discussed limitations are overcome by probabilistic

approaches handling measurement uncertainty. A compact

representation and a Bayesian depth estimation from multi-

view stereo were proposed in [19]. We build on their results

for per-pixel depth estimation and introduce an optimization

step to enforce spatial regularity over the recovered depth

map. We propose a regularization term based on the weighted

Huber norm but, differently from [12], we use the depth

uncertainty to drive the smoothing and exploit a convex

formulation for which a highly parallelizable solution scheme

has been recently introduced [20]. The contributions of this

paper are the following:

• a probabilistic depth map, in which the Bayesian

scheme in [19] is integrated in a monocular SLAM

algorithm to estimate per-pixel depths based on the live

camera stream;

• a fast smoothing method that takes into account the

measurement uncertainty to provide spatial regularity

and mitigates the effect of noisy camera localization.

The outline of the paper follows. In Section II we detail our

method for depth estimation from monocular views and in

Section III we provide the implementation details. Section IV

is dedicated to the discussion on the experimental evaluation.

Finally, in Section V, we summarize our contribution and

draw the conclusion.

II. MONOCULAR DENSE RECONSTRUCTION

A. Considerations

The solution we propose to compute a dense reconstruc-

tion from a single moving camera is motivated by the

following considerations.

a) A measure of uncertainty is needed in robotic per-

ception: many reconstruction pipelines previously proposed

in computer vision and graphics literature aim at providing

visually appealing maps. In contrast, we are interested in

accurately mapping the environment in order to allow robotic

tasks, such as autonomous navigation and exploration, active

perception or situation awareness in the case of human-

operated systems. As a passive sensing modality, measure-

ment uncertainty in monocular multi-view stereo is related

to the camera motion and the amount of visual information

present in the scene (e.g. texture). A probabilistic depth

map handles measure uncertainty, thus, allowing efficient

updating, optimal sensor placement, and fusion with different

sensors.

b) A dense reconstruction is needed to interact: sparse

visual maps based on image features have been successfully

used in robotics, e.g. to solve the SLAM problem. However,

feature definitions change between sensing modalities and

tasks; dense representations are, thus, required to actually

solve the problem of registering data among largely different

vantage points based on the three-dimensional structure

[18]. When the task involves physical interaction with the

environment—as in obstacle avoidance, path planning and

manipulation—the highest achievable level of detail is de-

sirable in order to estimate the surfaces involved in the

interaction.

c) Perception must be fast: differently from many state-

of-the-art systems, in order to be useful in robot perception

our pipeline must run in real-time using the robot’s on-

board computing power. Depth estimation must be updated

efficiently and the uncertainty in the estimation must improve

according to the information conveyed by the image and the

current camera pose.

In the designing of the monocular multi view stereo algo-

rithm, these considerations naturally bring to the formulation

of the following requirements: depth estimation must take

into account the uncertainty arising from the scene and the

camera pose and the estimation must be carried out on-

line and updated sequentially. Bayesian estimation offers

a natural way to deal with measure uncertainty, to handle

sequential measurement updates and to reject unreliable

estimations in an on-line fashion.

B. Depthmap from Multi View Stereo

We formulate the depth computation as a Bayesian es-

timation problem. Each observation provides a depth mea-

surement by triangulating from the reference view and the

last acquired view. The depth of a pixel is described by a

parametric model that is updated on the basis of the current



observation. Finally, smoothness on the resulting depth map

is enforced by minimizing a regularized energy functional.

1) Bayesian Estimation: Let the rigid body transformation

Tk,w ∈ SE(3) describe the pose of the camera acquiring the

k-th view, i.e., Tk,w transforms scene points wp ∈ R
3 from

the world frame to the frame of the k-th camera pose:

kp = Tk,w wp. (1)

We denote the intensity image collected from the k-th

camera pose as Ik : Ω ⊂ R
2 7→ R, where Ω is the image

domain. We denote by u ∈ Ω a point in image coordinates.

An observation is a pair {Ik,Tk,w}. A sequence of n
observations is identified by the sequence of time steps

k = r, . . . , r + n, in which the r-th observation is taken

as reference. A depth hypothesis dk is generated from the

observation {Ik,Tk,w} by triangulating u from the views r
and k.

The sequence of dk for k = r, . . . , r + n denotes a set of

noisy depth measurements. We model the depth sensor as a

distribution that mixes a good measurement (normally dis-

tributed around the true depth d̂) and an outlier measurement

(uniformly distributed in an interval [dmin, dmax] which is

known to contain the depth for the structure of interest):

p(dk|d̂, ρ) = ρN (dk|d̂, τ
2
k )+(1−ρ)U(dk|dmin, dmax), (2)

where ρ and τ2k are the probability and the variance of

a good measurement, respectively. Assuming independent

observations, the Bayesian estimation for d̂ on the basis of

the measurements dr+1, . . . , dk is given by the posterior

p(d̂, ρ|dr+1, . . . , dk) ∝ p(d̂, ρ)
∏

k

p(dk|d̂, ρ), (3)

with p(d̂, ρ) being a prior on the true depth and the ratio

of good measurements supporting it. A sequential update is

implemented by using the estimation at time step k− 1 as a

prior to combine with the observation at time step k. To this

purpose, the authors of [19] show that the posterior in (3) can

be approximated by the product of a Gaussian distribution

for the depth and a Beta distribution for the inlier ratio:

q(d̂, ρ|ak, bk, µk, σ
2
k) = Beta(ρ|ak, bk)N (d̂|µk, σ

2
k), (4)

where ak and bk are the parameters controlling the Beta

distribution. The choice is motivated by the fact that the

Beta×Gaussian is the approximating distribution minimiz-

ing the Kullback-Leibler divergence from the true posterior

(3). Upon the k-th observation, the update takes the form

p(d̂, ρ|dr+1, . . . , dk) ≈ q(d̂, ρ|ak−1, bk−1, µk−1, σ
2
k−1)

p(dk|d̂, ρ) const (5)

and the authors of [19] approximated the true posterior (5)

with a Beta ×Gaussian distribution by matching the first

and second order moments for d̂ and ρ. The updates formulas

for ak, bk, µk and σ2
k are thus derived and we refer to the

original work in [19] for the details on the derivation.

2) Regularized Posterior: We now detail our solution to

the problem of smoothing the depth map D(u). For every

pixel u ∈ Ω, the depth estimation and its confidence upon

the k-th observation are given, respectively, by µk and σ2
k

in (4). We formulate the problem of computing a de-noised

depth map F (u) as the following minimization:

min
F

∫

Ω

{G(u) ‖∇F (u)‖ǫ + λ ‖F (u)−D(u)‖1} du, (6)

where λ is a free parameter controlling the trade-off between

the data term and the regularizer, and G(u) is a weighting

function related to the “G-Weighted Total Variation”, intro-

duced in [21] in the context of image segmentation. We pe-

nalize non-smooth surfaces by making use of a regularization

term based on the Huber norm of the gradient, defined as:

‖∇F (u)‖ǫ =

{

||∇F (u)||2
2

2ǫ if ||∇F (u)||2 ≤ ǫ,

||∇F (u)||1 −
ǫ
2 otherwise .

(7)

We chose the Huber norm because it allows smooth re-

construction while preserving discontinuities at strong depth

gradient locations ([12]). The weighting function G(u) in-

fluences the strength of the regularization and we propose to

compute it on the basis of the measure confidence for u:

G(u) = Eρ[q](u)
σ2(u)

σ2
max

+ {1− Eρ[q](u)} , (8)

where we have extended the notation for the expected value

of the inlier ratio Eρ[q] and the variance σ2 in (4) to account

for the specific pixel u. The weighting function (8) affects the

strength of the regularization term: for measurements with

a high expected value for the inlier ratio ρ the weight is

controlled by the measurement variance σ2; measurements

characterized by a small variance (i.e. reliable measurements)

will be less affected by the regularization; differently, the

contribution of the regularization term will be heavier for

measurements characterized by a small expected value for

the inlier ratio or higher measurement variance.

The solution to the minimization problem (6) is computed

iteratively based on the work in [20]. The algorithm exploits

the primal dual formulation of (6),

min
F

max
F∗

〈diag(G)∇F, F ∗〉

+λ||C −D||1 − δF∗(F ∗)−
ǫ

2
||F ∗||22, (9)

and proceeds by alternating gradient descent and ascent

steps in the primal and dual variables, namely F and F ∗.

The indicator function δF∗(F ∗) is such that, for each F ∗,

δF∗(F ∗) = 0 if ||F ∗||1 ≤ 1, and otherwise ∞. Let t and t∗

be the time steps for the gradient descent-ascent with respect

to the primal and dual variable. The update steps in the case

of the Weighted-Huber de-noising model (6) take the form

F ∗
n+1 = prox

(

F ∗
n + t∗(diag(G)∇)F̄

1 + t∗ǫ

)

,

Fn+1 = shrink
(

Fn − t
(

∇T diag(G)
)

F ∗
n+1

)

, (10)

F̄n+1 = 2Fn+1 − Fn,
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Fig. 2. Computation of the measurement uncertainty. The camera poses
acquiring the views Ir and Ik are related by the transformation Tk,r .
The camera centres Cr , Ck and the current estimation of the scene
point rp lie on the epipolar plane.The variance corresponding to one
pixel along the epipolar line passing through e′ and u′ is computed as

τ2
k
=

(

||rp+|| − ||rp||
)2

.

where the resolvent operators are

prox(f̃∗) =
f̃∗

max(1, |f̃∗|)
, (11)

shrink(f̃) =











f̃ − tλ if f̃ − d > tλ

f̃ + tλ if f̃ − d < −tλ

d if |f̃ − d| ≤ tλ

(12)

and d is the noisy depth value corresponding to a specific

pixel.

III. IMPLEMENTATION DETAILS

The monocular reconstruction pipeline is designed to run

in real time on a commodity laptop, using a CPU and a

GPU. The proposed probabilistic depth map and convex

optimization lead to highly parallel algorithms and we based

our implementation on CUDA1.

A. Camera pose estimation

At every time step k, the pose of the camera Tk,r in

the depth map reference frame r is computed by a visual

odometry routine that is based on recent advancement on

semi-direct methods for camera localization [22]. The algo-

rithm operates directly on the image intensity, eliminating

the need for costly feature extraction and resulting in sub-

pixel accuracy at high frame-rates. Three-dimensional map

points are estimated making use of the probabilistic method

described in Section II-B, which proved at the same time

highly robust, accurate and computationally efficient. Our

implementation is characterized by an average drift in pose

of 0.0038 metres per second for an average depth of 1

1http://www.nvidia.com

metre and a computing time of 3.3 milliseconds per acquired

image on the experimental platform detailed in Section IV.

The visual odometry algorithm is run by the CPU, and its

accuracy and efficiency support the simultaneous execution

of the monocular reconstruction pipeline.

B. Measurement update

The parametric model in (4) is a compact representa-

tion, as it stores our confidence in the depth measurement

corresponding to a pixel in only four parameters: a, b, µ
and σ. When a reference frame is taken, the estimation for

every pixel is initialized and updated with every subsequent

view. We set the initial parameters a0 = 10, b0 = 10,

µ0 = 0.5(dmin + dmax) and σ0 = σmax, where σmax is

such that 99% of the probability mass lies in the interval

[dmin, dmax]. Upon the acquisition of the k-th view, the

update introduced in [19] is performed for every pixel of

the reference view. We perform the update until the depth

estimation converges or diverges. At this point, we can either

consider the measurement reliable or discard it. We check

the convergence and divergence conditions by looking at

the variance of the depth posterior σ2
k and the estimated

inlier ratio ρk. Let ηinlier and ηoutlier be thresholds on the

estimated inlier ratio and σthr be a threshold on the variance

of the depth posterior. We have three cases:

• if Eρ[q] > ηinlier and σ2
k < σ2

thr, then the estimation

has converged;

• else if Eρ[q] < ηoutlier, then the estimation has di-

verged;

• otherwise, the estimation continues.

The parameters ηinlier, ηoutlier and σthr control the estima-

tion convergence and can be set according to the accuracy

and robustness requirements for the application at hand.

In order to deal with higher depth ranges, we base our im-

plementation on the inverse depth [23] and use the currently

estimated variance to limit the search for correspondence on

the epipolar line.

C. Measurement uncertainty

When triangulating matched points to estimate the depth

from multiple views, frames taken from nearby vantage

points are less affected by occlusions and allow high quality

matches. On the other hand, a large baseline enables a more

reliable depth estimation but with a higher chance to incur

in occluded regions.

Referring to Figure 2, let rp be the current estimation of

the scene point corresponding to the pixel u in the image

Ir. The variance on the position of rp is obtained by back-

projecting a constant variance of one pixel in the image Ik.

Let t be the translation component of Tk,r and f = rp

||rp||
,

then

a = rp− t (13)

α = arccos

(

f · t

||t||

)

(14)

β = arccos

(

−
a · t

||a|| · ||t||

)

. (15)



Let f be the camera focal length. The angle spanning one

pixel can be added to β in order to compute γ and, thus, by

applying the law of sines, recover the norm of rp
+:

β+ = β + 2 tan−1

(

1

2f

)

(16)

γ = π − α− β+ (17)

||rp
+|| = ||t||

sinβ+

sin γ
. (18)

Therefore, the measurement uncertainty is computed as

τ2k =
(

||rp
+|| − ||rp||

)2
. (19)

IV. EXPERIMENTAL EVALUATION

Fig. 3. The over table evaluation sequence. (a): the reference view.
(b): ground truth depth map. (c): depth map based on [19]. (d): depth
map computed by the proposed method. (e): map of reliable measurement
according to Section III-B. (f): error for the proposed method.

TABLE I

DATASETS FOR COMPARISON AGAINST GROUND TRUTH.

Frames Range Mean Motion Speed
[m] [m] [m] [m/s]

Over table 200 0.827-2.84 1.531 4.576 0.686
Fast motion 900 0.971-6.802 2.015 21.6 1.61

The platform we used for the experimental evaluation of

the proposed monocular reconstruction method is an Intel i7-

3720QM based laptop, equipped with 15 GB of RAM, and

an NVIDIA Quadro K2000M GPU with 384 CUDA cores.
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Fig. 4. Quantitative evaluation on the over table sequence. In (a) the
precision is plotted, namely the percentage of converged estimations that
are within a certain error from the ground truth. In (b) the completeness
is plotted, namely the percentage of ground truth measurements that are
within a certain error from the converged estimations.

We chose the dataset presented in [24] in order to quanti-

tatively evaluate our approach. The dataset consists of views

generated through ray-tracing from a three-dimensional syn-

thetic model. Along with each view, the related exact camera

pose and depth maps are made available. Table I summarizes

the details for the sequences used in the evaluation.

Over table identifies a sequence of views collected down-

looking on a desktop scenario. The sequence is characterized

by a frame rate of 30 frames per second and smooth camera

motion. The sequence identified as fast motion is a collection

of views generated at 60 frames per second with large and

sudden changes of vantage point. The evaluation is based on

comparison with the ground truth depth map corresponding

to the view taken as reference in the reconstruction process.

Two depth maps are compared by computing the sum of

the per-pixel absolute difference. Since we are interested in



Fig. 5. The fast motion evaluation sequence. (a): the reference view.
(b): ground truth depth map. (c): depth map based on [19]. (d): depth
map computed by the proposed method. (e): map of reliable measurement
according to Section III-B. (f): error for the proposed method.

evaluating the depth measurements that have been identified

as reliable by our algorithm, we only take into account those

measurements that have converged according to Section III-

B. We therefore use the converged measurements to create

the masks (e) in Figure 3 and Figure 5, which are used in

the comparison. We define two evaluation metrics: precision,

namely the percentage of converged measurements that fall

below a certain error when compared to the relative ground

truth, and completeness, namely the percentage of ground

truth depths that have been estimated by the proposed method

within a certain error. In order to show the effectiveness

of our approach, we compare our results with depth maps

computed according to the state-of-the-art method introduced

in [19]. This work is at the basis of our probabilistic

treatment and, so far, its applicability has been demonstrated

only for reconstruction of small objects. For our comparison

using the ground truth sequences, the parameters defining

reliable measures have been set at ηinlier = 0.6, ηoutlier =
0.05 and σthr = σmax/10

3. The parameters governing the

optimization were set at ǫ = 10−4 and λ = 0.3, and 200

iterations of the primal-dual update in (10) were run.

Figure 4 reports the result of the evaluation on the over

table sequence. Our approach is capable to recover a number

of erroneous depth estimations, thus yielding a sensible

improvement in terms of accuracy and completeness. To

verify the robustness against noisy camera pose estimation,
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Fig. 6. Quantitative evaluation on the fast motion sequence. In (a) the
precision is plotted, namely the percentage of converged estimations that
are within a certain error from the ground truth. In (b) the completeness
is plotted, namely the percentage of ground truth measurements that are
within a certain error from the converged estimations.

we corrupted the camera position with Gaussian noise, with

zero mean and one centimetre standard deviation on each

coordinate. The results show that the completeness drops.

This is inevitable due to the smaller number of converged

estimations. However, the computation of the depth map

takes advantage of the de-noising step. This trend is even

more evident in the fast motion sequence, depicted in

Figure 5. Here, according to the results in Figure 6, the

advantage of our approach is clearly demonstrated in terms

of both precision and completeness. Handling measurement

uncertainty, the probabilistic treatment of depth allows us to

select the optimal trade-off between precision and accuracy

by varying the σthr parameter. Figure 7 shows how, for a

given error tolerance, the completeness varies as a function of

the variance σ2 that characterizes a reliable measurement. We
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Fig. 7. The percentage of ground truth measurements that are within an
error of 5 and 15 centimetres is plotted as a function of the measurement
variance σ2.

can see, for instance, that using a threshold σthr = 6×10−4,

which is approximately 2×103 times the initialization value

σmax, more than 60% of the depth measurements computed

by our method are affected by an error up to 15 centimetres,

that is approximately 2.6% of the full depth range.

TABLE II

COMPUTING TIME FOR THE EVALUATION DATA

Update time [s] Optimization time [s]

Mean Variance Mean Variance

Over table 0.0382 0.0025 0.1107 0
Fast motion 0.0499 0.0035 0.1149 0
Live acquisition 0.0301 0.0011 0.1122 0.0044

In order to demonstrate the effectiveness of the proposed

approach on real time reconstructions, we present our re-

sults on the City of Sights stage set [25]. We computed a

point cloud from different depth maps acquired by a single

hand-held camera. Our reconstruction pipeline was fed with

images and camera poses computed by the underlying visual

odometry (cfr. Section III-A) at 30 frames per second.

Figure 8 depicts the process of a live depth map ac-

quisition. During the reconstruction, the convergence and

divergence of estimations are displayed as a live feedback

for the user (blue and red respectively in the figure), guid-

ing the motion of the camera to acquire portions of the

scene for which the estimation has not yet converged or

diverged. A qualitative evaluation of the results can be drawn

from Figures 8 and 9. The minimization in (6) imposes

a smoothness constraint on the resulting surface and acts

as a prior when the estimation is uncertain. Wrong depth

computations, caused by shadows or matching errors (see

Figure 8b), cause the respective estimations to diverge (red

points in Figure 8d). The de-noising step propagates the

depth value produced by converged measurements to those

neighbours yielding low confidence, which are characterized

by diverged measurements. The final result, in the form of a

coloured point cloud rendered from two different viewpoints,

is depicted in Figure 9.

Finally, the proposed method is suitable for real time

execution, as can be seen in Table II, where we have

reported the computing time for the evaluation sequences.

The computational cost of the proposed method is dominated

by the search for correspondences on the epipolar line. When

the motion of the camera is smooth, like in the cases of the

over table dataset and live acquisition, the region selected

for the search is small; when the camera motion forms

large baselines, then the candidate search area is wider,

affecting the computing time as in the case of the fast

motion dataset. The depth range characterizing the volume

of interest for the reconstruction also plays an important

role, as the measurement uncertainty is higher for distant

points (cfr. Section III-C). This causes the depth estimation

to require a larger number of views to converge. Nonetheless,

the estimation update runs in real time on the live 30 fps

camera stream, for a camera resolution of 752× 480 pixels.

The computational cost of the optimization step depends

only on the image size and number of iterations, and is

thus constant among an evaluation sequence. Optimization

was run several times during the live acquisition, triggered

by the instantiation of new reference frames, while for the

ground truth sequences the single optimization step that is

performed motivates the 0 variance entries in Table II.

A video demonstrating the reconstruction of scenes ac-

quired by a hand-held camera and a flying robot, is available

at the website http://rpg.ifi.uzh.ch/research_

dense.html.

V. CONCLUSION

In this paper we presented REMODE, a probabilistic

approach to monocular dense reconstruction for robot per-

ception. Our method computes depth maps by combining

Bayesian estimation and recent developments in convex

optimization for image processing. We showed how a prob-

abilistic update scheme can produce a compact and efficient

representation of a depth map and its related uncertainty.

In order to achieve real time execution on a live camera

stream, we parallelized the computation of a depth map

by considering each pixel independently. Afterwards, we

introduced a fast smoothing step that takes into account

the measurement uncertainty to enforce spatial regularity

and mitigates the effect of noisy camera localization. We

evaluated our method in terms of accuracy and completeness,

showing a sensible improvement with respect to the current

state-of-the-art. By handling measurement uncertainty, our

method provides real time information about the progress

and the reliability of the ongoing reconstruction process. This

information is highly valuable to drive the reconstruction,

that is, to determine what views are most informative for the

task at hand.
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