
Remodeling Epithelial Cell Organization:
Transitions Between Front–Rear and
Apical–Basal Polarity

W. James Nelson

Departments of Biology and Molecular and Cellular Physiology, Stanford University,
Stanford, California 94305

Correspondence: wjnelson@stanford.edu

Polarized epithelial cells have a distinctive apical–basal axis of polarity for vectorial
transport of ions and solutes across the epithelium. In contrast, migratory mesenchymal
cells have a front–rear axis of polarity. During development, mesenchymal cells convert
to epithelia by coalescing into aggregates that undergo epithelial differentiation. Signaling
networks and protein complexes comprising Rho family GTPases, polarity complexes
(Crumbs, PAR, and Scribble), and their downstream effectors, including the cytoskeleton
and the endocytic and exocytic vesicle trafficking pathways, together regulate the distri-
butions of plasma membrane and cytoskeletal proteins between front–rear and apical–
basal polarity. The challenge is to understand how these regulators and effectors are
adapted to regulate symmetry breaking processes that generate cell polarities that are spe-
cialized for different cellular activities and functions.

THE BASIC DESIGN OF POLARIZED
EPITHELIAL CELLS

E
pithelial cells are distinguished from other
cell types by their organization into adherent

groups of cells that partition the organism into

discrete compartments—generally, a special-
ized internal compartment separated and

protected from the external environment by

the epithelium. This organization provides a
number of unique physiological properties.

Most importantly, a closed epithelium enables

the regulated exchange of nutrients and waste
between the internal and external environments

(Fig. 1A) (reviewed in Cereijido et al. 2004).

This conserved function of polarized epi-

thelial cells requires that membrane proteins
are sorted and retained in the correct apical or

basolateral membrane domain (Fig. 1B). A

major sorting site for newly synthesized plasma-
membrane proteins is the trans-Golgi complex

(TGN) (the exocytic pathway) (reviewed in

Folsch 2008; Mellman and Nelson 2008), but
additional sorting events between the TGN

and plasma membrane domains (Gravotta

et al. 2007) and different membrane domains
(transcytosis) (Casanova et al. 1990) occur in

the endocytic pathway (Fig. 1B). Some vesicle

trafficking between the TGN and the plasma
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membrane occurs along microtubules (Jaulin
et al. 2007; Lafont et al. 1994), which, compared

with migratory cells (see Fig. 2A), have an

unusual organization in polarized epithelial
cells (Bacallao et al. 1989) (Fig. 1B). Finally,

the docking and fusion of vesicles with the

correct membrane domain requires specific
vesicle tethering (exocyst) and SNARE com-

plexes (Fig. 1B) (reviewed in Mellman and

Nelson 2008).
Several mechanisms maintain the distri-

butions of proteins to the apical or basolateral

membrane domain. First, the tight junction
acts as a molecular fence at the boundary

between the apical and basolateral membrane

domains (apical junctional complex [AJC])
(Fig. 1B) to prevent the free diffusion of pro-

teins from one domain to the other, and a

gate to the paracellular diffusion of ions and

solutes (Fig. 1A) (reviewed in Shin et al.
2006). Second, several classes ofmembrane pro-

teins bind to a cytoplasmic scaffold complex of

ankyrin–spectrin on the basolateralmembrane,
including ion transporters and channels (re-

viewed in Bennett andHealy 2008). These inter-

actions are important in regulating membrane
protein trafficking, and retention in different

membrane domains (reviewed in Bennett and

Healy 2008).

Evolution and Developmental Origins of
Polarized Epithelia

Epithelia arose at the time of the emergence of
primitive metazoans in Precambrian times,

approximately 600 million years ago. The

evolution of mesenchymal cells in bilaterians
enabled a further diversification in the
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Figure 1. Functional and structural organization of polarized epithelia. (A) Functional apical–basal polarity.
Physiological studies of transporting epithelia across the phyla (e.g., crab gill and mammalian kidney
nephron) has revealed a remarkable conservation in the distribution of ion channels (Cl channel, K channel)
transporters (Na,K,2Cl transporter) and pumps (Na/K-ATPase) between the apical and basolateral plasma
membrane domains. The polarized distribution of these proteins generates an apical–basal sodium gradient
that is used to move other ions and solutes across the epithelium. (Redrawn and adapted from Cereijido
et al. 2004.) (B) Structural apical–basal polarity. Polarized epithelial cells have a distinctive apical–basal
polarity in the orientation of cell–cell and cell–extracellular matrix (ECM). Major structures of these cells
are also organized in the apical–basal axis: The organization of plasma membrane domains (apical and
basolateral), junctional complexes (APC, apical junctional complex), the centrosome (basal body),
microtubules and primary cilium, and the secretory pathway (Golgi). For details, see text.
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distribution and organization of epithelial
structures (Baum et al. 2008). Unlike epithelial

cells, mesenchymal cells show weak cell–cell

adhesion and are motile, allowing them to
migrate to different sites in the body cavity

where they convert to epithelial cells and con-

tribute to the formation of secondary epithelia.
This provided additional complexity in com-

partmentalization in metazoans that lead to the

formation of physiologically different tissues
and organs (Magie and Martindale 2008).

The process of formation of polarized

epithelia during development is initiated by
the coalescence of migratory (mesenchymal

and epithelial) cells into cell aggregates that

undergo epithelial differentiation. The cellular
transformation from migratory cells with a

front–rear polarity designed for directional
migration, to an epithelium with an apical–

basal polarity designed for vectorial ion and

solute transport is complex. Signaling pathways
that initiate this mesenchymal-to-epithelial

transition (MET) involve soluble growth

factors and their receptors, and downstream
signaling pathways (Baum et al. 2008; Dressler

2006), and changes in patterns of gene

expression (Boyle and de Caestecker 2006; van
der Flier and Clevers 2008). However, remodel-

ing from front–rear to apical–basal polarity

also involves the reorganization of generic
structures and cellular processes common to

all cell types, including the cytoskeleton, endo-

cytic and exocytic vesicle trafficking pathways,
and mechanisms for localizing and retaining
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Figure 2. Functional and structural organization of migratory mesenchymal cells. (A) Front–rear polarity
overview. Migratory cells have a distinctive organization between the front of the cell (leading edge) and rear
(uropod). Rho family GTPase activities have different functions in inducing actin polymerization at the
leading edge (Cdc42, Rac1), and actomyosin contraction at the rear (RhoA). The centrosome, microtubules,
and the secretory pathway (Golgi) are oriented toward the front of the cell. Endocytic and exocytic pathways
are also oriented in the rear–front orientation, which allows internalization of integrins from the rear, and
exocytosis and endocytosis of integrins in the front, all of which are required for cell migration.
Phosphatidylinositides have a polarized distribution in the front–rear polarity. Polarity protein complexes
are localized to the front of the cell (Scribble/DLG and PAR/aPKC). (B) Front–rear polarity signaling
pathways. Polarity protein complexes (blue) are upstream and downstream of Rho small GTPases (Rac1 and
Cdc42) and their downstream effectors (yellow) and end-point effects (white). For details, see text.
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membrane proteins to different plasma

membrane domains. Here, I focus on master

regulators and signaling pathways that control
front–rear polarity of migratory mesenchymal

cells, establishing the basic design of the

developmental precursors to epithelia. I then
discuss how pathways and regulators common

to both mesenchymal and epithelial cells are

reused and adapted to regulate the symmetry
breaking processes that lead to the conversion

between front–rear and apical–basal polarity.

FRONT–REAR POLARITY IN
MIGRATORY CELLS

Migratory mesenchymal cells show front–rear

polarity required for persistent, directional cell
migration (Fig. 2A) (reviewed in Ridley et al.

2003). Many different external cues initiate

front–rear polarity, including growth factors
and the extracellular matrix. Conversion of

those cues into directional migration requires

global changes in cell organization by protein
complexes and signaling pathways that control

the cytoskeleton and protein trafficking.

Front–Rear Polarity of Phosphatidylinositides

A central feature of polarized migrating cells,

best studied in neutrophils and Dictyostelium,
is the front–rear polarity of different phos-

phatidylinositides in the plasma membrane

(Funamoto et al. 2002; Iijima and Devreotes
2002; Wang et al. 2002). Generally, phos-

phatidylinositide-3,4,5-triphosphate (PtdIns

(3,4,5)P3) is enriched in the plasma membrane
at the front of the cell, whereas phos-

phatidylinositide-3,4-bisphosphate (PtdIns

(3,4)P2) is enriched everywhere else, including
the rear (Fig. 2A). The different distributions

of phosphatidylinositides was thought to be a

consequence of the spatial activation of phos-
phoinositide 3-kinase (PI3-kinase) at the front

of the cell, and phosphatase and tensin

homolog (PTEN) elsewhere. Although this
picture has become more complex (Stephens

et al. 2008), the front–rear distribution of

PtdIns(3,4,5)P3 and PtdIns(3,4)P2 are impor-
tant in generating asymmetry in the activation

of intracellular pathways required for mem-

brane protrusions in axonal growth cones

(Arimura and Kaibuchi 2005), migrating
neutrophils (Stephens et al. 2008), and other

cells (Ridley et al. 2003).

Front–Rear Polarity of Rho GTPases

The generation of front–rear polarity is medi-

ated by the localized activation of members of

the Rho family of small GTPases (Li et al.
2008; reviewed in Iden and Collard 2008). In

general, Cdc42 and Rac1 are activated at the

front of the cell, which results in the rapid and
dynamic assembly of actin filaments mediated

by the Arp2/3 complex and formins (Pollard

2007), and the capture (stabilization) and
polarized orientation of microtubules by

mDia (Palazzo et al. 2001) and microtubule

plus-end binding proteins (Akhmanova et al.
2001; Wen et al. 2004) (reviewed in Li et al.

2008) (Fig. 2A). These localized changes in the

actin and microtubule cytoskeletons generate
membrane protrusions, dynamic assembly

and disassembly of integrin-based contacts

with the extracellular matrix, and forward
movement of the leading edge (Li et al. 2008;

Ridley et al. 2003). RhoA, on the other hand,

is activated at the rear of the cell and promotes
the assembly and activation of contractile

actomyosin networks that are necessary for

detachment of the rear of the cell from the extra-
cellular matrix (Fig. 2A) (Ridley et al. 2003).

Local activation of these small GTPases affects

cell organization globally by maintaining local-
ized sites of actin polymerization (front) and

contractions (rear). Inhibition of local Rac1/
Cdc42 or RhoA activity, or disruption of

the polarized organization of the actin and

microtubule cytoskeletons results in a global
loss of directional migration by neutrophils

(Xu et al. 2003).

Roles of Polarity Complexes in Front–Rear
Functions of Rho GTPase and Cytoskeleton

Polarity complexes regulate the cytoskeleton

either upstream or downstream of Rho family
GTPases (Fig. 2B) (reviewed in Iden and
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Collard 2008). Polarity proteins were originally

identified in epithelia as protein complexes

involved in regulating apical–basal polarity, but
they are also found in migrating mesenchymal

cells. They include three protein complexes,

each defined by its core interacting proteins:
the Scribble complex (Scribble, DLG, and

LGL), the PARtition (PAR) complex (PAR3/
PAR6/atypical protein kinase C [aPKC]) and
PAR4/LKB1, and the Crumbs complex

(Crumbs, PALS1, and PATJ) (see Fig. 2B) (see

McCaffrey and Macara 2009; Prehoda 2009).
These proteins are generally classified as

tumor suppressors (reviewed in Bilder 2004),

but how they control cell proliferation is
poorly understood (see the end of the article

for further discussion). Nevertheless, it is clear

that they play essential roles in cell organization.
They are generally localized at the front of

migrating cells (Fig. 2B), although Scribble

and DLG have also been found at the rear of
migrating T cells (Ludford-Menting et al.

2005). Little is known about plasma membrane

binding sites for Scribble, or other Polarity
complexes at the front (or rear) of cells.

Several mechanisms involving Polarity

complexes locally activate Cdc42 and Rac1 at
the leading edge plasma membrane (Fig. 2B).

Scribble, in a complex with bPIX (PAK-

interacting exchange factor)—a guanine
exchange factor for Cdc42/Rac1—and GIT1

(G-protein coupled receptor interacting

protein 1) (Audebert et al. 2004), controls
Cdc42 activation and localization (Osmani

et al. 2006). Knockdown of Scribble levels in

mammalian tissue culture cells also causes a
decrease in activation of Rac1, indicating that

the Scribble complex regulates Rac1 activity

directly or indirectly (Zhan et al. 2008).
Additional mechanisms regulate Cdc42 and

Rac1 activation at the leading edge (reviewed

in Arimura and Kaibuchi 2005), including
integrin engagement with the extracellular

matrix (Etienne-Manneville and Hall 2001),

Rap1, another Ras family GTPase (Bos 2005),
which activates integrins and Cdc42

(Takahashi et al. 2008), and Rac1 (Gerard

et al. 2007) at the front of migrating cells.
Several feedback loops may be involved in

maintaining active Cdc42 at the front, including

PI3-kinase, which concentrates PtdIns(3,4,5)P3
at the front (Raftopoulou and Hall 2004), and
PAR4/LKB1 (Zhang et al. 2008). Interestingly,

ectopic expression of PAR4/LKB1 in single epi-

thelial cells results in a dramatic global polari-
zation of the cytoskeleton and the formation

of distinct plasma membrane domains in the

absence of either cell–cell or cell–extracellular
matrix adhesion (Baas et al. 2004). Thus, at

least in the context of ectopic expression,

PAR4/LKB1 appears to be an example of a
regulator of autonomous symmetry breaking.

PAR4/LKB1 substrates include another

serine/threonine kinase PAR1 and the family
of ELKL-motif kinases (EMKs), also known

as microtubule-affinity-regulating kinases

(MARKs) (Illenberger et al. 1996). A variety of
studies in fibroblasts, epithelial cells, and

Drosophila indicate that PAR1 and MARKs

regulate microtubule remodeling and organi-
zation, and the delivery of transport vesicles to

the plasma membrane (Cohen et al. 2004a;

Cohen et al. 2004b; Elbert et al. 2005).
aPKC, a component of the PAR3/PAR6

Polarity complex, is a downstream effector of

activated Cdc42 (Fig. 2B), although it may be
localized to the front of the cell independently

of Cdc42 by PATJ (Shin et al. 2007), a com-

ponent of the Crumbs Polarity complex. aPKC
has a number of substrates critical for the

polarization of migrating cells (Fig. 2B). One

substrate is T-cell-lymphoma invasion and
metastasis1 (TIAM1) (Nishimura et al. 2005),

a GEF that activates Rac1 (Pegtel et al. 2007).

Another substrate is glycogen synthase
kinase-3b (GSK3b). GSK3b is inactivated upon

aPKC phosphorylation, one result of which is

that nonphosphorylated APC, normally a
target of active GSK3b, binds to and stabilizes

microtubules at the plasma membrane

(Zumbrunn et al. 2001). Interestingly, DLG, a
component of the Scribble Polarity complex,

binds APC, thereby localizing DLG to the

front of migrating cells (Etienne-Manneville
et al. 2005) (Fig. 2B). Finally, orientation of

microtubules in the front–rear axis affects the

orientation of the centrosome, also called the
microtubule organization center (Fig. 2A),
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which is critical for maintaining overall cell

polarity and directional migration (Etienne-

Manneville and Hall 2003).

Front–Rear Polarization of Endocytic and
Exocytic Membrane Trafficking Pathways

Membrane protein distributions in migratory

cells are organized in the front–rear orientation
by the exocytic and endocytic pathways

(Fig. 2A). Local exocytosis of proteins occurs

at the front of migrations cells (for discussion,
see Bretscher 2008). It is unclear, however, if

newly synthesized proteins are also targeted
specifically to the front of migrating cells.

Although specific sorting of membrane pro-

teins in the exocytic pathway to apical and baso-
lateral membrane domains is generally thought

to be a specialization of epithelial cells polarized

in the apical–basal axis (Fig. 1B), fibroblastic
cells appear to have a similar capacity

(Yoshimori et al. 1996). Further studies are

required, however, to determine whether
protein sorting in the TGN and separate deliv-

ery of different classes of proteins to different

membrane domains is important for establish-
ing or maintaining front–rear polarity in

response to an extracellular cue.

The redistribution of membrane proteins
after delivery to the plasma membrane occurs

via the endocytic pathway. Integrins are an

important class of proteins that are redistrib-
uted from the rear to the front of the cell by

the endocytic pathway (Hopkins et al. 1994;

Lawson and Maxfield 1995) (Fig. 2A). The
endocytic adaptor protein Numb (Salcini

et al. 1997), another substrate for aPKC

(Nishimura and Kaibuchi 2007), is involved
(Fig. 2B). In its nonphosphorylated state,

Numb binds to and induces the endocytosis

of integrins, and promotes cell migration
aPKC phosphorylation of Numb inhibits

Numb binding to integrins, and reduces cell

migration (Nishimura and Kaibuchi 2007). It
is important to recall that aPKC phos-

phorylation of other substrates also promotes

cell migration (see the previous discussion),
indicating that control of aPKC activity (or

substrate accessibility) or location may fine

tune cell polarization and migration.

Several protein complexes that control
vesicle delivery to the plasma membrane are

localized to the front of migrating cells

(Fig. 2B). The complex of Scribble, bPIX, and
GIT1 locally regulates Caþþ-dependent exocy-

tosis at synapses (Audebert et al. 2004), and

the distribution of this complex to the front of
the cell (Fig. 2B) could play a similar role to

promote local transport and vesicle fusion

with the leading edge. Another protein in the
Scribble Polarity complex, LGL, may also play

a role in vesicle fusion at the plasma membrane.

Both mammalian LGL (Musch et al. 2002) and
the yeast homolog Sro7/77 (Lehman et al. 1999)

bind t-SNAREs, and deletion of Sro7/77 in yeast
(Lehman et al. 1999) or LGL in neuronal cells
(Klezovitch et al. 2004) results in inhibition of

some protein delivery to the plasmamembrane.

The Exocyst complex, which is thought to
tether transport vesicles to sites of fusion with

the plasma membrane (Wu et al. 2008), is also

localized to the front of migratory cells
(Fig. 2B) (Spiczka and Yeaman 2008; Zuo et al.

2006). The exocyst interacts with a number of

proteins that could localize it to the leading
edge, including paxillin (a structural and signal-

ing protein associated with integrin focal adhe-

sions), the bPIX-GIT1 complex (Spiczka and
Yeaman 2008), and Apr1 (a protein in the

Arp2/3 complex) (Zuo et al. 2006). Importantly,

knockdown of exocyst proteins results in
decreased delivery of integrins to the front of

the cell and a decreased rate of cell migration

(Spiczka and Yeaman 2008; Zuo et al. 2006),
further supporting the role of polarized traffick-

ing of proteins to the front of migratory cells.

In summary, regulation of front–rear
polarity in migratory cells requires localized

activation of different Rho family small

GTPases at the front (Cdc42, Rac1) and rear
(Rho) of the cell that results in the polarized

orientation and assembly of the actin and

microtubule cytoskeletons. Polarity complexes,
particularly the Scribble complex and com-

ponents of the PAR complex, play multiple

roles in controlling the local distribution and
activation of Rac1 and Cdc42 at the front of
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the cell, downstream regulation of cytoskeleton

organization and assembly, and local regulation

of the endocytic and terminal exocytic machin-
ery that are required for remodeling of mem-

brane protein distributions.

APICAL–BASAL POLARITY IN
EPITHELIAL CELLS

The transition frommigratory cells to the estab-

lishment of a polarized simple epithelium
requires the aggregation of cells through specific

cell–cell interactions, followed by epithelial

differentiation. In general, the adhesive sur-
faces, formed by interactions between cells and

with the extracellular matrix, form the basolat-

eral plasma membrane domain. Characteristi-
cally, the apical plasma membrane forms on

the “nonadhesive” surface. In a few exceptional

cases, however, a nonadhesive surface is present
immediately: For example, the open surface of

epithelial cell monolayers grown in tissue

culture, the outside surface of the preimplan-
tation mammalian embryo, or syncytial blasto-

derm of Drosophila. The formation of an apical

surface within cell aggregates is more complex.

The First Overt Evidence of Apical–Basal
Polarity—Orientation of the
Apical/Luminal Domain

Within an aggregate of cells, a luminal nonad-

hesive surface is not provided and, therefore,
has to be formed de novo. Several mechanisms

appear to generate a nonadhesive surface and

a lumen within an aggregate of cells (reviewed
in Bryant and Mostov 2008): (1) Selective apo-

ptosis of cells in the center of the aggregate

(Mailleux et al. 2008) removes cells, leaving
behind a luminal space; (2) Insertion of apical

proteins from intracellular stores into the

cell–cell contact, coupled with exclusion of
E-cadherin and other basolateral proteins

from that site (Ferrari et al. 2008; Jaffe et al.

2008; Ojakian et al. 1997). In this case, the
lack of cell–cell adhesion proteins would allow

formation of a nonadhesive, luminal surface

on cells containing apical membrane proteins;
(3) Vectorial fluid secretion into the luminal

space mediated by polarized distributions of

ion channels and pumps between the apical

(e.g., CFTR) and basolateral membrane
(e.g., Na/K-ATPase) (Ferrari et al. 2008;

Houghton et al. 2003; Jaffe et al. 2008).

Coupled with the loss of cell–cell adhesion on
the forming apical membrane (see #2 above),

vectorial pumping of fluid would help to fill

the luminal space; and (4) Repulsion of
E-cadherin cell–cell adhesion (e.g., during

formation of the heart tube in the Drosophila

embryo) (Santiago-Martinez et al. 2008). In
this case, inhibition of E-cadherin-mediated

cell–cell adhesion by Slit and Robo pathways

induces formation of a luminal space.
Cell adhesion to the extracellular matrix

(ECM) is critical for signaling the formation

of an apical membrane and luminal space
(reviewed in Bryant and Mostov 2008). In its

simplest role, ECM adhesion enables cells to

distinguish an adhesive surface (attached to
the ECM) and a nonadhesive surface. For

example, single mammary epithelial cells

attached to an ECM (i.e., in the absence of
cell–cell adhesion) secrete b-casein from the

apical surface specifically (Streuli et al. 1995),

and RNA envelope viruses, which normally
bud from the apical (Influenza virus) and

basolateral membrane (Vesicular Stomatitis

virus, VSV) of polarized monolayers of MDCK
cells, but bud from different sites on the plasma

membrane of single MDCK cells attached

to a substratum (Rodriguez-Boulan and
Pendergast 1980).

The specialized role of the ECM in the de

novo formation of the lumen/apical membrane
is important within cell aggregates such as

three-dimensional MDCK epithelial cysts

(reviewed in Bryant and Mostov 2008).
Although details of the mechanisms involved

are not fully understood, it appears that the

initial step is Rac1-dependent adhesion of
integrins to the ECM protein laminin (O’Brien

et al. 2001) (Fig. 3). Subsequently, the asym-

metric distribution of PtdIns(3,4,5)P3 to the
basolateral membrane and PtdIns(3,4)P2 to

the apical membrane initiates the localization

of Cdc42 by annexin II (Martin-Belmonte
et al. 2007), and the PAR complex to the
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apical region of the cell (see the following). It is
unclear how PtdIns(3,4,5)P3 and PtdIns(3,4)P2
are locally synthesized and localized to different

membrane domains. One mechanism may
involve localization of PTEN, which converts

PtdIns(3,4,5)P3 to PtdIns(3,4)P2, to the PAR

complex at the AJC (von Stein et al. 2005). This
could prevent PtdIns(3,4,5)P3 accumulation in

the apical domain. Localization of these different
phosphatidylinositides to the apical and basolat-

eral membranes is important in apical–basal

polarity as ectopic addition of either phosphati-
dylinositide to the “wrong” plasma membrane

domain results in reversal of the apical–basal

polarity of membrane proteins (Martin-
Belmonte et al. 2007).
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PtdIns(3,4,5)P3 is localized in the basolateral membrane. Signals from the extracellular matrix (laminin)
through integrins and Rac1 activity orient cells, and are required for formation of the apical/luminal
domain. Microtubules, which are polarized in the apical–basal axis, are anchored at the basal and lateral
membranes (AJC) by APC and other protein complexes; microtubule/dynein-dependent delivery of mRNAs
to the apical region is required for proper localization of Crumbs, Sdt (PALS1), and PAR3. Modules: Polarity
protein complexes regulate several pathways critical for the establishment and maintenance of apical–basal
polarity. Generally, expression of E-cadherin, Polarity protein complexes, and ECM proteins are required to
establish and maintain apical–basal polarity (epithelial program). Extracellular cues, including growth
factors/cytokines (e.g., TGF-b or HGF) and the transcriptional repressors Snail and ZEB1 down-regulate
expression of this epithelial program causing the loss of epithelial differentiation and cell–cell adhesion, and
resulting in a front–rear polarization and cell migration (the transcriptional module). Plasma membrane
module involves mutually antagonistic regulation of the Crumbs (apical domain) and Scribble (basolateral
domain) complexes, and the PAR complex. The Par complex also locally regulates Rac1 and Rho at the AJC
(see text for details). Components of the Crumbs (Crumbs3) and PAR complexes are localized to the
primary cilium (the primary cilium module) and regulate global cell polarity. The Crumbs complex (the
endocytosis module) and Scribble complex (the exocytosis module) control membrane protein organization
and stability at the AJC (see text for details). Finally, the Scribble complex appears to play a role in regulating
apoptosis (the apoptosis module).
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Apical–Basal Polarization of Endocytic and
Exocytic Membrane Trafficking Pathways

As the cell generates apical–basal polarity, the
exocytic and endocytic pathways establish a

complex interrelationship that regulates correct

sorting of newly synthesized proteins to and
between the apical and basolateral membrane

domains.

A major sorting site for newly synthesized
proteins in the exocytic pathway is the TGN

(Fig. 1B). Two pathways have been identified

that sort apical proteins by clustering them
into a microdomain of the TGN from which

apical transport vesicles form (reviewed in

Schuck and Simons 2004): clustering by glyco-
lipid rafts enriched in sphingolipids and choles-

terol (Paladino et al. 2007), or by association

with galectin-3 oligomers (Delacour et al.
2005). Sorting in the basolateral pathway

involves recognition of diverse cytoplasmic

sorting signals by cytosolic factors,which cluster
these proteins into a TGN micro-domain sepa-

rate from that containing apical proteins. Many

of these basolateral signals are either tyrosine-
or dileucine-based and are recognized by cyto-

solic adaptor proteins (AP) and clathrin

(reviewed in Folsch 2008; Mellman and
Nelson 2008). APs and clathrin are also involved

in sorting proteins in the endocytic pathway

(Edeling et al. 2006), and several studies have
showed the intersection of the basolateral exo-

cytic and endocytic pathways in basolateral

protein sorting (Gravotta et al. 2007) and trans-
cytosis of proteins between different membrane

domains (Casanova et al. 1990).

Some of the vesicle trafficking between the
TGN and plasma membrane, and transcytosis

between membrane domains occurs along

microtubules (Jaulin et al. 2007; Lafont et al.
1994). Microtubules are organized into bundles

aligned in the apical–basal axis of the cell,

with plus ends at the basal membrane and
minus ends in the apical cytoplasm (Fig. 1B)

(Bacallao et al. 1989). How microtubules are

maintained in this apical–basal organization
is poorly understood. Adenomatous polyposis

coli (APC), a microtubule binding protein

associated with the plasma membrane, forms

a template for binding the basal network of

microtubules (Reilein and Nelson 2005), and

is associated with microtubules and the adhe-
rens junction in some cell types (Hamada

and Bienz 2002) (Fig. 3). Microtubules may

also attach indirectly to the cadherin–catenin
complex (adherens junction) through inter-

actions with the dynactin complex (Lien et al.

2008; Ligon and Holzbaur 2007), and
p120catenin and kinesin 1 (Chen et al. 2003).

A population of microtubules is also localized

to the adherens junction through their minus
ends by Nezha and PLEKHA7 that bind to the

cadherin–catenin complex (Meng et al. 2008).

Docking and fusion of vesicles with the
correctmembrane domain requires specific ves-

icle tethering and SNARE complexes (Fig. 1B).

The exocyst vesicle-tethering complex is lo-
calized to the apex of the lateral membrane

domain and specifies basolateral vesicle delivery

there (Grindstaff et al. 1998). However, the role
of the exocyst in vesicle trafficking in apical–

basal polarized cells may be more multifaceted.

The exocyst has also been localized to apical
endosomes where it regulates transcytosis of

membrane proteins between the basolateral and

apicalmembranes (Oztan et al. 2007), and at the
apically localized primary cilium (Overgaard

et al. 2009). In both cases, the exocyst likely

acts as a vesicle-tethering complex, similar to
its function at the plasma membrane.

Different t-SNAREs are localized to the

apical (syntaxin 3) and basolateral (syntaxin
4) membranes (Low et al. 1996) (Fig. 3) and

specify the delivery of cognate transport vesicles

with the correctmembrane domain. This differ-
ential localization is required for correct vesicle

delivery as mislocalization of syntaxin 3 to the

basolateral membrane causes apical proteins
to be mistargeted to the basolateral membrane

(Sharma et al. 2006).

Apical–Basal Organization and Function of
Polarity Proteins

A distinctive feature of polarized epithelia is the

spatial distribution of intercellular junctional

complexes and Polarity protein complexes
(Crumbs, PAR, and Scribble). In vertebrate and
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invertebrate epithelial cells, the adherens junc-

tion and the tight junction are localized to the

apex of the lateral membrane (the AJC) at the
boundary between the apical and basolateral

plasma membrane domains. In invertebrates,

the functional homolog of the tight junction,
the septate junction, is localized on the basal

side of the adherens junction.

Polarity proteins have distinct distributions
at the AJC (Fig. 3; the plasmamembrane identity

module). The Crumbs complex is located to the

apical side of the AJC (Tanentzapf and Tepass
2003), and at the primary cilium (Fan et al.

2004); the PAR complex is localized close to

the AJC (Bilder et al. 2003; Izumi et al. 1998)
and at the primary cilium (Sfakianos et al.

2007); and the Scribble complex is localized

on the lateral membrane below the AJC
(Bilder et al. 2003; Tanentzapf and Tepass 2003).

Several mechanisms regulate the different

distributions of these Polarity protein com-
plexes. In mammalian cells, the PAR complex

binds through PAR3 to two cell–cell adhe-

sion proteins, junction-associated molecule-A
(JAM-A) (Ebnet et al. 2003) and nectin

(Takekuni et al. 2003), that colocalize with

E-cadherin in the AJC. PAR4/LKB1 also closely
colocalizes with E-cadherin (Sebbagh et al.

2009), which may locally regulate its activation

of PAR1 and MARKs, and thereby the organi-
zation of microtubules and the delivery of ves-

icles to the plasma membrane (Cohen et al.

2004a; Cohen et al. 2004b; Elbert et al. 2005).
In vitro studies indicate that binding be-

tween different PDZ domain-containing pro-

teins in the PAR complex (PAR3 and PAR6)
and Crumbs complex (PALS1 and PATJ) could

be involved in positioning the Crumbs

complex close to the PAR complex in the
region of the AJC (Fig. 3) (Lemmers et al.

2004; Roh and Margolis 2003). Other studies

in Drosophila have shown that restriction of
Crumbs to the apical domain of epithelial

cells also requires dynein-dependent basal-to-

apical transport of Crumbs mRNA along
microtubules and localized translation in the

apical cytoplasm (Li et al. 2008). A similar

mechanism may be important in apical locali-
zation of PAR3/bazooka (Harris and Peifer

2005) and Stardust (Sdt, the Drosophila

homolog of mammalian PALS1) (Fig. 3)

(Horne-Badovinac and Bilder 2008). Mecha-
nisms involved in localization of the Scribble

complex to the lateral membrane below the

AJC are unknown.

Downstream Effectors of Polarity Proteins in
Apical–Basal Polarity

The different distributions of Polarity protein

complexes around the AJC are critical to main-

taining the identity of the apical and basolateral
membrane domains (Fig. 3; plasma membrane

identity module). Genetic studies in Drosophila

showed that the Crumbs complex is required

to regulate the formation of the apical mem-

brane, whereas the Scribble complex regulates
the basolateral membrane; loss-of-function

mutations in the Crumbs complex or Scribble

complex result in defects in apical–basal
polarity because of a loss of the apical and baso-

lateral membrane domain, respectively (Bilder

et al. 2003; Tanentzapf and Tepass 2003).
Importantly, loss of either Crumbs or Scribble

signaling can be compensated by decreased

expression of Scribble or Crumbs, respectively,
demonstrating that functions of these com-

plexes are mutually antagonistic (Bilder et al.

2003; Tanentzapf and Tepass 2003).
Despite strong genetic evidence for the

importance of these Polarity complexes in

apical–basal polarity of epithelial cells, their
functions remain poorly understood. This is

in contrast to roles for the PAR complex, par-

ticularly aPKC, and some proteins in the
Scribble complex in front–rear polarity in

migrating cells (localization and activation of

Rho family small GTPases, orientation of the
actin and microtubule cytoskeleton, and

vesicle trafficking) (see Fig. 2). Are any of

these functions important for apical–basal
polarity in epithelial cells?

Rho family GTPases play a number of roles

in polarized epithelial cells (Fig. 3; plasma

membrane identity module). At the adherens

junction, the activities of Rac and Rho antag-

onize each other as Rac stabilizes junctions,
whereas Rho induces actomyosin contraction
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and disrupts junctions (reviewed in Wojciak-

Stothard and Ridley 2002). Rac activity at

junctions may be locally regulated by TIAM1,
which is an aPKC substrate and Rac1 GEF

(Nishimura et al. 2005); note that loss of

TIAM1 results in disruption of intercellular
junctions in keratinocytes (Mertens et al.

2005). Rho-induced apical constriction occurs

during epithelial sheet remodeling in develop-
ment. Recent studies of salivary gland invagina-

tion in the Drosophila embryo revealed two

functions of Rho: As expected, Rho regulated
actomyosin contractility through Rho-kinase

(ROCK); but interestingly, Rho activity was

required to maintain apical polarity of
Crumbs, aPKC, and Sdt, perhaps by controlling

the apical localization of Crumbs mRNA

(Fig. 3) (Xu et al. 2008) (see previous discus-
sion) (Li et al. 2008).

Several studies have identified a number of

specific functions of Cdc42 in the trafficking
of proteins to and from the AJC, and overall

apical–basal polarity of epithelial cells. Cdc42

was initially reported to be important in sta-
bilizing the tight and adherens junctions

(Hutterer et al. 2004), and recent studies indi-

cate that its function may be to regulate the
local trafficking of proteins intrinsic to these

structures through interactions with the PAR

and Crumbs complexes. The Crumbs complex
(Crumbs, PALS1, and PATJ) is required for the

formation and maintenance of tight junctions

(Fogg et al. 2005; Shin et al. 2006). A recent
study in mammalian tissue culture cells showed

that PALS1 and PATJ bind a Cdc42GAP called

Rich1 (RhoGap-interacting with CIP4 homo-
logs protein-1) and the scaffold protein

AMOT (angiomotin) that together control

Cdc42-dependent endocytosis of PALS1,
PAR3, and overall tight junction permeability

(Fig. 3; endocytosis module) (Wells et al. 2006).

Significantly, a separate study in Drosophila

reported that deletion of Cdc42, aPKC, or

PAR6 resulted in discontinuities in intercellular

junctions at the apex of the lateral membrane,
and the formation of ectopic adherens junc-

tions containing E-cadherin along the lateral

membrane (Georgiou et al. 2008). Similar phe-
notypes were observed on deletion of Wasp,

Arp2/3 or dynamin, indicating a requirement

for actin-mediated endocytosis in the mainte-

nance of junctional organization of E-cadherin
downstream of Cdc42 (Fig. 3; endocytosis

module) (Georgiou et al. 2008). Why might

endocytosis be important in regulating the
tight junction? Wells et al. suggested that regu-

lated endocytosis would control the level of

signaling activity of Polarity protein complexes
(Wells et al. 2006). This is supported by the

observation that defective endocytosis of

Crumbs itself leads to an expanded apical
domain and tumor formation, a phenotype

associated with “excess” Crumbs activity (Lu

and Bilder 2005).
Regulation of protein distributions at the

AJC by endocytosis is balanced by directed

exocytosis (Fig. 3; the exocytosis module). The
exocyst vesicle tethering complex, which local-

izes to the AJC (Grindstaff et al. 1998), regulates

the distribution of Polarity protein complexes.
Loss-of-function mutations in the Exo84

exocyst subunit in Drosophila result in loss of

Crumbs and the PAR complex from the AJC
and their localization along the lateral mem-

brane, and an overall decrease in the columnar

morphology of cells (Blankenship et al. 2007).
The Scribble complex is localized basal to

the AJC along the lateral membrane domain,

but its function there is poorly understood.
Perhaps Scribble, in a complex with bPIX and

GIT1, locally regulates Ca2þ-dependent exocy-

tosis, as it does at synapses (Fig. 3; exocytosis
module) (Audebert et al. 2004). LGL is in a

complex with the basolateral t-SNARE syna-

taxin 4 (Musch et al. 2002). Depletion of LGL
in neuronal tissue results in inhibition of some

protein delivery to the plasma membrane,

including N-cadherin (Klezovitch et al. 2004),
but it is unknown if LGL selectively regulates

deliveryof basolateral proteins in epithelial cells.

Organization of the Primary Cilium

As noted earlier, the PAR complex and
Crumbs-3, an isoform of the Crumbs family,

are localized to the primary cilium (Fig. 3;

primary cilium module) (Fan et al. 2004;
Sfakianos et al. 2007). The primary cilium
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regulates cell organization and tissue develop-

ment by mechanisms that are not completely

understood, and abnormal ciliogenesis is
characteristic of a class of genetic diseases (cilo-

pathies) characterized by defects in epithelial

cell polarity (e.g., polycystic kidney disease)
(Singla and Reiter 2006). Deletion of

Crumbs-3 inhibits ciliogenesis (Fan et al.

2004), and deletion of PAR3 or aPKC reduces
the length of the cilium (Sfakianos et al.

2007). Significantly, loss of the primary cilium

results in changes in intercellular junctions,
defective post-Golgi delivery of apical and baso-

lateral membrane proteins, and the partial dis-

organization of apical and basolateral plasma
membrane domains (Overgaard et al. 2009). It

is interesting to note that the centrosome,

from which the basal body of the cilium is
derived (Dawe et al. 2007), also plays a critical

role in the global front–rear organization

of migrating cells (Etienne-Manneville and
Hall 2003).

Other Functions of Polarity Protein
Complexes in Maintaining
Apical–Basal Polarity

Although Polarity proteins have roles in con-

trolling the structural and functional orga-

nization of apical–basal (and front–rear)
polarity, it is important to recall that they are

defined as tumor suppressors—deletion of

one of these tumor suppressors gives rise to
rapid growth, loss of the terminal differentiated

state of the original cell, invasion of surround-

ing normal tissue, and in some cases death
(De Lorenzo et al. 1999). Do these proteins

have functions other than regulating the orga-

nization of cells, such as controlling cell
proliferation, or is the loss of cell polarity

itself causative in deregulation of cell prolifer-

ation? This question was addressed in detailed
structure–function analyses of Scribble (Zeitler

et al. 2004) and DLG (Hough et al. 1997) in

Drosophila, which defined a similar domain in
each protein that was required for cell polarity

(LLR domain), and another (PDZ domain)

that controlled cell proliferation. Although a
simple conclusion is that these two functions

are independent, Zeitler et al. showed that the

proliferation defect induced by deletion of the

PDZ domain of Scribble could be rescued by
overexpression of the LRR-polarity domain

(Zeitler et al. 2004). This indicates that the

two functions are more likely to be linked
through the role of Scribble in controlling cell

polarity, i.e., loss of polarity results in deregula-

tion of proliferation.
Studies in mammalian cells indicate, how-

ever, that the role of Scribble in the control of

cell growth is even more complex (Fig. 3; apop-
tosis module). SiRNA-mediated depletion of

Scribble in three-dimenional acini formed by

MCF10A mammary epithelial cells had a
modest effect on apical–basal polarity, but

resulted in filling of the luminal space of the

acini with cells (Zhan et al. 2008). This was
not because of an increase in cell proliferation,

but rather to a decrease in apoptosis, which is

normally required to clear the luminal space
of cells in this model system (Mailleux et al.

2008). SiRNA of Scribble also suppressed the

increase in apoptosis normally caused by over-
expression of HPV E7 or Myc, although it had

no effect on E7- or Myc-induced increase in

cell proliferation (Zhan et al. 2008). The effect
of Scribble on apoptosis was traced back to

the role of the Scribble/bPIX/GIT1 complex

in activating Rac1. In addition to its effect on
actin and microtubule organization, activated

Rac1 induces apoptosis by activating JNK

(Fig. 3; The apoptosis module), and in the
absence of Scribble (or bPIX) this does not

occur, resulting in overgrowth of cells because

of lack of apoptosis (Zhan et al. 2008).
Whether other Polarity proteins play a

role similar to that of Scribble in regulating

cell growth is unclear. A genetic screen in
Drosophila for mutations that enhanced tumor-

igenesis caused by loss of DLG expression

identified a serine/threonine kinase Warts
(Fig. 3; apoptosis module) (Zhao et al. 2008).

In Drosophila, Warts is a downstream com-

ponent of the Hippo signaling pathway that
regulates organ growth. Mammalian homologs

of Hippo (Mst1 and Mst2) and Warts (Lats1

and Lats2) are also tumor suppressors and loss
of their expression is linked to highly aggressive
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breast tumors (Reddy and Irvine 2008).

Downstream targets of Warts regulate cell

cycle progression (Cyclin A, B, and E) and
apoptosis (the Drosophila homolog of baculo-

virus inhibitor of apoptosis 1, DIAP1) (Reddy

and Irvine 2008; Zhao et al. 2008). These
results indicate that DLG may also be involved

in controlling cell cycle progression and apop-

tosis, but further studies are needed to define
how it is linked to the Hippo-Warts signaling

pathway. Whether other Polarity proteins are

involved in regulating organ/tissue growth
through proliferation or apoptosis is not

known, but the effects of Scribble and DLD

described previously indicate that this is likely
to be an interesting area of study.

Transitions from Front–Rear to
Apical–Basal Polarity

Changes in gene expression are involved in the
transition from migrating cells with a front–

rear polarity designed for directional migration,

to an epithelium with an apical–basal polarity
designed for vectorial ion and solute transport

(Boyle and de Caestecker 2006; van der Flier

and Clevers 2008). However, structures and cel-
lular processes generic to both cell types are also

reused or adapted, including the cytoskeleton,

endocytic and exocytic vesicle trafficking path-
ways, and the localization of plasma mem-

brane proteins. These remodeling events are

initiated by cell–cell adhesion that instantly
forms a critical membrane template for the

transition from front–rear to apical–basal

polarity (Fig. 4B).
The transition from front–rear polarity of

migratory cells to the establishment of apical–

basal polarity of simple epithelium (MET)
requires the aggregation of cells (Fig. 4A)

through specific cell–cell interactions, particu-

larly those initiated by the cadherin family of
Ca2þ-dependent adhesion proteins (Halbleib

and Nelson 2006). As noted earlier, cell

adhesion to the ECM is also critical for generat-
ing the formation of an apical membrane and

luminal space (reviewed in Bryant and Mostov

2008). It is likely, therefore, that cell–cell adhe-
sion, which generates “adhesive” (basolateral)

and nonadhesive (apical) surfaces, and cell–

ECM adhesion, which defines the axis of

apical–basal polarity, combine to form the cor-
rectly oriented polarity of simple epithelial cells.

Genetic studies in mammals and Drosoph-

ila showed that deletion or mutations in
E-cadherin resulted in disruption of the first

epithelial structures, the trophectoderm of the

preimplantation mouse embryo (Larue et al.
1994), and the epidermis of the Drosophila

embryo (Wang et al. 2004). Furthermore,

knockdown of E-cadherin in MDCK cells in
tissue culture inhibits the establishment of cell

polarity (Capaldo and Macara 2007). Other

proteins are also involved in cell–cell adhesion,
including members of the Ig superfamily

(JAM-A and nectin).

How cells respond to cadherin-mediated
cell–cell contacts to initiate the formation

of functionally different plasma membrane

domains is poorly understood. Initially, the
establishment of cell surface polarity may be

controlled at the plasma membrane by the des-

ignation of the adhesive surface/basolateral
membrane formed by cell–cell contacts, and

the rapid organization of microtubules and

the exocytic machinery that specifies the deliv-
ery of the correct set of transport vesicles to

that site (Fig. 4B). Basolateral protein accumu-

lation at nascent cell–cell contacts in MDCK
tissue culture cells requires microtubules

(Shaw et al. 2007), the exocyst vesicle tethering

complex, and the vesicle fusion t-SNARE
syntaxin 4 (Nejsum and Nelson 2007). Micro-

tubules may attach indirectly to the cadherin–

catenin complex through interactions with the
dynactin complex (Lien et al. 2008; Ligon

and Holzbaur 2007), and p120catenin and

kinesin 1 (Chen et al. 2003). It is also interesting
to note that in migratory cells, the plus ends of

microtubules are oriented to the leading edge by

APC (see Fig. 2), and in polarized cells, APC is
associated with microtubules at the adherens

junction (Fig. 3) (Hamada and Bienz 2002).

Thus, cell–cell contacts mediated by inter-
actions between the leading edge of migrating

cells would result in the localization of APC

close to the forming cadherin adhesion com-
plexes (Fig. 4).
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Mechanisms involved in localization of the

exocyst and t-SNARE to initial cell–cell con-
tacts remain poorly understood. The exocyst is

in a complex with E-cadherin and nectin,

suggesting a direct recruitment of the exocyst
to membrane sites of E-cadherin adhesion

(Fig. 4) (Yeaman et al. 2004). Note that the

exocyst is also localized to the front of migrating
cells (see Fig. 2). Thus, as migrating cells recog-

nize and contact each other, the exocyst would

be in place to immediately direct transport ves-
icles to sites of cell–cell contacts (Fig. 4).

The PAR complex also localizes to nascent

epithelial cell–cell contacts (Suzuki et al.
2002) through binding to the adhesion proteins

JAM-A (Ebnet et al. 2003) and nectin (Takekuni

et al. 2003). JAM-A, nectins, and the PAR
complex colocalize at the AJC in fully polarized

epithelial cells, where the PAR complex is

critical for regulating apical–basal polarity
(Fig. 3). It is possible that early recruitment of

the PAR complex to initial cell–cell contacts

establishes its location at the AJC between
the forming apical (Crumbs complex) and

A Transition from migratory cells to epithelial structures

B Organization of signaling pathways at nascent cell–cell contacts

Laminin

Extracellular cues

Migratory cells

FRONT APICAL 

BASAL 

Induction of cell–cell adhesion

Structural

and functional

polarization

APC
+ end MT 

orientation 

DLG

Scribble

PAR3/6

LGL

Rac1

Exocytosis

Syntaxin4

Exocyst JAM-A

Ptdlns(3,4,5)P3

Integrin

aPKC

Nectin

E-cadherin

Figure 4. Transition between front–rear and apical–basal polarity. (A) Transition from migratory cells to
epithelial structures. During development, migratory (mesenchymal) cells coalesce into cell aggregates
through cell–cell adhesion, and following induction of the epithelial program, develop into epithelial
structures (e.g., a tube). (B) Organization of signaling pathways at nascent cell–cell contacts. Migratory cells
interact with each other through their leading edge (front). Cell–cell adhesion is induced by E-cadherin, and
additional adhesion proteins (nectin, JAM-A). These adhesion proteins have direct (solid line) and indirect
(dotted line) interactions with protein complexes important in apical–basal polarity, including the PAR
complex (JAM-A) and the exocyst (directed exocytosis, E-cadherin/nectin); Scribble and LGL are also
localized at the leading edge and play critical roles in regulating expocytosis through binding the t-SNARE
syntaxin4. Microtubules are oriented toward the front of migrating cells through the localization of the APC
(and DLG) complex at the leading edge; APC also plays a role in localizing microtubules to the AJC in the
apical–basal axis in polarized epithelial cells.
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basolateral (Scribble complex) membrane

domains (Fig. 4).

And Back Again—Transitions from
Apical–Basal to Front–Rear Polarity

Loss of apical–basal polarity and re-initiation

of front–rear polarity, termed EMT, is associ-
ated with changes in cell organization during

injury (for example, see Ishibe and Cantley

2008) in response growth factors/cytokines
such as hepatocyte growth factor (HGF) or

transforming growth factor-b (TGF-b) and

oncogenic transfomation (reviewed in Thiery
and Sleeman 2006). EMT is often associated

with loss of E-cadherin and other characteris-

tics of the epithelial (apical–basal) program
(Peinado et al. 2007). This change in cell

polarity is a direct result of loss of expression

of key components that regulate apical–basal
polarity (Fig. 3; transcription module). HGF

and TGF-b induce the expression of Snail and

ZEB1, which directly repress transcription of
E-cadherin (Peinado et al. 2007), the Scribble

and Crumbs Polarity complexes (Aigner et al.

2007; Whiteman et al. 2008), protein trafficking
pathways (DeCraene et al. 2005), and ECMpro-

teins (Spaderna et al. 2006). Reversal of EMT,

following recovery from injury for example,
may be controlled by down-regulation of Snail

and ZEB1 by the microRNA, miR-200 (Burk

et al. 2008). Interestingly, miR-200 itself is a
target for ZEB1 (Burk et al. 2008), indicating

a complex feedback regulation in maintain-

ing the balance between polarity states of polar-
ized cells (apical–basal) and migratory cells

(front–rear).

CONCLUSIONS

Transitions in cellular organization from front–

rear (migratory cells) to apical–basal (simple
epithelia) polarity, and back to front–rear

occur throughout normal development and in

disease states. These transitions are signaled by
soluble cues such as growth factors and receptor

ligands, and changes in physical cues such as

cell–ECM and cell–cell adhesion. Cellular
responses to these cues involve changes in

gene expression programs, and the reorganiz-

ation of generic cellular machineries common

to both types of cell polarity, including the
cytoskeleton and vesicle trafficking pathways.

Studies in a variety of cell types and organ-

isms show that plasma membrane-associated
Polarity complexes and downstream signaling

pathways involving Rho family GTPases regu-

late the cytoskeleton and mechanisms that
specify plasma membrane protein delivery,

and removal and recycling by the exocytic and

endocytic pathways. A major challenge is to
understand how mechanisms that initiate tran-

sitions in cell polarity (e.g., from front–rear to

apical–basal) are linked to mechanisms that
localize and activate Polarity complexes and

their downstream signaling pathways to ensure

the correct remodeling of cell polarity required
for a specialized function (e.g., from cell migra-

tion to vectorial ion/solute transport).
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