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Abstract—In many body sensor network (BSN) applications,
such as activity recognition for assisted living residents or physi-
cal fitness assessment of a sports team, users spend a significant
amount of time with one another while performing many of the
same activities. We exploit this physical proximity with Remora,
a smartphone-based Body Sensor Network activity recognition
system which shares sensing resources among neighboring BSNs.
Compared to other resource sharing approaches, Remora pro-
vides both increased accuracy and significant energy savings. To
increase classification accuracy, Remora BSNs share sensors by
overhearing neighbors’ sensor data transmissions. When sharing,
fewer on-body sensors are needed to achieve high accuracy,
resulting in energy savings by turning off unneeded sensors.
To save phone energy, neighboring BSNs share classifiers: only
one classifier is active at a time classifying activities for all
neighbors. Remora addresses three major challenges of sharing
with physical neighbors: 1) Sharing only when the energy benefit
outweighs the cost, 2) Finding and utilizing the shared sensors
and classifiers which produce the best combination of accuracy
improvement and energy savings, and 3) Providing a lightweight
and collaborative classification approach, without the use of
a backend server, which adapts to the dynamics of available
neighbors. In a two week evaluation with 6 subjects, we show that
Remora provides up to a 30% accuracy increase while extending
phone battery lifetime by over 65%.

I. INTRODUCTION

Specialized personal sensing applications, especially in the

context awareness and activity recognition domain, are ideally

suited for body sensor network (BSN) deployments. Specifi-

cally, the wide variety of sensor modalities available for on-

body nodes provide sensing capability that far exceeds using

smartphones alone. Conversely, a smartphone, in conjunction

with on-body nodes, provides additional sensing power, com-

putational capability, portability, and a user-friendly interface

for personal control and runtime feedback. Activity recog-

nition applications which can exploit BSNs include assisted

living [1], physical fitness assessment [2], and patient monitor-

ing [3] [4]. A physician may administer BSNs for retirement

community residents to detect depression and ensure proper

eating, social activity, and exercise. Similarly, a university

sports team coach may deploy BSNs on his or her student-

athletes to ensure optimal performance [5]. The BSN worn by

each student-athlete can not only measure athletic performance
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but also detect daily living habits that may be detrimental, such

as excessive social activity or lack of studying.

Smartphone-based BSN applications which use activity

recognition to assess daily living habits, such as those men-

tioned above, demand high classification accuracy and long

system lifetimes. However, many individual BSNs may exhibit

poor accuracy due to specific user behavior, background noise,

and even difficult to classify activities. For example, an activity

classifier may be easily confused between a meeting with

colleagues and watching television. Furthermore, smartphone

batteries are quickly drained after 8-10 hours of BSN use [6],

thus requiring frequent recharges.

To address energy and accuracy concerns, a promising

approach is to share sensing resources among users; however

the existing solutions focus on either accuracy or energy

improvements but not both. The authors of [7] provide an

energy cost-benefit model for smartphone-based context shar-

ing, but do not address potential accuracy gains. Other energy

saving approaches [1] [8] do not share resources in direct

proximity, instead using backend servers. Instead of energy,

some methods aim to improve application performance, such

as activity classification accuracy, through sharing classifiers

[9] or sensor data [10] [11].

Consequently, we propose that BSNs in physical proximity

to one another opportunistically share resources to improve

both energy savings and activity classification accuracy. In

our work, BSN neighbors, such as family and friends, exploit

overheard on-body sensor data transmissions to increase classi-

fication accuracy. Unlike existing work which shares high level

context data, our approach permits each on-body sensor to

be shared independently. By using available neighbor sensors

that are both individually accurate and have complimentary

classification capabilities, we can significantly increase clas-

sification accuracy. Through sharing, neighbors can use fewer

sensors, allowing more to be disabled to save energy. Also, to

increase phone battery life, classifiers are duty cycled among

neighbors, allowing one phone to make classifications for all

neighbors while all other phones go into a low power sleep.

To improve both classification accuracy and extend sys-

tem lifetime among neighboring BSNs, we present Remora.

Remora addresses three prominent challenges that arise from

BSN resource sharing. First, we determine when to share. By

characterizing the costs and benefits of sharing at a resource

level, we determine the energy overhead required for each

BSN to collect training data, train new sensor classifiers



for newly detected neighbors, and compare against predicted

energy benefits. Second, we determine what to share: through

a sharing aware classification approach, Remora finds and

utilizes the sensors and classifiers that provide the best com-

bination of accuracy and energy savings. Third, we determine

how to share: our sharing-aware classification approach uses

an ensemble classifier that efficiently adapts to changes in

neighbor and sensor availability. Sharing BSNs jointly select

sensors to maximize training accuracy and use as few sensors

as possible to save sensor energy. To save phone energy,

sharing BSNs only use one active classifier per time period.

Our main contributions are:

• We analyze the overhead of sharing sensors and classi-

fiers with a time and energy model, only sharing when

neighboring BSNs receive an energy benefit.

• We provide an efficient method to share sensors and

classifiers among neighboring BSNs. A collaborative

approach allows neighbors to share only a small set

of accurate and complimentary sensors and duty cycle

classifiers to save phone energy.

• With two weeks of evaluation from six subjects, in

comparison with using only individual BSN resources,

Remora can increase activity classification accuracy by

up to 30% and extend battery lifetime by over 65%.

This paper is organized as follows: In Section II, we present

related work and provide motivation behind our design in

Section III. We discuss our Remora design in Section IV,

describe our Sharing-Aware Classification approach in Section

V, and explain the cost and benefits of resource-level sharing

in Section VI. We evaluate Remora performance in Section

VII, and present conclusions and future work in Section VIII.

II. RELATED WORK

Several works share sensing resources with the aim of

saving energy and do not focus on other performance goals,

such as classification accuracy. In [7], an energy cost-benefit

model is used to share context among neighboring phones,

allowing neighbors to periodically power down sensors to

save energy. Furthermore, sharing is only conducted at the

context level; sensors that cannot provide context information

on their own are not shared individually. Another effort [12]

also offloads sensing tasks to nearby fixed sensors but not

among multiple users. For detecting neighboring devices, [13]

presents an energy efficient protocol. Another effort [8] shares

neighboring phone data via backend servers and uses an

adaptive sampling rate for energy savings. Also, the authors

of [14] offload execution to backend servers to save energy.

Other works share resources with the explicit goal of

improving application performance, but do not focus on energy

savings. In [10], nearby drivers exchange traffic light data to

determine optimal driving speed. Speaker recognition classi-

fiers are combined among phones in physical proximity to

each other in [9] [15], which increases accuracy. Rather than

share with physical neighbors, users share data on a backend

server for collaborative video editing [16] and classifying

Fig. 1: Sharing Hierarchy. Fig. 2: BSN setup.

user interactions [17] [1] as well as share training data or

classification models [11] [18] to reduce training overhead.

Many existing on-body sensing and activity classification

approaches do not allow any collaboration among users. On-

body sensors are used for classification [2] [4], some of which

[6] [19] provide energy saving methods. Other approaches

[20] [21] use only smartphone sensors for activity classifi-

cation. A phone-only classification technique [22] provides

an energy-latency-accuracy tradeoff, while other methods [23]

[24] achieve energy savings with adaptive sampling.

III. FEASIBILITY AND MOTIVATION

In this section, we first discuss sharing feasibility and how

BSNs can share sensors and classifiers. Then, we present

our experimental configuration, and lastly, we show in a

short experiment the potential accuracy and energy benefits

of sharing.

A. Feasibility

We first discuss three issues concerning the feasibility of

sharing: opportunity, resources, and privacy:

Sharing Opportunity. Our approach targets applications

where users have strong interpersonal ties. Along these lines,

the MIT Reality Mining [25] dataset, which analyzed physical

interactions among students and faculty, demonstrates that on

average each subject was in proximity with at least one other

subject 25% of the time. Our evaluation in Section VII yields

similar results: subjects were collocated 30-50% of the time.

Sharing Hierarchy. In Figure 1, we present BSN resources

which are eligible for sharing among users. We use the

bottom two layers (Sensor and Classifier) to exploit proximity,

improving accuracy and energy use. We leave the Cloud Layer

for future work. In the Sensor Layer, when 2 or more BSNs

are in proximity to each other, the phone for each BSN

overhears the transmissions of the others’ sensor nodes. Neigh-

boring BSNs freeride, opportunistically using the overheard

data directly to train their own classifiers and make activity

classification decisions. Neighbors collaborate to select a set of

sensors that achieves higher accuracy and uses fewer combined

sensors compared with individual classification.

To save phone energy, at the Classifier Layer, neighbors

duty cycle classifiers so that at any given time, only one

active classifier is running, allowing all other phones to go

into a low power sleep state. Since the active classifier makes
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Fig. 3: Accuracy for shared and individual BSNs.
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Fig. 5: Randomly sensor clusters.

classification decisions for all neighbors, neighbors only share

if they are all performing the same activity. However, in

our evaluation, neighbors in close proximity are likely to be

performing the same activity. Additionally, a short duty cycle

time allows quick detection of activity changes while sharing.

Privacy. We provide several features to address privacy

concerns. First, previous work has established that people are

more likely to share with others in close physical proximity

[26], such as friends and colleagues. Because users share only

with neighbors in physical proximity, sharing neighbors are

already able to visually identify the activities being performed.

Second, a user can define “private” sensors which are not

shared while “public” sensors are shared and broadcast data

to neighbors. For example, a user may define a wireless heart

rate monitor or pulse oximeter as private. Third, each on-

body node aggregates sensor data samples before transmitting,

providing coarse-grained aggregated data to both the local

and neighboring BSNs. A similar method [27] obfuscates

personally identifiable characteristics of phone sensor data.

B. Experimental Configuration

Each subject in our experiments wore four TinyOS-based

Crossbow IRIS motes, shown in Figure 2. Each mote is

wirelessly linked to a TelosB base station, which is connected

via USB to an Android HTC Hero smartphone. Our solution

can be extended beyond the research-based TinyOS devices

to work with more ergonomic devices. We present details on

sensors, sampling, and classification:

Sensors. On the phone, which we attach to the waist, we

use the 3-axis accelerometer as well as velocity from WiFi

and GPS, with GPS active only when WiFi is unavailable.

On the mote, we use an MTS310 sensorboard with the fol-

lowing sensors: 2-axis accelerometer, microphone, light, and

temperature. In addition to the mote sensors, the base station

collects RSSI from received packets, which has been shown

[28] to provide insight into body posture. Each subject makes

all on-body sensors public and all phone sensors private.

Sampling and Aggregation. For the microphones and

accelerometers, raw ADC values are sampled at 20ms intervals

to ensure quick body movements can be captured, with light

and temperature ADC readings sampled at 1s intervals, and

GPS/WiFi sampled every 10s. To reduce communication over-

head, data for each sensor is aggregated locally on each node

at 10s intervals, which is well within the time granularity of

the activities we classify. During local aggregation, light and

temperature sensor readings are averaged since these sensor

readings remain relatively stable for each activity. Except for

GPS/WiFi, all other sensors compute the difference between

the highest and lowest readings for each aggregation interval,

for the change in readings indicate body movement or sound.

Aggregated data for all sensors on a mote is combined

into a single packet and broadcasted to the local phone

and any neighboring phones. Motes transmit at the lowest

available sending power to save energy and reduce congestion

while a reliable communication scheme with the local phone

eliminates packet loss with fewer than 1% retransmissions.

Classification. At each aggregation interval, aggregated data

is used to classify activities with a Bootstrap Aggregating

(Bagging) [29] classifier, detailed in Section V. During the

experiment, subjects recorded all activity ground truth in order

to evaluate the accuracy of training data (training accuracy)

and runtime accuracy.

C. Motivation: Identifying Sharing Benefits

Through a shared activity experiment with 2 BSNs, we

show how sharing can improve accuracy and save energy. Two

subjects performed four shared activities (driving, reading,

walking, and watching TV) for over four hours. We use the

same data to compute individual and shared classification

results, using 10 observations per activity as training data.

Since Bagging trains nondeterministically, we plot average

runtime accuracy and standard deviation over 30 runs in

Figure 3, demonstrating stable performance. From the figure,

when both BSNs share each other’s sensors, this results in a

total accuracy increase of 12% points for Subject 1 and 5%

points for Subject 2. This is because the reading and watching

TV activities are performed in the same room and are often

confused when only individual sensors are available. However,

due to their different locations, sensors from a neighboring

BSN provide complimentary information and can be exploited

to provide higher accuracy for both activities.

In Figure 4, we compare the accuracy of sensors at different

body locations. The figure shows that on-body sensors improve

accuracy significantly compared with using phone sensors

only. For both the individual and shared scenarios, accuracy

is improved by over 25% when using all available on-body

sensors. Leg sensors give the greatest boost, for they remain



Fig. 6: Remora Architecture. Neighbor Management determines if sharing
with detected neighbors will provide an energy benefit. Sharing-Aware Classi-
fication collaborates with neighbors to select sensors for shared classification,
classifies sensor data from the local phone, local motes, and neighboring
motes, and duty cycles classifiers among neighboring phones.

still during sitting activities and in motion while walking,

which is easily captured by accelerometers.

Lastly, we show that we can save energy by choosing only

the most capable sensors and turning off unneeded sensors. For

Subject 1, we generate 100 random sensor clusters of sizes 10

through 40 from all available sensors, including public sensors

on Subject 2. Training classifiers for each cluster, we plot

the minimum, maximum, and average accuracy in Figure 5.

The figure shows that if we only choose 10 sensors, we can

still achieve 97% accuracy, as long as we choose the right 10

sensors. This result motivates us to provide an efficient sensor

selection approach for shared BSNs, described in Section V-C,

that chooses a small number of sensors to achieve both high

accuracy and node energy savings.

IV. DESIGN OVERVIEW

With our goal of energy and accuracy gains through BSN

resource sharing, we present the Remora system architecture

in Figure 6. Each BSN consists of TinyOS-based motes and an

Android phone with no reliance on a backend server. For each

BSN, multiple on-body motes (Local Motes) communicate

wirelessly with the phone (Local Phone). While our system

uses a USB-connected base station as an 802.15.4 relay

between other phones and motes, Remora can also use other

communication modalities, such as Bluetooth.

During runtime, Neighbor Management detects neighbors

and initiates sharing with neighbors only if sharing will

provide an energy benefit. Sharing-Aware Classification trains

classifiers and classifies activities using local sensors as well

as neighbor sensors made available by Neighbor Manage-

ment. Sharing-Aware Classification also duty cycles classifiers

among sharing BSNs to save phone energy. We now describe

the core of our Remora system, with our significant contribu-

tions highlighted in gray in Figure 6:

Neighbor Management. The Neighbor Management mod-

ule determines the costs and benefits of sharing and initi-

ates sharing only when an energy benefit is possible. Using

Proximity Detection and Duration Prediction, a BSN detects

a neighbor when it overhears a neighbor’s sensor data radio

transmissions. Since detected neighbors must be in proximity

Fig. 7: Activity status.

Fig. 8: Map view of individual and shared activi-
ties.

long enough for sharing to provide an energy benefit, we

predict neighbor proximity in a manner similar to [7], where

duration is predicted based on the type of neighbor (colleague,

friend, relative, or stranger) and the current activity. For

example, in [7], work related activities with colleagues average

200 minutes compared to encounters with strangers or eating,

which average less than 45 minutes. To increase duration

prediction accuracy, we combine this method with online

shared calendar entries provided by each user as in [30].

The proximity duration estimate is then combined with an

empirical model in Cost-Benefit Analysis to determine the

energy costs and benefits of sharing. Sharing is initiated when

Cost-Benefit Analysis determines that a neighbor will be in

proximity long enough for the energy benefit of sharing to

exceed any additional energy cost to collect new ground truth

and train a shared classifier.

Sharing-Aware Classification. The Sharing-Aware Clas-

sification module provides a classification and training ap-

proach which adapts to the dynamics of available neighbors,

utilizing neighbor and local resources which provide the

best combination of high accuracy and energy savings. To

efficiently classify activities on the phone in the presence

of changing neighbor availability, we use Bagging [29], an

ensemble classifier. Bagging allows a Remora BSN to quickly

create an accurate classifier by combining weak classifiers

from available local and neighbor sensors. At each aggregation

interval, a decision classified by the ensemble is pushed to the

application as well as pulled by other neighbors whose phones

recently returned from a low power sleep state.

At the start of runtime, each BSN uses a classifier for indi-

vidual classification based on available training data (Training

Data Management) or a previously trained classifier. When

sharing is initiated, Collaborative Sensor Selection allows

BSNs to work together to choose only the most capable sen-

sors, creating a Bagging classifier that achieves high training

accuracy for all neighbors yet uses fewer on-body sensors.

Unused sensors are disabled during runtime to save energy. To

save phone energy while sharing, one active neighbor makes

a classification decision for the group at each aggregation

interval (Duty Cycling). For each inactive BSN, as long as

users are not interacting with the phone, the phone enters a

low power sleep state to save energy.

UI and Applications. We implement an Android app to

allow easy configuration, ground truth labeling, and storage



for sensor data and trained classifiers. In the application, the

user configures and chooses which sensors are available for

sharing, selects neighbors with whom to share, and starts

and stops classification. Figure 7 depicts activity feedback

during runtime, indicating shared neighbors, expected activity

duration, and time each neighbor has spent sleeping or awake.

We also provide a dialog to prompt the user to label ground

truth before training a classifier. With a web-based application,

depicted in Figure 8, users can visualize individual and shared

activity inferences. Each BSN user is able to see how his or her

activities and locations intertwine with friends and colleagues.

For example, in the figure, two users arrive separately on a

university campus, conduct a meeting, and then leave together.

V. SHARING-AWARE CLASSIFICATION

In this section, we first explain details on our classifier as

well as what happens when Cost-Benefit Analysis initiates

sharing. Second, if sharing is initiated and a new classifier is

needed, we provide a motivation experiment and then explain

how neighboring BSNs train new classifiers by collaboratively

choose sensors for shared classification. Lastly, we explain

how BSNs share classifiers and duty cycle them to significantly

increase phone battery life.

A. Classification and Sharing Initialization

We use an ensemble technique, Bootstrap Aggregating

(Bagging) [29] for activity classification. Bagging is a light-

weight approach appropriate for phones that makes classifi-

cation decisions based on the majority vote of an ensemble

of weak classifiers. In our Bagging classifiers, each weak

classifier is a Naive Bayes classifier trained from the training

data of a single sensor as is performed in [6]. Other sharing

approaches use more complex techniques, such as GMMs

trained offline [9] or Boosting [11].

Bagging is exceptionally useful for addressing the dynam-

ics of available neighbors: in addition to its quick training

time and unlike many other classification methods, we can

efficiently combine two existing Bagging classifiers into one

large classifier, which we exploit during Collaborative Sensor

Selection. Specifically, during Collaborative Sensor Selection,

BSNs first train Bagging classifiers for individual sensor

classifiers by training an ensemble of weak classifiers from the

training data of a single sensor. Then, BSNs choose the best

sensor classifiers and integrate them into a single composite

classifier (classifier in previous sections) which is used to

make runtime decisions for either an individual BSN or both

local and neighbor BSNs.

Runtime and Sharing Initialization. At the start of run-

time, each BSN either trains a new composite classifier for

individual classification or loads a previously trained classifier

from flash storage. Initial training is performed using Collab-

orative Sensor Selection but using local sensors only. During

runtime, when neighbors detect each other, Collaborative

Sensor Selection proceeds only for the BSNs that agree that

sharing will be beneficial.
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Fig. 9: Subject 1: Individual sensor accuracy.
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Ground Truth and Sensor Classifier Training. If neigh-

boring BSNs do not have previously trained composite clas-

sifiers or the current activity is different than what these

neighbors last performed, the neighbors collect new training

data for the current activity. Training data is labeled with the

current activity by the user and is collected for all local sensors

and public neighbor sensors. When enough data is collected

(5 min. in evaluation), each neighbor trains a sensor classifier

for each available sensor and broadcasts its intent to start

Collaborative Sensor Selection.

B. Sensor Selection Motivation

We provide intuition for our Collaborative Sensor Selection

design using data from our evaluation in Section VII. The

challenge is to identify properties of both local and neighbor

sensors such that all neighbors can choose sensors to cre-

ate composite classifiers that are accurate for all neighbors.

Previous work [31] demonstrates that in order for ensemble

classifiers, such as Bagging, to be trained successfully, two

properties must hold: 1) the individual weak classifiers must

be accurate, and 2) weak classifiers must produce diverse

classification results. We analyze these properties as they

pertain to choosing sensor classifiers and adding them to a

composite classifier.

We conclude that choosing sensors based on individual

accuracy (Figure 9) and decision correlation (Figure 10) will

create an accurate composite classifier with a small number of

capable sensors.

We first show in Figure 9 that we can discriminate best

between activities by choosing sensors with the best individual

accuracies. Using the evaluation data for 2 subjects, we



train sensor classifiers for each sensor available to Subject

1, including publicly shared sensors from Subject 2. Each

sensor classifier comprises 30 weak classifiers and we plot

the average runtime accuracy of 10 classifier trainings on the

y-axis. Each sensor is labeled by its on-body node ID and

modality, where each node ID starts with the subject ID. We

can see that sensors on both Subject 1 and 2 exhibit high

accuracy, indicating that sharing gives Subject 1 more accurate

sensors from which to choose.

Next, we show how to find sensors with complimentary

classification capability, locating a combination of sensors that

is not only accurate but contains few sensing redundancies.

Figure 10 shows the decision correlation between a composite

classifier generated from the data of 10 random sensors

and a classifier generated from a single sensor not used by

the randomly created composite classifier. We compute the

accuracy change of combining the sensor classifier with the

composite classifier. To compute decision correlation, each

correct runtime decision is recorded as 1 and each incorrect

decision is recorded as 0. From the figure, which contains

340 random composite classifiers, we can determine that by

choosing sensors with decision correlation close to zero, we

will ensure that each sensor we choose will produce a mean-

ingful contribution towards an accurate composite classifier.

C. Collaborative Sensor Selection

Algorithm 1 Collaborative Sensor Selection

Input Sensor classifiers for local sensors and public neighbors
Output Composite classifier for local BSN Ci

// BSN initiates sharing
1: function START

2: Ci = ∅; Send public sensor accuracies to neighbors

// Receive sensor accuracy or correlation values from all BSNs
3: event CHOOSESENSOR(C)
4: Compute weight for unchosen sensors with Equation 2
5: Add private sensors with highest weight to Ci

6: if only one public sensor has the highest weight then
7: Add sensor with highest weight to Ci

8: else if local BSN ID is the lowest of all neighbors then
9: Local BSN is tiebreaker

10: Choose random sensor with the highest weight
11: Add random sensor to Ci, notify neighbors of choice
12: else
13: Add tiebreaker’s sensor choice to Ci

14: if acc(Ci) < 1 and unchosen sensors remain: then
15: Transmit unchosen public sensor correlation values

Based on the motivation results, we provide a collaborative

approach to training a composite classifier for shared clas-

sification. This approach is also used by a single BSN to

train a composite classifier for individual classification when

no neighbors are present. The main idea is for neighboring

BSNs to iteratively add one sensor classifier at a time to

their respective composite classifiers. At each iteration, all

neighbors agree on a sensor classifier to add to their composite

classifiers based on sensor classifier accuracy and decision

correlation. A neighbor participates in sensor selection until

it either maximizes training accuracy or all available sensors

are added to its composite classifier. Using Algorithm 1,

Collaborative Sensor Selection is explained in detail:

Each BSN i in the set of neighbors B first initializes a null

composite classifier Ci (line 1 in Algorithm 1). Then, each

BSN transmits to its neighbors the accuracies of each trained

sensor classifier acc(sj). Then, after all accuracy values are

exchanged, each BSN ranks each sensor classifier sj ∈ S by

the following weight, w(C, sj), in Equation 2.

wi(Ci, sj) = α · acci(sj) + (1− α)
(

1− |rCi,sj |
)

(1)

w(C, sj) =
1

B

B
∑

i=1

wi(Ci, sj) (2)

In Equation 2, each sensor classifier for BSN i and sensor

sj is weighted by its accuracy, decision correlation r with

the current composite classifier Ci, and the number of BSNs

B. α provides a weight to emphasize either accuracy or

decision correlation when weighting (we use α = 0.5). At first,

when the composite classifier is null, each sensor classifier

is weighted only by accuracy. Also, if the classifier is for

a private sensor, no neighbors have accuracy or decision

correlation information for the classifier, so the weight is

computed using Equation 1 only.

After computing weights (line 4 in Algorithm 1), each BSN

then chooses the sensor classifier with the highest weight.

Since each BSN computes the same weight values inde-

pendently, each BSN will choose the same sensor classifier.

However, if there are multiple sensor classifiers with the same

weight, the BSN with the lowest BSN ID value chooses a

sensor and broadcasts its choice to neighboring BSNs (lines

8-12). If a private sensor (sensor a user does not share with

neighbors) classifier has the highest weight, it is chosen along

with one other public sensor classifier to ensure all BSNs

choose the same classifier (line 5). Once a sensor classifier

is chosen, it is only added to the composite classifier if it

increases the composite classifier accuracy.

After a sensor classifier is chosen, a BSN stops sensor

selection if there are no more remaining sensors to choose

from or the BSN has achieved perfect training accuracy. While

adding more sensor classifiers to a composite classifier with

perfect training accuracy may improve runtime accuracy [29],

we focus on reducing training costs and stop when we achieve

perfect training accuracy. Remaining BSNs then compute

decision correlation r between the ensemble classifier and

each remaining sensor classifiers and broadcast the correlation

values. Another sensor classifier is then chosen in the manner

above and the process repeats.

D. Classifier Sharing and Duty Cycling

After sharing is initiated and a classifier is trained, all

neighbors collaborate to define a duty cycle order where

only one phone at a time is classifying activities. Neighbors

exchange a random integer concatenated by a BSN ID integer,

with the duty cycle order following the ascending order of the

generated values. We use a round robin duty cycling scheme



to ensure fairness in energy consumption and choose a duty

cycle of appropriate length (5 min. in evaluation) so that

sleeping neighbors are able to quickly wake up and detect

changes in available neighbors. Upon waking up, if at least one

sharing neighbor has departed, the BSN reverts to individual

classification using a saved classifier and notifies all remaining

sharing neighbors.

Classifier Reuse. Composite classifiers are stored in flash

memory for reuse. If a combination of neighbors meet, train

classifiers, perform shared classification, and later meet again

while performing the same activity, the previously trained

classifiers are used again. This saves significant sharing train-

ing and energy costs and allows sharing for short periods of

time (5-10 min. in evaluation) with the same combination of

neighbors and activities.

VI. COST-BENEFIT ANALYSIS

Following neighbor detection and proximity duration pre-

diction, we use a cost and benefit model to determine if sharing

will result in energy savings. In our evaluation, most on-body

motes ran without battery replacement during the two week

experiment while phones had about 10 hours of battery life

using individual classification. Since phone battery life is the

limiting factor in BSN lifetime, we focus on improving it

through classifier duty cycling and Cost-Benefit Analysis. We

first describe a general energy model in Section VI-A, where

we define costs in terms of training time and energy and define

the benefits in terms of energy saved during low power duty

cycling among neighbors compared with always-on individual

classification. Then, in Section VI-B, we empirically determine

the cost model parameters based on our BSN hardware and

sharing aware approach.

A. Energy Model

First, we define the phone energy required to collect new

ground truth and train a new classifier while still performing

individual classification, Etr:

Etr =[(TGT + Ttr)(Pclass + Psensor)]

+ (TGT · PGT ) + (Ttr · Ptr)
(3)

In Equation 3, TGT + Ttr refers to the total time needed to

collect ground truth and train a new classifier. Pclass refers to

the base power required to perform individual classification,

while Psensor is the power consumed by sensors on the phone,

including GPS and radio connectivity. Additionally, PGT and

Ptr refer to the additional power needed to collect ground truth

and train a new classifier, respectively.

Next, we define the phone energy required to perform shared

classification with neighboring resources, Eshare:

Eshare = [Tprox − (TGT + Ttr)]

·

[

1

b
(Pclass + Psensor) +

(

1−
1

b

)

Psleep

]

(4)

In Equation 4, Tprox is the predicted proximity duration, with

Tprox − (TGT + Ttr) representing the estimated time spent

in shared classification after subtracting the time needed to

collect ground truth and train a classifier TGT + Ttr. Also,

b is the number of sharing BSNs, and Psleep is the power

consumed by a BSN while it is in a low power sleep state. Note

that each BSN spends an equal amount of time classifying to

ensure energy fairness.

Third, we define the phone energy required to classify as

an individual BSN, Eind:

Eind = Tprox · (Pclass + Psensor) (5)

Equation 5 predicts the energy consumed by a BSN if it spends

the expected proximity duration in individual classification

instead of shared classification.

Lastly, using the above equations, we share when the

energy to train a classifier and perform shared classification is

less than performing individual classification for the expected

proximity duration:

Tprox > (Ttr + TGT ) and Etr + Eshare < Eind (6)

In Equation 6, we also ensure that the predicted proximity

duration is longer than the time needed to collect new ground

truth and train a classifier. If a neighbor is detected and

the above conditions hold, sharing is initiated by notifying

Sharing-Aware Classification.

B. Empirical Sharing Cost Model

Using our Remora Collaborative Sensor Selection imple-

mentation, we perform time and power benchmarks using an

HTC Hero smartphone and four on-body sensor motes as

described in Section III. We use the benchmarks to define

the training time, training power, and minimum proximity

duration needed for sharing to provide an energy benefit. We

measure power consumption by connecting the smartphone

BSN component to a Monsoon Technologies Power Meter as

in [6], demonstrating that we achieve massive phone energy

savings by duty cycling classifiers. The average power con-

sumption for each state is provided in Table I: base power for

sleep or classification (consumption is the same for individual

and shared classification), and additional power required for

collecting ground truth (screen use), training a composite

classifier through Collaborative Sensor Selection, and GPS and

WiFi use. The table demonstrates that a sleeping phone (duty

cycling) consumes fewer than 10mW of power, which is much

less than the nearly 500mW required for classification.

Base Power Additional Power

Classify Sleep Ground
Truth

Train GPS WiFi

486.43 5.25 +47.62 +88.51 +194.0 +31.31

TABLE I: Remora Power Consumption (mW).

We also measure the training time required to train new

sensor classifiers and perform Collaborative Sensor Selection.

Our training algorithm has polynomial time complexity: with

respect to the number of sensors n, training sensor classifiers

is O(n). Collaborative Sensor Selection is O(n2): each time a

sensor classifier is added to the composite classifier, decision
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Fig. 13: Subject 1 accuracy.

correlation is computed for each unchosen sensor classifier. By

varying the number of sensors as input to Collaborative Sensor

Selection, we perform polynomial curve fitting to determine

the training time in milliseconds for a composite classifier of

n sensors. For use in our cost model, Equation 7 presents the

training time Ttr(n):

Ttr(n) = 167.7n2 + 2053n+ 7118 (7)

The polynomial time complexity indicates that training

times are significantly faster when providing fewer sensors

as training input. When training an individual composite

classifier, we give all local sensors as input (20 on-body

and 2 phone), which requires about two minutes of training.

However, if a BSN uses all local and public neighbor sensors

when training a shared composite classifier (42 for 2 BSNs),

training can take more than 7 minutes. With more neighbors,

training can take even longer. Instead, when neighbors are

present, we reduce training overhead by ensuring that only

sensors chosen by each BSN for individual classification are

given as input for shared classification. Furthermore, Equation

7 illustrates that sharing with a fewer number of neighbors will

provide a greater energy benefit and also allow sharing over

shorter durations due to the lower training costs.

In Figure 11, we provide more evidence that sharing with a

small number of neighbors is most beneficial. Using Equation

7, our power consumption results, and our cost model from

Section VI-A, we compute the minimum proximity duration

needed for sharing to provide an energy benefit. In our

evaluation, each BSN uses 10 sensors on average for individual

classification, which is the input size when building a shared

classifier. This indicates that the minimum proximity duration

is under 20 minutes for up to 5 neighbors. However, with

more neighbors, more time is required: for 10 neighbors, over

40 minutes is needed to realize an energy benefit. Since [7]

demonstrates that 60% of shared activities with non-strangers

are longer than 40 minutes, this performance is reasonable.

VII. EVALUATION

For our evaluation, 6 subjects perform the following ac-

tivities over a two week period: riding a bus, riding in or

driving a car (driving), meeting, reading, running, watching

TV, walking, and working at a desk. Each of these activities

was performed both individually and with at least one neighbor

in proximity. The subjects all have strong interpersonal ties:
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all are graduate students or family members who spend a

significant amount of time together. Each subject has an initial

training set of 30 observations per activity (5 min.) and trains

an individual classifier at the start of runtime, with each

sensor classifier trained using 30 weak classifiers. All on-

body sensors are public, while phone sensors are not shared.

We evaluate three scenarios using the same data and activity

ground truth: individual classification only, sensor sharing

only, and sensor and classifier sharing. In Section VII-A, we

demonstrate sharing accuracy improvements. Then, in Section

VII-B, we highlight the benefits of sharing, and lastly, we show

significantly improved battery life in Section VII-C.

A. Accuracy Improvement

In Figure 12, we highlight overall accuracy performance

for each BSN for individual classification, sharing sensors, and

sharing both sensors and classifiers, analyzing only the periods

where sharing is possible to make a fair comparison. From the

figure, all subjects except for Subject 2 receive an accuracy

benefit from sharing sensors and classifiers, with Subjects

1, 4, and 6, receiving the greatest accuracy gains of over

20% points, or nearly 30% over individual classification. The

figure also demonstrates that duty cycling classifiers among

neighboring BSNs has no impact on accuracy. The 5 min.

duty cycle period is short enough for each BSN to capture

changes in its own activities as well as neighbor departures

and stop sharing if such a change is detected.

From Figure 12, Subject 2 has the highest accuracy, which

is because Subject 2 does not perform as many activities as the

other subjects. Conversely, Subject 1 performs a multitude of

activities and has the lowest individual accuracy. In Figure

13, we can see that Subject 1 exhibits confusion between
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meeting and working in addition to reading and watching

TV. The additional sensors provided by neighbors are able

to overcome these challenging activities. Similar confusion

between meeting and working can also be witnessed in Figure

14 for Subject 6, where total accuracy is also significantly

improved by sharing. Lastly, we note that Collaborative Sensor

Selection ensures that accuracy can only be improved by

sharing: high individual accuracy is maintained during sharing

while low individual accuracy is improved.

B. Sharing Costs and Benefits

For every subject, using our empirical Cost-Benefit Analysis

model, the benefits of sharing outweigh the costs by two orders

of magnitude. First, from our cost model, in Figure 15 we

compute the ratio between the energy savings gained through

duty cycling classifiers and the additional energy costs required

to collect ground truth and train shared classifiers. The average

net energy savings for the shared periods is about 400% for all

subjects. During the experiment, each subject was in proximity

with no more than 2 others at a time, however, the bulk of

the energy savings comes from sharing with one neighbor.

The marginal benefit of sharing with an additional neighbor

decreases with the exception of Subject 4. This demonstrates

that sharing with a small number of BSNs achieves high

accuracy with low cost; sharing with a large number of BSNs

is impractical and will be rejected by Cost-Benefit Analysis.

Training Overhead and Classifier Reuse. When we per-

form sharing with classifier reuse, an average of 96% of

the total proximity duration is utilized. The remaining 4%

difference includes Cost-Benefit Analysis rejection due to

short proximity durations or different simultaneous activities

as well as sharing overhead: time to collect ground truth and

perform sensor selection. With classifiers reused for multiple

encounters with the same neighbor combination, Remora can

quickly adapt to share with available neighbors. Also, classifier

reuse accounts for 90% of sharing encounters among all BSNs.

Without classifier reuse, however, sharing overhead is higher,

with an average of 78% of the total proximity time utilized.

C. Energy Savings

We now demonstrate that by sharing and duty cycling

classifiers, we can increase phone battery life by over 65%.

We also show that we can save mote energy while sharing

sensors to reduce the number of sensors needed by nearly

50%. To compute battery life for each BSN, we determine as

a percentage of the total running time: time spent during active

classification and sleep, phone sensor use, training time and

ground truth labeling. Combined with power consumption in

Table I and a 1500mAh battery per phone, we present results

in Figure 16. For each BSN, individual classification yields

about 10 hours of battery life. However, with duty cycling

through classifier sharing, battery life can be extended from

13 hours for Subject 1 to almost 17 hours for Subject 4. This

represents an increase ranging from 25% to over 65%.

While accuracy is increased over individual classification,

sharing sensors can also reduce the total number of sensors

used by all neighbors. In Figure 17, we plot the average

percentage of available sensors chosen during Collaborative

Sensor Selection. The figure shows that between 10% and

20% points fewer sensors are used while sharing sensors

or classifiers compared with individual classification. This is

because Collaborative Sensor Selection is able to identify

and use only the sensors that provide the most accuracy

benefit. When neighbors are present, there are more sensors to

choose from and more sensors that provide a large contribution

towards providing high classification accuracy.



To further highlight classifier sharing as well as the ability

of Remora to adapt classification to available neighbors, Fig-

ure 18 presents a timeline of energy use and classification

decisions for Subject 1 and 2 during shared classification.

Subject 1 and 2 perform individual activities until 7 minutes,

where Subject 2 enters a building after being outside and meets

Subject 1 (note that the GPS is active and consumes more sen-

sor energy). After Subject 1 and 2 meet, Proximity Detection

and Duration Prediction estimates the length of the proximity

period while Cost-Benefit Analysis quickly determines that

sharing will provide an energy benefit, initiating ground truth

labeling and classifier training. During the individual periods,

Subject 1 makes many misclassifications but after ground truth

is logged and a new classifier trained, Subject 1 exhibits high

accuracy with no misclassifications. After training is complete

at 14 minutes, both BSNs trade off as the active classifier,

alternately going to sleep until Subject 1 leaves and goes

outside, returning to individual classification.

VIII. CONCLUSION AND FUTURE WORK

We propose Remora, a smartphone-based body sensor net-

work system for activity classification which exploits physical

proximity of neighboring BSNs to provide increased accuracy

and energy savings. First, through a time and energy cost-

benefit analysis, we determine when sharing provides an

energy benefit. Second, our Collaborative Sensor Selection

approach efficiently chooses a small number of sensors that

provides high accuracy for all shared BSNs. Third, classifiers

among sharing neighbors are duty cycled to provide a signifi-

cant boost in phone battery life. Our multi-week evaluation

demonstrates an accuracy improvement of up to 30% and

battery life improvement of over 65%.

There are several areas that can benefit from further in-

vestigation. First, in our evaluation, neighbors perform the

same activity 95% of the time, but this may not always

be the case. To address this, we will investigate approaches

that can classify multiple activities simultaneously such as in

[32] while still allowing phones to duty cycle; cloud-based

sharing is one possible solution. Second, when many new

neighbors are encountered, the user burden of collecting new

training data may be fairly high. Incorporating semi-supervised

training methods as in [9] can help alleviate these cases. Lastly,

studying the privacy implications of sharing different sensor

types is also a topic for future work.
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