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Abstract. On May 17th 1999, the Remote Agent (RA) became
the first Artificial Intelligence based closed loop autonomous control
system to take control of a spacecraft. The RA commanded NASA’s
New Millennium Deep Space One spacecraft when it was 65 million
miles away from earth. For a period of one week this system com-
manded DS1’s Ion Propulsion System, its camera, its attitude con-
trol and navigation systems. A primary goal of this experiment was
to provide an on-board demonstration of spacecraft autonomy. This
demonstration included both nominal operations with goal-oriented
commanding and closed-loop plan execution, and fault protection ca-
pabilities with failure diagnosis and recovery, on-board replanning
following unrecoverable failures, and system-level fault protection.

This paper describes the Remote Agent Experiment and the model
based approaches to Planning and Scheduling, Plan Execution and
Fault Diagnosis and Recovery technologies developed at NASA
Ames Research Center and the Jet Propulsion Laboratory.

Keywords: closed loop control, constraint-based planning,
scheduling, temporal networks, spacecraft autonomy

1 Introduction

May 1999, represents a milestone in the history of the development
of spacecraft autonomy. In two separate experiments, the Remote
Agent, an AI software system, was given control of an operational
NASA spacecraft and demonstrated the ability to respond to high
level goals by generating and executing plans on-board the space-
craft, all the time under the watchful eye of model-based fault diag-
nosis and recovery software.

Current spacecraft control technology relies heavily on a relatively
large and skilled mission operations team that generates detailed
time-ordered sequences of commands or macros to step the space-
craft through each desired activity. Each sequence is carefully con-
structed in such a way as to ensure that all known operational con-
straints are satisfied and the autonomy of the spacecraft is limited.
The costs associated with such a process increase with the complex-
ity of the mission. Further, NASA has ambitious plans to fly space-
craft constellations for near earth (for weather forecasting and in-situ
measurements of the atmosphere’s characteristics) and deep space
missions (for interferometry for planet finding and robust mission
execution). Yet another motivation for closing the loop on-board, is
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to save valuable time in the use of NASA’s Deep Space Network
(DSN) of antennas which have to be in constant contact with space-
craft at distances where the round-trip delay time can be in the order
of hours. The DSN is an oversubscribed resource for commanding
spacecraft and targeting on-board commanding is a justifiable way to
reduce mission operation costs. The cost/benefits therefore, of hav-
ing an autonomous system control substantial portions of the routine
commanding of such missions, can then be translated into more mis-
sions that could be flown with the same pool of mission operators.

The Remote Agent (RA) approach to spacecraft commanding and
control puts more “smarts” on the spacecraft. In the RA approach, the
operational rules and constraints are encoded in the flight software
and the software may be considered to be an autonomous “remote
agent” of the spacecraft operators in the sense that the operators rely
on the agent to achieve particular goals. The operators do not know
the exact conditions on the spacecraft, so they do not tell the agent
exactly what to do at each instant of time. They do, however, tell the
agent exactly which goals to achieve in a specified period of time.

Three separate Artificial Intelligence technologies are integrated
to form the RA: an on-board planner-scheduler, a robust multi-
threaded executive, and a model-based fault diagnosis and recovery
system [12, 9]. This architectural approach was flown on the NASA’s
New Millennium Program Deep Space One (DS1) spacecraft as an
experiment.

The DS1 Remote Agent Experiment (RAX) had multiple objec-
tives [2]. A primary objective of the experiment was to provide an
on-board demonstration of spacecraft autonomy. This demonstration
included nominal operations with goal-oriented commanding and
closed-loop plan execution, a demonstration of fault protection ca-
pabilities with failure diagnosis and recovery, on-board replanning
following unrecoverable failures and finally, system-level fault pro-
tection. These capabilities were demonstrated using in-flight scenar-
ios that included ground commanding and simulated failures.

Other equally important, and complementary, goals of the experi-
ment were to decrease the risk (both real and perceived) in deploying
RAs on future missions and to familiarize the spacecraft engineer-
ing community with the RA approach to software integration and
spacecraft command and control. These goals were achieved by a
three-pronged approach. First, a successful on-board demonstration
required integration of the RA with the spacecraft flight software.
This integration provided valuable information on required interfaces
and performance characteristics, and alleviated the risk of carrying
out such integration on future missions. Second, a perceived risk of
deploying an RA is related to its ability to synthesize new untested



sequences in response to unexpected situations. We addressed this
risk by demonstrating a layered testing methodology that serves to
build confidence in the sequences synthesized by the RA in a va-
riety of nominal and off-nominal situations. Third, the experiment
was operated with close cooperation between RA team members and
DS1 ground operators. This served to familiarize the ground oper-
ations community with benefits and costs of operating a spacecraft
equipped with an RA.

The RAX was successfully executed on-board DS1 in the week
of May 17–21, 1999 during the ballistic cruise phase of the mission.
Additional details on the experiment itself can be found in [3], [11]
and [15].

2 The Remote Agent Architecture
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Figure 1. The Remote Agent Architecture

The Remote Agent consists of general-purpose reasoning engines,
and mission-specific domain models. The engines make decisions
and command the spacecraft based on the knowledge in the mod-
els. This section describes the details of the reasoning engines and
how they interact. The architecture of the RA is given in Figure 1.

The overall system had to operate under stringent performance
and resource requirements. The DS 1 flight processor was a 25
MHz radiation-hardened RAD 6000 PowerPC processor with 32 MB
memory available for the LISP image of the full Remote Agent.
Moreover, only 45% peak use of the CPU was available for RAX,
the rest being used for the real-time flight software. The response
times of MIR and EXEC was no greater than 5 seconds. Planning
being an expensive activity, the PS and EXEC loop was closed in
the order of hours, usually within two. Planning itself was invoked a
batch process.

Each of the critical modules in this system is described in greater
detail in the following sections: 2.1 (PS), 2.2 (MIR) and 2.3
(EXEC).

2.1 The Planner/Scheduler

The Planner/Scheduler (PS) provides the core of the high-level com-
manding capability of RA. Given an initial, incomplete plan contain-
ing the initial spacecraft state and goals, PS generates a set of syn-
chronized high-level activities that, once executed, will achieve the
goals. In the spacecraft domain, planning and scheduling aspects of
the problem need to be tightly integrated. The planner needs to recur-
sively select and schedule appropriate activities to achieve mission
goals and any other subgoals generated by these activities. It also
needs to synchronize activities and allocate global resources over
time (e.g., power and data storage capacity). Subgoals may also be
generated due to limited availability of resources over time. For ex-
ample, it may be preferable to keep scientific instruments on as long
as possible (to maximize the amount of science gathered). However

limited power availability may force a temporary instrument shut-
down when other more mission-critical subsystems need to be func-
tioning. In this case the allocation of power to critical subsystems
(the main result of a scheduling step) generates the subgoal “instru-
ment must be off” (which requires the application of a planning step).
PS is able to tune the order in which decisions are made to the char-
acteristics of the domain by considering the consequences of action
planning and resource scheduling simultaneously. This is a signifi-
cant difference with respect to classical approaches both in Artificial
Intelligence and Operations Research, where action planning and re-
source scheduling are typically addressed in two sequential problem-
solving stages, often by distinct software systems [16].

Another important distinction between PS and other classical ap-
proaches to planning is that besides activities, the planner also sched-
ules the occurrence of states and conditions. Such states and con-
ditions may need to be monitored to ensure that, for example, the
spacecraft is vibrationally quiet when high stability pointing is re-
quired. These states can also consume resources and have finite du-
rations and, therefore, have very similar characteristics to other activ-
ities in the plan. PS explicitly acknowledges this similarity by using
a unifying conceptual primitive, the token, to represent both actions
and states that occur over time intervals of finite extension. PS con-
sists of a heuristic search engine that deals with incomplete or par-
tial plans. Since the plans explicitly represent time in a metric fash-
ion, the planner makes use of a temporal database. As with most
causal planners, PS begins with an incomplete plan and attempts to
expand it into a complete plan by posting additional constraints in
the database.

These constraints originate from the goals and from constraint
templates stored in a domain model of the spacecraft. The tempo-
ral database and the facilities for defining and accessing model in-
formation during search are provided by the Heuristic Scheduling
Testbed System (HSTS) [7]. The planning engine searches the space
of possible plans for one that satisfies the constraints and achieves the
goals. The action definitions determine the space of plans. The con-
straints determine which of these plans are legal, and heavily prune
the search space. The heuristics guide the search in order to increase
the number of plans that can be found within the time allocated for
planning. Figure 2 describes the PS architecture. Additional details
on the planner algorithm and its correctness can be found in [6]. The
model describes the set of actions, how goals decompose into ac-
tions, the constraints among actions, and resource utilization by the
actions. For instance, the model will encode constraints such as ”do
not take MICAS (camera) images while thrusting” or ”ensure that the
spacecraft does not slew when within a Deep Space Network com-
munication window”. These constraints are encoded in a stylized and
declarative form called the Domain Description Language (DDL).
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Figure 2. Planner/Scheduler Architecture

Each subsystem in the model is represented in the PS database as
a set of dynamic state variables whose value is tracked over time.
Each dynamic state variable can assume one or more values. A token
is associated with a value of a state variable occurring over a finite



time interval. Each value has one or more associated compatibilities,
i.e., patterns of constraints between tokens. A legal plan will contain
a token of a given value only if all temporal constraints in its com-
patibilities are satisfied by other tokens in the plan. A compatibility
consists of a master token and a boolean expression of temporal rela-
tions that must hold between the master token and target tokens. An
example is shown in Figure 3.

(Define_Compatibility
;; compats on SEP_Thrusting
(SEP_Thrusting ?heading ?level ?duration)
:compatibility_spec
(AND (equal (DELTA MULTIPLE (Power) (+ 2416 Used)))

(contained_by (Constant_Pointing ?heading))
(met_by (SEP_Standby))
(meets (SEP_Standby))))

(Define_Compatibility
;; Transitional Pointing
(Transitional_Pointing ?from ?to ?legal)
:parameter_functions
(?_duration_ <- APE_Slew_Duration (?from ?to ?_start_time_))
(?_legal_ <- APE_Slew_Legality (?from ?to ?_start_time_))

:compatibility_spec
(AND (met_by (Constant_Pointing ?from))

(meets (Constant_Pointing ?to))))

(Define_Compatibility
;; Constant Pointing
(Constant_Pointing ?target)
:compatibility_spec
(AND (met_by (Transitional_Pointing * ?target LEGAL))

(meets (Constant_Pointing ?target * LEGAL))))

Figure 3. An example of a compatibility constraint in the Planner model

The first
compatibility says that the master token, SEP THRUSTING (when
the Solar Electric Propulsion engine is producing thrust), must be
immediately preceded and followed by a standby token, temporally
contained by a constant pointing token, and requires 2416 Watts of
power. Constant pointing implies that the spacecraft is in a steady
state aiming its camera towards a fixed target in space. Transitional
pointings turn the spacecraft. The SEP standby state indicates that
the engine is not thrusting but has not been completely shut off. A
plan fragment based on these compatibilities is shown in Figure 4.
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Figure 4. A Plan Fragment

The state-variable approach to modeling is also driven by strong
software engineering principles. In a complex domain with different
individuals and organizations with varying expertise, state-variables
provide disparate and an object-oriented view of the same domain
model across organizational boundaries.

Efforts are currently underway to use model-checking techniques
to provide full coverage of the model’s characteristics and also to au-
tomatically generate the heuristics from a given model of the domain.
This will further allow mission designers and systems staff to build
robust and complex models on their own without relying on the AI
technologists themselves. Additional details about the planner can be
found in [6], [7], [9] and [10].

2.2 Diagnosis and Repair
We refer to the diagnosis and repair engine of RA as MIR, for Mode
Identification and Reconfiguration. MIR eavesdrops on commands
that are sent to the on-board hardware managers by EXEC. As each
command is executed, MIR receives observations from spacecraft

Exec or
Human Operator

A
ctual C

om
m

andDiscretized
Observations

State

Desired
Configuration

Model

Suggested
Command

State

Livingstone

MI MR

Space
craft

Figure 5. Livingstone Processing Cycle

sensors, abstracted by monitors in lower-level device managers such
as for attitude control, bus controller, and so on. MIR uses an in-
ference engine called Livingstone to combine these commands and
observations with declarative models of the spacecraft’s components
to determine the current state of the system (Mode Identification) and
report it to EXEC. EXEC may then request that Livingstone return a
set of commands that will recover from a failure or move the system
to a desired configuration (Mode Reconfiguration). Figure 5 illus-
trates the data flow between a spacecraft, EXEC and Livingstone.

MI is responsible for identifying the current operating or failure
mode of each component in the spacecraft, allowing EXEC to rea-
son about the state of the spacecraft in terms of component modes,
rather than in terms of low-level sensor values. MR is responsible
for suggesting reconfiguration actions that move the spacecraft to a
configuration that achieves all current goals as required by PS and
EXEC, supporting the run-time generation of novel reconfiguration
actions. Although in RA, Livingstone is only used to recover fol-
lowing a component failure, its MR capability can be used to derive
simple actions to reconfigure the spacecraft at any time. Thus Living-
stone can be viewed as a discrete model-based controller in which MI
provides the sensing component and MR provides the actuation com-
ponent. Livingstone uses a single set of models and core algorithms
to provide both the MI and MR functions.

Figure 6. Livingstone Model of the Cassini Main Engine Subsystem

To use Livingstone, one specifies how the components of inter-
est are connected. For each type of component, one then specifies a
finite state machine that provides a description of the component’s
nominal and failure behavior. Figure 6 graphically depicts a Living-
stone model of the Cassini spacecraft main engine subsystem. An
important feature is that the behavior of each component state or
mode is captured using abstract, or qualitative, models ( [18] and
[13]). These models describe qualities of the spacecraft’s structure
or behavior without the detail needed for precise numerical predic-
tion, making abstract models much easier to acquire and verify than
quantitative engineering models. Examples of qualities captured are



the power, data and hydraulic connectivity of spacecraft components
and the directions in which each thruster provides torque. While such
models cannot quantify how the spacecraft would perform with a
failed thruster for example, they can be used to infer which thrusters
are failed given only the signs of the errors in spacecraft orientation.
Such inferences are robust since small changes in the underlying pa-
rameters do not affect the abstract behavior of the spacecraft.

Livingstone’s abstract view of the spacecraft is supported by a set
of fault protection monitors that classify spacecraft sensor output into
discrete ranges (e.g. high, low nominal) or symptoms (e.g. positive
X-axis attitude error). One objective of the RA architecture was to
make basic monitoring capability inexpensive so that the scope of
monitoring could be driven from a system engineering analysis in-
stead of being constrained by software development concerns. To
achieve this, monitors are specified as a dataflow schema of feature
extraction and symptom detection operators for reliably detecting
and discriminating between classes of sensor behavior. The software
architecture for sensor monitoring is described using domain-specific
software templates from which code is generated. Finally, all symp-
tom detection algorithms are specified as restricted Harel state tran-
sition diagrams reusable throughout the spacecraft. The goals of this
methodology are to reuse symptom classification algorithms, reduce
the occurrence of errors through automation and streamline monitor
design and test. Models are always incomplete in that they have an
explicit unknown failure mode. Any component behavior that is in-
consistent with all known nominal and failure modes is consistent
with the unknown failure mode. In this way, Livingstone can infer
that a component has failed, though the failure was not foreseen or
was simply left unmodeled because no recovery is possible. By mod-
eling only to the level of detail required to make relevant distinctions
in diagnosis (distinctions that prescribe different recoveries or differ-
ent operation of the system), we can describe a system with qualita-
tive ”common-sense” models that are compact and quite easily writ-
ten.

Livingstone uses algorithms adapted from model-based diagnosis
[17] to provide the above functions. Following de Kleer and Williams
[1], MI uses a conflict directed best-first search to find the most likely
combination of component modes consistent with the observations.
Analogously, MR uses the same search to find the least-cost combi-
nation of commands that achieve the desired goals in the next state.
Furthermore, both MI and MR use the same system model to perform
their function. The combination of a single search algorithm with a
single model, and the process of exercising these through multiple
uses, contributes significantly to the robustness of the complete sys-
tem.

The use of model-based diagnosis algorithms immediately pro-
vides Livingstone with a number of additional features. First, the
search algorithms are sound and complete, providing a guarantee of
coverage with respect to the models used. Second, the model build-
ing methodology is modular, which simplifies model construction
and maintenance, and supports reuse. Third, the algorithms extend
smoothly to handling multiple faults and recoveries that involve mul-
tiple commands. Fourth, while the algorithms do not require explicit
fault models for each component, they can easily exploit available
fault models to find likely failures and possible recoveries. Addi-
tional technical details about Livingstone can be found in [18].

2.3 The Smart Executive
The Smart Executive (EXEC) is a multi-threaded, reactive com-
manding system. The EXEC runs as a multi-threaded process that
is capable of asynchronously executing commands in parallel and
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is responsible for sending the appropriate commands to the various
flight systems it is managing. It can replace the traditional spacecraft
execution engine, or it can be used in conjunction with a traditional
sequencer to command a complex subsystem such as an interferom-
eter. In addition to these capabilities, the EXEC is capable of:

� Simultaneously achieving and maintaining multiple goals, i.e.,
system states, by monitoring the success of commands it issues
and reactively re-achieving states that are lost.

� Conditional sequencing. Commands can be dependent on condi-
tions that occur at execution time.

� Event-driven commanding, as opposed to traditional sequencers
that are time-driven. For example, taking a sequence of pictures
based on the results of monitoring a range sensor.

� High-level commanding and run-time task expansion. EXEC pro-
vides a rich procedural language, Execution Support Language
(ESL) [4] in which spacecraft software/model developers define
how complex activities are broken up into simpler ones. A proce-
dure can specify multiple alternate methods for goal achievement
to increase robustness.

� Sequence recovery. In the event that a command in an executing
sequence fails, EXEC suspends execution of the failed sequence
and attempts a recovery, either by executing a pre-specified re-
covery sequence such as reissuing the command or consulting a
recovery expert, e.g., MIR. Once the desired state of the failed
command is achieved, the suspended sequence is restarted.

� Temporally-flexible sequence (or plan) execution. In order to de-
crease the probability of a sequence failing, time ranges can be
specified for executing and achieving the desired state for each
command.

� Resource Management. EXEC manages abstract resources by
monitoring resource availability and usage, allocating resources
to tasks when available, making tasks wait until their resources
are available, and suspending or aborting tasks if resources be-
come unavailable due to failures. These tasks may compete for
system resources within the constraints not already resolved by
the Ground or the planner.

See [4] and [5] for a more detailed discussion. Figure 7 illustrates
key functions of EXEC.

EXEC achieves multi-tasking through the use of property locks
that could be used to maintain certain properties of the system. For
example, if a task commands a switch ON, the switch property will
be locked ON. Monitors (and MIR) determine if it is consistent to
believe that the switch is ON. Since EXEC stores this state in its
state database, should the inferred state of the switch change, the
database will be updated and an event created, signaling a change. If
the signaled event violates a property lock, an EXEC property thread
interrupts those tasks that subscribed to that property lock. It will



then attempt to achieve the state of the switch being ON using its
own recovery mechanism or by consulting a recovery expert, such as
MR. If the switch cannot be turned ON in time, a hard deadline that
is being tracked may be missed, so EXEC commands the spacecraft
into a safe, wait state while it requests a new plan from the planner
that takes into account that the switch cannot be turned ON.

Recoveries may be as simple as sending another command to turn
a switch ON, or may be complex, such as when multiple subsystems
are tightly coupled. For example, consider two coupled DS1 subsys-
tems: the engine gimbal and the solar panel gimbal. A gimbal enables
the engine nozzle to be rotated to point in various directions without
changing the spacecraft orientation. A separate gimbal system en-
ables the solar panels to be independently rotated to track the sun.
In DS1, both sets of gimbals communicate with the main computer
via a common gimbal drive electronics (GDE) board. If either system
experiences a communications failure, one way to reset the system is
to power-cycle the GDE. However, resetting the GDE to fix one sys-
tem also resets the communication to the other system. In particular,
resetting the engine gimbal, to fix an engine problem, causes tempo-
rary loss of control of the solar panels. Thus, fixing one problem can
cause new problems. To avoid this, the recovery system needs to take
into account global constraints from the nominal schedule execution,
rather than just making local fixes in an incremental fashion, and the
recovery itself may be a sophisticated plan involving operations on
many subsystems.

EXEC and its commanding language, ESL, are currently im-
plemented using multi-threaded Common LISP. A new version of
EXEC is currently under development in C/C++. The internal EXEC
code is designed in a modular, layered fashion so that individ-
ual modules can be designed and tested independently. Individual
generic device knowledge for RAX is implemented based on EXEC’s
library of device management routines, to support addition of new
devices and reuse of the software on future missions. More details
about EXEC can be found in [4], [5] and [14].

3 Conclusion

The primary goal of Remote Agent on DS1 was to demonstrate that
Artificial Intelligence based technologies could achieve high-level
autonomous control of a spacecraft including:

� goal-oriented commanding;
� closed-loop planning and execution;
� spacecraft state inferencing and failure detection;
� closed-loop model-based failure diagnosis and recovery;
� on-board re-planning as a response to unrecoverable failures; and
� system-level fault protection.

Familiarizing the spacecraft engineering community with these
technologies and laying the foundation for more extensive applica-
tions of RA were also important goals. These goals were achieved
by the design of RA, its integration with the DS1 flight software
on spacecraft testbeds, its layered testing, two operational readiness
tests with ground control personnel, and successful commanding of
the spacecraft in May 1999.

Future efforts using the RA involve extensions to the architecture
towards domain-model unification and providing continuous plan-
ning capabilities [8]. The applications envisaged range from dis-
tributed spacecraft control, control of biological experiments for the
International Space Station, instrument commanding for interfer-
ometry and on-board diagnosis for the next generation of reusable
launch vehicles.

As a result of the Remote Agent Experiment, we believe that the
willingness of NASA missions to deploy highly-autonomous sys-
tems has increased. Moreover, NASA has recognized the Remote
Agent by bestowing the Software of the Year award, the agency’s
highest for technical achievement.
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