Remote Batch Invocation
for Compositional Object Services

Ali Ibrahim?, Yang Jiad, Eli Tilevich', and William R. Cook

! Computer Science Department, Virginia Tech
{tilevich,jiaoyang}@s. vt.edu
2 Department of Computer Sciences, The University of Texas at Austin
{ai brahi m wcook}@s. ut exas. edu

Abstract. Because Remote Procedure Calls do not compose efficiently, design-
ers of distributed object systems use Data Transfer and RemotecHaaiiaelns to
create large-granularity interfaces, hard-coded for particular dlisatcases. As
an alternative to RPC-based distributed objects, this paper prédemiste Batch
Invocation(RBI), language support for explicit client-defined batches. A Remote
Batch statement combines remote and local execution: all the remotésamde
ecuted in a single round-trip to the server, where all data sent to ther serde
results from the batch are communicated in bulk. RBI supports remotkslioc
eration and conditionals, and local handling of remote exceptions. RBideat
even for fine-grained interfaces, eliminating the need for hand-optihseever
interfaces. We demonstrate RBI with an extension to Java, using RMI atiyern
as the transport layer. RBI supports large-granularity, stateless seteractions,
characteristic of service-oriented computing.

1 Introduction

The Remote Procedure Call (RPC) has long been the foundattianguage-level ap-

proaches to distributed computing. The idea is simple:a@plocal calls with stubs
that transfer the procedure call to a remote machine foruiat RPC has been gen-
eralized for objects to create distributed object systématiding Common Object Re-
quest Broker Architecture (CORBA) [22], the Distributed iGmonent Object Model

(DCOM) [8], or Java Remote Method Invocation (RMI) [29]. Bsuare defined on a
local object that acts as a proxy for a remote object. Onerddga of this approach is
that it does not require language changes, but can be imptechesing libraries and

stub generator tools.

Standard object-oriented designs, which focus on flexytalnd extensibility through
the use of fine-grained methods, getters and setters, arltlabjeats, do not perform
well when distributed remotely. Every method call on a rezmioxy is a round trip to
the server. To achieve suitable performance, remote alxjeest be designed according
to a different set of principlés Data Transfer Objects and Remote Facades are used to
optimize data transfer and combine operations to reduceuimder of round trips [18].
One effect of this approach is that servers and protocoleane coded to support spe-
cific client invocation patterns. If a client changes sigifitly, then the entire system,
including the server and its interfaces, must be redesigned

2 This work was supported by the National Science Foundation undet G&#-0448128.
8 Approaches using asynchronous messaging are discussed in vetaked

This paper presenBemote Batch InvocatiaiiRBI), a new approach to distributed
object computing. Remote Batch Invocation allows multigdéls on remote objects to
be invoked in a batch, while automatically transferringuemgnts and return values in
bulk. The following example uses a Remote Batch in Java teteébw-rated albums
from a personal online music database.

int mnimum=5;
Service nusicService = new Servi ce("MisicC oud", Misic.class);
batch (Misic favoriteMusic : nusicService) {

for (Al bum al bum: favoriteMisic.getAl buns())

if (albumrating() < mninum {
Systemout.printin("Playing: " + albumgetTitle());

try {
al bum pl ay();

} catch (Exception e) {
Systemout.printin("error:

+ e.get Message());
11}

The batch mixes local and remote computation. In this cdstiyeacomputation is
remote except the two calls 8yst em out . The semantics of Java is modified within
the batch to first perform all remote operations, then perfall local operations. Thus
the typical ordering between local and remote statememtstigecessarily preserved.
For example, all of the albums are played before any of theesaane printed. All
loops and conditionals are executed twice: once on the isang: then again on the
client. Exceptions on the server terminate the batch byultefand raise the error in the
analogous execution point on the client.

A remote batch transfers all data between client and senveulk. In this case,
just themi ni rumrating is sent to the server. The server returns a list ofitidist of
played albums. But it also returns a boolean for each albulicating whether it was
played. In general, any number of primitive or serializaldies can be transfered to
and from the server. Remote Batch Invocation creates agpteData Transfer Objects
and Remote Facades on the fly, involving any number of abpnd methods. Standard
Java objects can be published as a batch service by addingle 8ne of code. The
semantics of the batch statement require that only a siegi®te invocation is made
in the lexical block. This strong performance model is intaot, because the cost of
remote invocations may be several orders of magnitude hiphe local invocations.

We demonstrate Remote Batch Invocation with an extensidata. A source-to-
source translator converts that ch statement to plain Java which uses Batch Exe-
cution Service and Translation (BEST), our middlewaredliirfor batched execution
using Java RMI. Remote Batch Invocation is not tied to RML,dnuld also be imple-
mented using other middleware transport, for example welicgs or mobile objects.
A server can publish a remote service by making a singleritrall.

The performance benefits of batching operations are welvknespecially in high-
latency environments. We evaluate our language extensi@ofmparing it with other
approaches to batching such as implicit batching, mobitlecand the Remote Facade
pattern.

In summary, Remote Batch Invocation is a new approach talaliséd objects that
supports service-orientation rather than remote proeechlis and proxies. The funda-
mental insight is that remote execution need not work atékiellof procedure calls,
but can instead operate at the level of blocks, with bulksfenof data entering and

leaving the block. Unlike traditional distributed objetli&t maintain server side state,
Remote Batch Invocation has a stateless execution modés ittaaracteristic of service
oriented computing [20, 17].

2 Remote Batch Invocation

Remote Batch Invocation allows clients to combine remo&ragions into a single re-
mote invocation. We will illustrate the features of Remotadh Invocation by example.
The basis of our examples is a sample remote service deddrjpEowler inPatterns

in Enterprise Application Architecturl8]. This simple remote music service is com-
prised of three classes: Album, Artist, and Track as showhRigure 1. TheAl bum
interface also provides thgl ay method which returns the lyrics on the album and
plays the album on a sound system.

interface Al bum {

String getTitle();

void setTitle(String title);
Artist getArtist();

voi d setArtist();

Track[] getTracks();

voi d addTrack(Track t);

voi d renmoveTrack(Track t);
String play();
}

A natural remote interface to these three classes is sholewbe

interface Music {
Al bum createAl bun(String id, String title);
Al bum get Al bun(String id);
Artist addArtist(String id, String nane);
Artist getArtist(String id);
Track createTrack(String title);
}

Using theMusi c interface, a client can create and find artists and albumselisas
create tracks. A client may update object fields using theapjate setters. We will
use this interface for our Remote Batch Invocation examples

Unfortunately, this natural interface is too fine-grainadaisystem where individ-
ual method calls are expensive. Using the Remote FacadBatadTransfer patterns,
Fowler wraps the Music interface:

interface Fow er Music {

String play(String id);

Al bunDTO get Al bun{String id);

voi d createAl bun(String id, Al bunDTO dto);
voi d updat eAl bun(String id, Al bunDTO dto);
voi d addArti stNaned(String id, String nanme);
voi d addArtist(String id, ArtistDTO dto);
ArtistDTO getArtist(String id);

Album *

Title: String
Platinum: Boolean

* 1
Track " Artist
*
Title: String Name: String

Fig. 1: Fowler Album Class Diagram

Fow er Musi c is a Remote Facade for thvasi c interface. For example, the

Fowl er Musi c. pl ay method is simply calling thBusi c. get Al bummethod followed
by the Al bum pl ay method. TheAl bunDTO, Arti st DTO, and Tr ackDTO are data
transfer objects (DTO) that transfer information in bulkatod from the remote server.
Fowler also definesl bumAssenbl er, which maps between DTOs and objects resid-
ing on the server.

cl ass Al bumAssenbl er {
public Al bunDTO writeAl bun{ Al bum subj ect) {
Al bunDTO result = new ALbunDT(() ;
result.setTitle(subject.getTitle());
result.setArtist(subject.getArtist().getNane());
writeTracks(result, subject);

}
void writeTracks(Al bunDTO result, Al bum subject) { .
void witePerformers(TrackDTO result, Track subject) { ... }

public void createAl bun(String id, Al bunDTO source) {
Artist artist = Registry.findArtistNanmed(source.getArtist());
if (artist == null) throw new RuntineException(...);
Al bum al bum = new Al bun{source.getTitle(), artist);
creat eTracks(source. get Tracks(), al bum;
Regi stry. addAl bun(id, al bum;

}
voi d createTracks(TrackDTQ] tracks, Al bum al bum) { .
voi d createPerfornmers(Track newlrack, String[] perfornmers) { ... }

}

Although Al bumAssenbl er encapsulates the logic of mapping between DTO and
model objects, it is not generic, containing a hard-codexistten about the DTO con-
tent. In the book, Fowler decides to have the Album DTO preadl the information
about a single album.

The next sub-sections give examples of using Remote Bataltétion for batch
data retrieval, batch data transfer, loops, branching gandptions.

2.1 Batch Data Retrieval

A simple client may want to print the title and name of thesdifior an album. With the
fine-grainedwusi c interface, the client must execute four remote calls: atcafind
the album, a call to get the title of the album, a call to getatisst for the album, and a
call to get the name of the artist for the album.

Using Remote Batch Invocation, the client can useMisi ¢ interface while still
executing a single remote call. The input to the remote biatte id of the album “1”.
The output of the remote batch is the title of the album andndmae of the artist of
the album. A remote batch can combine an arbitrary numberetiiod calls as long as
they are invoked on objects transitively reachable fromrtfzg object of the batch, in
this casewsi c.

batch (Misic nmusic : mnusicService) {

final Al bum al bum = nusic. get Al bun("1");
Systemout.printin("Title: " + albumgetTitle());
Systemout.printin("Artist: " + albumgetArtist().getNanme());

}

The same client using the remote faca&dsd er Musi ¢ executes a single remote
methodget Al bumwhich returnsAl bunDTO. For this client, the DTO is an over-approximation
of the data needed; a Remote Facade optimized for thig elienld need another DTO
for albums that only provides the title and artist name.

Al bunDTO al bum = nusi c. get Al bum("1");
Systemout.printIn("Title: " + albumgetTitle());
Systemout.printIn("Artist: " + albumgetArtistNane());

For other clients, the DTO may be an under-approximatiomefdata needed. For
example, this client prints the title of two different albsm

batch (Misic music : rmnusicService) {

final Al bum al bum = nusic. get Al bun("1");
Systemout.printin("Title: " + albumagetTitle());
final Al bum al bum = nusic. get Al bum("2");
Systemout.printin("Title: " + albumgetTitle());

}

Fowl er Musi ¢ does not contain a method that matches this client pattemsé&tjuently,
the same client usinfow er Musi ¢ must make an additional remote call compared
to using Remote Batch Invocation. Alternatively, thew er Musi ¢ interface can be
changed to include a method that takes two album IDs as inglteturns a new DTO
containing two fields representing the titles of the inpbuahs. This highlights one of
the disadvantages of the Remote Facade pattern; it creatas-functional dependency
between the server interface and the client call patterns.

2.2 Batch Data Transfers

Remote Batch Invocation also allows clients to transpéréransfer data in bulk to the
server. The following code createsbum Arti st, andTr ack objects and wires them
together. The input to the remote batch is all the informmatbout the album, artist,
and track to be created and there is no output. The actuaraotien of the objects and
method calls occur entirely on the server.

batch (Misic nusic : nusicService) {

final Al bum al bum = nusic. createAl bunm("2", "First Al buni);
final Artist artist = nusic.addArtist("2", "John Smith");
al bum set Artist(artist);

final Track track = nusic.createTrack("First track");
track. addPerforner(artist);

al bum addTr ack(track);

}

A client usingFow er Musi ¢ can also create the objects using a single remote invoca-
tion using the appropriate DTOSs.

Al bunDTO al bum = new Al bunDTQ("First Al buni');

Al bunDTO artist = new ArtistDTQ("2", "John Smith");
al bum set Artist(artist);

TrackDTO track = new TrackDTQ("First Track");
track. addPerforner(artist);

al bum addTrack(track);

nusi c. creat eAl bun("2", al bun);

A drawback to using data transfer objects for creating amthtipg objects, is that DTO
is under-specifying some of the semantics of the operaltioparticular, the DTO does
not tell the server whether the artist object is an artistabjvhich should be created or
if it already exists. This is a well-known problem in data rpeqg and commonly arises
in distributed systems. A common approach and the one takéowler in his book,
is to specify a convention to either always create objeti&gys use existing objects,
or create an object if it does not already exist. Another @ggh is to enrich the DTO
with statusfields for each normal field that specify the right semantsnetimes this
status field is encoded into the field, for example, by usingl as a special value.
A related problem is updating objects if the client only hgsadial description of the
object. The client must be able to update the subset of fieldshnare known, but not
the fields which are unknown.

The remote batch is more explicit in that specifies thattite st isanewArti st
object. If the client wanted to reference an existing attistcode would be rewritten as
follows:

batch (Misic music : rmnusicService) {

final Al bum al bum = nusic.createAl bun("2", "First Al buni);
final Artist artist = nusic.getArtist("2");

al bum set Artist(artist);

final Track track = nusic.createTrack("First track");
track. addPerforner(artist);

al bum addTrack(track);

2.3 Loops

So far, we have shown that Remote Batch Invocation suppiwéig)istiine code. How-
ever, it is common for a client to need more complex logic imvay branching and
loops. Remote Batch Invocation allows for remoting of thbaced or loop intro-

duced in Java 1.5 if the collection can be evaluated remdfalata from the iterations

is needed locally, the remote batch constructs a data &aolsfect with an array of the
data needed and transparently maps it on the client. Belevsisiple example which
shows how explicit batching can operate over arrays. Thetitgothe remote batch is
simply the id of the album and output is the title of all of thedks, the name of all of
the performers on the tracks, and the lyrics returned bylthg method.

batch (Misic music : rmnusicService) {

final Al bum al bum = nusic. get Al bun("1");

Systemout.println("Tracks: ");

for (Track t : albumgetTracks()) {
Systemout.print(t.getTitle());
Systemout.printin(’,");
Systemout.print("Perfornmed by: ");
for (Artist a : t.getPerformers()) {
System out. print(a. get Nane());
Systemout.print(’ ');

}
Systemout.print(’\n’);
}
Systemout. println("Song: " + al bumplay());
}

TheFow er Musi c. get Al bummethod in Remote Facade nearly provides all the func-
tionality required by this client; however, it does not imdé a call to the\l bum pl ay
method.

2.4 Branching

Conditional statements, including andel se, are remoted if their condition is a re-
mote operation. Below is a simple example that shows sucmatezl conditional state-
ment also containing the primitive opera#.

bat ch(Misi ¢ nusic : nusicService) {
final Al bum al bum = registry. get Al bun{"1");
if (al bum getNane().startsWth("A")
|| al bum get Nanme().startsWth("B")) {
al bum pl ay();
Systemout.print("Title starts with Aor B. " + albumgetTitle());
} else {
Systemout.print("Title does not start with A or B:
+ al bum get Artist().getName());
}}

RBI supports boolean and numeric primitive operators, oty and binary. Condi-
tional code can also be included as part of operations oeatahs. In that case, the
conditions are reevaluated on each iteration over a calecThe following example

adds albums composed by Yo-Yo Ma to the favorites collection

for (Artist a : t.getPerfornmers()) {
if (a.getNane().equal s("Yo-Yo Ma")) {
favorites. addArtist(a);

1}

2.5 Exceptions

Remote Batch Invocation separates exceptions caused lbyefain communication
from logical exceptions that arise when executing the states in the batch. The
bat ch statement itself can raise network exceptions, which meisigmdled by the sur-
rounding context. If there are no network errors, then etiorp raised by statements
in the batch can be handled in the client.

Within a bat ch, a remote operation can raise an exception on the servewihat
terminate the batch. The thrown exception will be raisetiéndorresponding execution
point on the client. The client must use exception handleris aegular Java code. In
addition, the execution of a remote batch may result Re@ot eExcept i on that can
be handled by wrapping an entisat ch block with at r y/ cat ch block.

For example, the following code extends an earlier exantpledude an exception
handler when trying to play an album, and another handlemdbals with network and
communication errors raised at any point of executing thetba

try {
batch (Miusic favoriteMisic : nusicService) {

try {
al bum pl ay();

} catch (PermissionError pe) {
Systemout.println("No pernission to play al bunt
+ albumgetTitle());

}
} /lend batch
} catch (RenoteException re) {
Systemout. println("Error comunicating batch.");

}

The default behavior of a batch is to abort processing whesxaeption is thrown.
As future work, we would like to be able to apply a differentcegtion policy, for
example to continue execution or restart the batch. Batalsesprovide a natural unit
of atomic execution. In many cases it is desirable for théretiatch to succeed or
fail, so that incomplete operations are never allowed. Oag t@ achieve this is to use
transactional memory on the server [7].

Even so, itis possible for the batch to succeed on the sentéoiba communication
error to prevent the client from completing the batch. A d&d two-phase commit
could be used to ensure that both the server and client ffatie batch have executed
to completion. These topics are beyond the scope of ourrmiLngsearch, but we do not
see any obstacles to combining RBI with distributed tratgas.

2.6 Service Implementation

Implementing a Remote Batch Invocation service is much knthan implementing
a server using traditional distributed object middlewaneJuding RMI or CORBA.

There is no need to create method stubs. Instead, the sémvely segisters a root
object with a single call after creating the server impletagan object.

Musi ¢ musi cServer
rbi.Server server

new Musiclnmpl (...);
new rbi . Server (" MisicC oud", mnusicServer);

The client connects to this service by using the same namagethce.

rbi.Service nusicService =
new rbi . Servi ce("Misi cC oud", Misic.class);

As in most distributed systems, interface mismatches b@mtvwadient and server are
detected at runtime. Standard Java interfaces define thieesepntract.

2.7 Service-Oriented Interaction

Remote Batch Invocation supports a service-oriented stf/i@teraction, so it does

not support object proxies. This is not a problem for mangntlfserver interactions,

which can be naturally accomplished in a single round-frigese interactions have the
following pattern:

put results

client % serverr "““%° client

The client sends any number of inputs to the server, whictopas multiple actions
and returns any number of results to the client. There mayabes; however, when a
server computation depends upon client ingiodi previously defined server objects.

59 results nputs resultss

. 3 t . .
client "% serverr "7 client* ™5 server "““5°2 client

This situation is easily handled in distributed object eyt like CORBA and RMI,
since each server operation is controlled by the client todn use proxies to refer to
the intermediate server results needed in the last step.

This interaction pattern requires some other solution itatekess service-oriented
system. The simplest approach is to have the second setegrretoad or recreate the
server objects that were defined in the first batch. The senegralso provide public
identifiers for its objects. The firsesultscan include a server object identifier, which
is used in the second batch to relocate the necessary séjeet.a’ hese patterns have
been studied extensively in the context of service-oriznt@mputing [20, 17].

2.8 Allowed Remote Operations

Any Java code may appear inside the batch block; howevetotiiler enforces some
data flow restrictions described in Section 3. Many Javatcocts such as constructor
calls, castsphi | e loops, and assignments cannot be remoted; they are alweystex
on the client. Future work may relax some of these restristitf remote assignments
were allowed, then it would be possible to aggregate (erg.@uaverage) over collec-
tions remotely. General loops could also be remoted witkmutificant changes to the
model.

Exceptions are a special case. The remote batch cannoteateptions remotely,
but it does propagate them to the client in the original llocabf the remote operation
that produced the exception. In this way, the client canfcaxceptions raised remotely
and handle them locally.

Keeping the remoteable constructs simple and as univesgadssible increases the
viability of using RBI against remote interfaces writteroiher languages.

3 Semantics

Our Java implementation of Remote Batch Invocation usefotlmving syntax:
batch (Type ldentifier : Expression) Block

The Identifier specifies the name of the root remote object. Epressionspecifies
the service which will provide the root remote object. Bieck specifies both remote
and local operations. A remote operation is an expressistatement executed on the
server. All remote operations inside the batch block arewesl in sequence followed
by the local operations in sequence. A single remote calladenwhich contains all
of the remote operations. This is the key property as it glewia strong performance
model to the programmer albeit lexically scoped. Excestiona remote operation are
re-thrown in the local operation sequence at the originzdtion of the remote opera-
tion. If the remote operations fail due to a network errogntfan exception is thrown
before any of the local operations execute. Operationsléntfie batch block are re-
ordered and it is possible that the block executes diffgrexsta batch than it normally
would. The compiler does try to identify some of these casdsaarn the programmer,
however, it is up to the programmer to be aware of the diffiedena semantics inside
the batch block.

Each expression in the batch is marketbasl or remote Local expressions are fur-
ther subdivided intstatic localsandnon-static localsRemote expressions execute on
the server, possibly with input from static local expressid_ocal expressions execute
on the client, possibly with output from remote expressi@tatic local expressions are
literals and variable expressions defined outside of thehlmaid not assigned within the
batch before their use. All other local expressions arestatie.

The compiler determines the location of an expressioncsifiti A component of
this analysis is a forward flow-sensitive data-flow analyis& maps variables to loca-
tions. Locations are ordered as a small lattice wistac local< remote< non-static
local. Thew operator adds or changes a mapping for a variable pFhe function re-
turns the predecessors of a statement node in the controgftmph. For simplicity, we
will assume in this paper that all assignments are stateamkeoivever, in Java they are
actually expressions. The data flow analysis is defined iarEig.

Thebat ch variable is remote. Variables only assigned outside thehbate static
locals. Variables declared final and initialized with remekpressions are remote. All
other variables inside a batch block are non-static logedsignments may change the
mapping of a variable up the lattice of locations. For thialgsis, the only case where
this happens is a variable mapped as a static local may begpmtaas a non-static
local. It cannot happen for variables mapped as remote usedial variables cannot
be reassigned.

Figure 3 defines théocation function which maps expressions to locations. To
determine the location of a variable expression, the arsallysks up the variable name
in the result of the data flow analysis flowing into the statehoentaining the variable
expression. The mutual definition fcation andgen introduces a cyclic dependency
which is resolved by taking the fix point of the two functionarting with the bottom
value of our location lattice (static locals). The locatmfra primitive operation is the
join of the locations of the operands. The location of areinsé method call expression

n,m € Statement

e € FExpression

true e is an expression inside a batch statement
false otherwise

inBatch(e) = {

v e is an expression inside a batch statement of the fatth (7" v : ¢)
varBatch(e) =) :
unde fined otherwise
sWnil =5
sWo 1] = sU v 1] [v—_]¢&s
(s—v—E)Uv—1] [v—Ekl€s
inn] = U out[m)]
méEpred(n)

out[n] = in[n] W gen(n)

[v — remoté n = [batch(T v : e)]
[v — static loca]) n = [v = €] AlinBatch(n)
gen(n) = ¢ [v+ non-staticlocdl n = [v=-e¢] A varBatch(n) # vy
[v — location(e)] n = [final v = €] A wvarBatch(n) # v
nil otherwise

Fig. 2: Analysis of Java to identify local and remote variables

location([v]) = in[Stmt(v)](v)
location([e1 op ez2]) = location(e1) L location(ez)
location(Jo.m(€)]) = location(o)

non-static local inBatch(-)
static local linBatch(-)

location([]) = {

Fig. 3: Location of Java expressions

is the location of the target of the method call. All other egsions inside or outside
the batch statement are non-static local or static localecs/ely.

One important thing to note in the rules is that general assent is not supported in
the remote batch. Therefore, variables are only remotesif dorrespond to thieat ch
variable or if they aré i nal and assigned remote expressions. Javadr.5statements
are executed remotely if their collection is a remote exgicegs A remotef or loop is
replayed locally to support local expressions or statemrside the loop. Similarly,
conditional statements are executed remotely if their tmmds a remote expression. A
remote conditional is replayed locally to support localregsions or statements inside
thei f statement.

Data is passed by value from the client to the server and fn@sérver to the client.
For example, the remote identity function returns a copyheflbcal argument. This
implies that all input and output values of the batch mustrgbzable and specifically
in Java implement the Serializable interface. Remote gahat used locally are not
subject to this restriction. Remote expressions do havditgieas long as they are part
of computations on the server, and similarly local expasshave the normal notion
of identity in Java.

The compiler rejects all programs in which the remote opematcannot be legally
moved above the local operations. For example, paramgieggsions in remote method
calls cannot contain local variables defined within the lhaihe compiler also rejects
some programs in which moving the remote operations ab@ledtal operations might
result in non-intuitive behavior. For example, parameigressions in remote method
calls should not have their value changed in the local ojpersit The following are
considered illegal expressions by the compiler.

— Method invocations on remote values that have a parametehvidia non-static
local expression or is not serializable.

— Expressions with remote locations inside ofignblock where the condition is a
local expression.

— Expressions with remote locations inside of a loop constaere the condition is
local.

— Nested batch statements.

One design goal was to ensure that programmers could easigrstand the semantics
of the bat ch construct. To that end, our analysis uses a very simple kbata flow
analysis and is lexically scoped. This may allow non-imieiprograms to be accepted
by the compiler, because they change the state of staticdapeessions via different
threads, heap aliasing, or local method calls [19]. The¥dlhg example shows a case
where the compiler accepts a program that behaves norimetyifrom the point of
view of the programmer.

StringBuil der sb = new StringBuilder();
sb. append(" My Al buni);
bat ch(Misi ¢ nusic : nusicService) {

m(sb) ;

musi c. creat eAl bunm(" 1", sbh);

}
voi d n(StringBuilder sb) { sb.append(*: Bl ues"): }

The programmer might expect that the remote method:cakht eAl bumwill be passed
the string" My Al bum Bl ues", but in a remote batch it will be passed the string
"My Al buni', because the remote method call will occur first. Unfortatyadlava
reflection, virtual methods, and dynamic class loading athplicate whole program
analysis. Our local lexical analysis trades off catchingieaon-intuitive behavior to
gain simplicity, practicality, and locality.

4 Implementation

Support for Remote Batch Invocation in Java is implement@ aource to source
translator which takes code containing remote batch cectstand translates them into
regular Java code. The output of the source to source ttansises a script recording
API that sends the remote operations as a single batch terthate server. In the current
implementation, the script recorder uses the transpoerlayd the service discovery
mechanism of Java RMI. The support system for RBI is calle®BEwhich is an
acronym for Batch Execution Service and Translation. BEESmplemented as a layer
on top of Java RMI, without changes to the Java language ¢immanFirst, we discuss
the translation of the batch syntax. Then, we focus on thdementation issues of
BEST, its underlying techniques, and its integration wiétaJRMI. Section 5 quantifies
BEST performance benefits.

4.1 Language Translation

The source to source translator is implemented as an eatetsiJastAddJ [16]. Jas-
tAddJ is a Java compiler based on JastAdd and written as @anirattribute grammar.
JastAdd provides several useful features. As a circuldbate grammar, many static
analyses can be expressed naturally and fixed point congngadre handled by the
JastAdd engine. In addition, JastAdd provides many aspéetted features which al-
low composition of different analyses and language featimea a modular fashion.
The data flow analysis is implemented on top of a control flompgrmodule written
by the authors of JastAddJ for Java 1.4. We modified the theitute slightly to add
support for the newwat ch construct and to support Java 1.5. For each expression, the
translator computes its location as described in Section 3.

The translator traverses the program abstract syntaxA®€)(downwards starting
from the root AST node. Outside of a batch, the translatosdu# change the Java
code. Inside a batch, the translator always produces twe stithgs, one for the re-
mote operations and one for the local operations. Once ttiee dratch is translated,
some boilerplate code to setup the batch is generated fiest,the remote operations
are inserted, then a call to execute the batch is generatedinally the local operations
are inserted. While translating code in a batch, the tramstets two different modes of
operation. Initially the translator is in local mode. Exgg®ons in local mode produce
no remote operations and produce themselves as local mperdflost statements be-
have similarly except for remote loops and remote condii®mvhich produce both
remote and local operations. Once the translator reachegpmassion whose location
is remote, it binds that remote value to a temporary variabla remote operation and
enters remote mode for that expression. The translatoedid®a local operation which
invokes theget method on the temporary variable. In remote mode, the ttorstan
safely assume all sub-expressions are remote operations.

Servi ce nusicService = new Servi ce("Misi cC oud", Misic.class);
bat ch(Misi ¢ nusic : nusicService) {
final Al bum al bum = nusic. get Al bum("1");
if (albumgetTitle().startsWth("A")) {
Systemout. println("Tracks:");
for (Track t : albumgetTracks()) {
Systemout.print(’ ");
Systemout.print(t.getTitle());
}
} else {
Systemout.print("Title does not start with A
+ al bum get Artist().getNane());

H}

Fig. 4: RBI source code

/I Remote part
Service service$ = nusicService;
{ Batch batch$ = service$. get Root();
Handl e al bun$73751 = bat ch$. dol nvoke(bat ch$, "get Al bunf,
new Class[] {String.class}, new hject[] {"1"});
Handl e var$0 = bat ch$. dol nvoke(
bat ch$. dol nvoke(al bun$73751, "get Title", null, null),
"startsWth", new Cl ass[] {String.class}, new Qhject[] {"A"});
bat ch$. r1f (var $0);
cursor. Cursor t$86036%Cursor = batch$. createCursor (
bat ch$. dol nvoke(al bun$73751, "get Tracks", null, null));
Handl e var$1 = t $86036%Cur sor. dol nvoke(
t $86036%Cursor,"getTitle", null, null);
bat ch$. rEl se();
Handl e var$2 =
bat ch$. dol nvoke(bat ch$. dol nvoke(al bun$73751, "get Artist", null,
"getNane", null, null);
bat ch$. r End();
bat ch$. fl ush();
/I Local part
i f ((Bool ean)var $0. get ()){
Systemout.println("Tracks:");
while (t$86036%Cursor.next()) {
Systemout.print(’ ');
Systemout.print((String)var$l.get());
}
} else {
Systemout.print("Title does not start with A
+ (String)var$2.get());
1}

Fig. 5: Translation of Figure 4

nul l'),

Figure 4 shows a RBI program which uses many of the suppoeetlifes. Fig-
ure 5 shows the translation into Java code which uses BESintaresting part of the
translation is how conditionals and loops require both renamd local operations.

4.2 BEST Client Interface
The main client interface of BEST is defined in Figure 6.

public interface Batch {
publ i ¢ Handl e dol nvoke(Obj ect obj, String nethod,
Class[] types, oject[] args);

public Cursor createCursor(Handl e val ue);
publi ¢ Handl e unary(QOps op, Handle val 1);
publ i c Handl e binary(Ops op, Handl e val 1, Handl e val 2);
publi ¢ Handl e constant (Obj ect 0);
public Handle riIf(Handl e condition);
public Handl e rEl se();
public Handl e rEnd();
c

public void flush();

Fig. 6: Interface to the BEST batch execution runtime

A Bat ch is a client object that represents a collection of statemémethodf | ush
delineates the boundary of a batch. Wli¢nish is called, all the recorded statements
are sent to the server in bulk, executed there, and the relessults are returned back
together. Each recorded statement returrsrall e which is a placeholder for a remote
object, existing or created on the serverHéndl e has two different semantics before
and afterf | ush is called. Beforé | ush, aHandl e serves as a placeholder for a result
which has not yet been obtained. Afterush, a Handl e object holds a result of a
remote operation that can be retrieved.

TheBat ch interface describes a script recording service. To add aeddb be in-
voked remotely, the API provides the methiid nvoke. The parameters of this method
loosely mirror that ofvet hod. i nvoke in the Java Reflection API. The method’s pa-
rameters are deliberately weakly-typed to enable greaebflity. This design choice
fits well the BEST programming model, in which all the callsthe script recording
API are automatically generated by the source-to-souarsskator, thereby ensuring
that the resulting code is type safe.

The Bat ch interface also provides methods to express conditionabterwontrol
flow and operators. These methods are used to express cosditnd operations used
in a bat ch block. The translator maps Java conditional and primitigerators into
regular methods (e.g.) f, r El se, bi nary) that are recorded for remote execution.

ThemakeCur sor method takes &andl e parameter and returnsCar sor , which
represents an iteration context for the collection of aigjegisting on the server. The as-
sumption for callingrakeCur sor is thatitsHandl e parameter representslarer abl e
object such as pava. util. Col | ecti on or an array.

ThecCur sor interface is implemented as follows:

public interface Cursor extends Batch {
publ i c bool ean next();
public void setPosition(int position)
throws |11 egal Argunment Excepti on;
public int getPosition();
}

Remote operations recorded o@ua sor interface will be replayed on each element
of anl t er abl e collection on the server. Aftdrl ush, theCur sor can be iterated to
retrieve the results of remote operations for every element

The end result of recording operations usingBhech interface is a list of method
descriptors, which are serializable objects sent to theesefach recorded operation is
assigned a sequence number which acts as an identifier faathal he sequence num-
bers are sent to the server, so that method arguments cantbleeshdo prior method
return values.

4.3 Batch Execution

When the client call§é!| ush, the recorded operations are sent to the server as a batch by
calling a regular RMI methoblat chl nvoke. To make the BEST functionality available

to all RMI remote objects, thigat chl nvoke method is added toni cast Renot eObj ect ,

a super class extended by RMI application remote classes.

The BEST server runtime decodes method descriptors, isvbkiched methods
one-by-one and returns the results back to the client. Téeiment conditional state-
ments such asf andel se, the BEST server interprets the operations by evaluating
the specified conditional statements and changing the adiidkv of a batch based
on their results. Similar strategy is applied to executingry and binary operations.
While at the script recording time on the client the operamdsepresented by handles,
their actual values are obtained during the execution otehben the server. Then the
interpretation simply operates on the actual values as pedfged by the script.

Cursor operations are interpreted analogously to regplaradions, with the excep-
tion that each recorded operation is executed on each etevhan| t er abl e server
object with the results stored in a table. The rows in thestabtrespond to the different
variables associated with a cursor and the columns comesfooeach iteration of the
cursor.

4.4 Result Interpretation

For each non-cursor cliemtandl e, the server returns a value, exception, or nothing.
The server returns no value for a clief#tndl e associated with an unexecuted remote
operation. At most onelandl e is assigned an exception, because the the remote batch
is terminated by the first exception. If-andl e has an exception, rather than a value,
then this exception is thrown when accessing its content.

For cursors, result interpretation is more complicateadthBamenext is called on
a Cur sor, theHandl e objects associated with it are assigned values from thernretu
value array. The number of values in the array is the numbeleafients in th€ur sor
times the number dfiandl e’s. Handl e’s normally do not change value after they have
been assigned, with the exception when they are createchveitbursor—thedandl! e
values may change on each iteration of the loop.

Micro Benchmark
__ 160
g 140 //
g 120 / ——RMI
= 100
§ 80 / —4A—RBI
=
ZE'S 28 4 -=-DTO
; 20 W
0 - T T T T \ ‘)
1 2 4 8 16 32 64
Number of fields to access

Fig. 7: Performance Comparison between RMI, RBI, and DTO vession

5 Performance

In essenceBatch Remote Invocatias a language level mechanism that optimizes re-
mote communication by leveraging the improved bandwid#ratteristics of modern
networks [23], especially in high-latency environmentkh8ugh the performance ben-
efits of batching remote operations are well-known and haen lthe target of several
research efforts [6, 21, 9], the purpose of evaluating théopmance of RBI is to en-
sure that the overhead of its runtime, BEST, does not imppnaseeasonable perfor-
mance overhead. The following benchmark uses data objéittslifferent numbers of
Stringfields: 1, 2, 4, 8, 16, 32, and 64. The benchmark emulates a comsage sce-
nario, in which the client retrieves the object from the seand updates its fields. This
scenario was implemented and measured using three diffeoemmunication styles:
plain RMI, a hand-coded DTO, and RBI. Figure 7 shows the parémce numbers for
each version.

All the experiments were run in the Windows XP version of JDR.Q13 (build
1.6.0.13-b03), with the server running Dual Core 3GHz procesb@&B of RAM, and
the client running Dual Core 2.4GHz Processors, 2GB of RAbhnected via a LAN
with a 1Gbps, 1ms latency network. The results represeravtbege of running each
benchmark 1000 times after first running it 2000 times to wémenJVM. Warming
the JVM ensured that the measured programs had been dyfignomapiled before
measurements.

As expected, the RMI version is the slowest, with its slop@agng linearly at a
fixed rate, as the number of fields increases. The DTO and RBiores exhibit com-
parable performance, with DTO being faster by a small congttor. These results
are predictable, as the execution time is dominated by thebeu of remote calls per-
formed by each version of the benchmark, and in most netwgrknvironments the
latency of a remote call is several orders of magnitude tatga that of a local call.

The specific number of remote calls performed by each verditimee benchmark is
as follows. If f is the number of fields, the RMI version perforthsg f remote calls (to
get and set every field); the DTO version performs ahballs (i.e., getting and setting
all fields in bulk); and finally, the RBI version performs edgcl remote call.

Even though the RBI version performs only one remote calenehs the DTO ver-
sion two, RBI is still slower due to the overhead imposed byclient and server run-
time. To provide flexibility, BEST uses Java language fezguhat are known to have
a negative effect on performance, including reflection tmte and invoke methods as
well as multipleObj ect arrays to pass parameters. In addition, the current impieme
tation of BEST has not been fine-tuned for performance. Finidle BEST overhead
would be amortized more significantly in a higher-latencywoek environment. Com-
pared to the hard-coded interface of DTO, RBI makes it ptsddcreate a flexible
DTO on the fly with the accompanying performance benefits dubé reduced net-
work communication enabled by its service-oriented exenunodel.

6 Related Work

6.1 RPC Critique

Even though Remote Procedure Call (RPC) [32] has been orfeeahbst prevalent
communication abstracts for building distributed systeitssshortcoming and limita-
tions have been continuously criticized [30, 36, 26]. Rdgesome experts even express
the sentiment that RPC has had an overwhelmingly harmfulénfte on distributed
systems development and wish that a different communicatistraction had become
dominant instead [34]. A frequently mentioned alternafive RPC is asynchronous
messaging and events, including publish-subscribe aibising [12].

Despite all the criticisms of RPC and its object-orientedrterparts, exposing dis-
tributed functionality through a familiar procedure cadradigm has unquestionable
convenience advantages. Remote Batch Invocation is anftte address some of the
limitations of RPC, while retaining its advantages, withouroducing the complica-
tions of asynchronous processing imposed by message- antesrsed abstractions.

Among the main criticisms of RPC is its attempt to elimindte distinction be-
tween the local and remote computing models, with respdateacy, memory access,
concurrency, and partial failure [36]. By combining muléippperations into a single
batch, RBI reduces latency. By executing all remote opamaton the server in bulk,
RBI maintains the local memory access model for method petens. As future work,
a transactional execution model can be combined with RBthieze an all-or-nothing
execution property. And while batch invocations in RBI ayachronous, the resulting
execution model is explicit, giving the programmer a cleagcaition and performance
model.

6.2 Explicit Batching

Software design patterns [18] fRemote FacadandData Transfer Objecfalso called

Value Objects [3]) can be used to optimize remote commuioicaf Remote Facade
allows a service to support specific client call patternagisi single remote invocation.
Different Remote Facades may be needed for differenttsli@emote Batch Invocation

provides a custom Remote Facade for each client as longeadiéimt call pattern is
supported as a single batch. BPata Transfer Objecis a Seri al i zabl e class that
provides block transfer of data between client and servemith the Remote Fagade,
different kinds of Data Transfer Objects may be needed Herdifit clients. Remote
Batch Invocation constructs an appropriate value objecthenfly, automatically, as
needed by a particular situation. Remote Batch Invocatiem generalizes the concept
of a data transfer object to support transfer of data frontrary collections of objects.

The DRMI system [21] aggregates RMI calls as a middlewanmatipmuch like
BEST. DRMI uses special interfaces to record and delay thecation of remote calls.
DRMI only supports simple call aggregation and simple bhémg, while Remote Batch
Invocation and BEST also support cursors, primitive openat and exception han-
dling. Like BEST, DRMI requires that the programmer pastitithe remote and local
operations themselves. This often forces the programmegpiicate loops and con-
ditionals manually, whereas Remote Batch Invocation sfiemore flexible style of
programming and relies on the source to source translafgartdion the program into
remote and local operations.

Detmold and Oudshoorn [15] present analytic performanceatsdor RPC and its
optimizations including batched futures as well as a newingpation construct termed
a responsibility Their analytic models could be extended to model the perdoice
properties of the new optimization constructs of RemoteB#tvocation such as cur-
sors and branching.

Sometimes a communication protocol defines batches dirextlis in the com-
pound procedure in Network File System (NFS) version 4 Ratf27], which com-
bines multiple NFS operations into a single RPC request.cbnepound procedure in
NFS is not a general-purpose mechanism; the calls are indepeof each other, ex-
cept for a hard-coded current filehandle that can be set agd lms operations in the
batch. There is also a single built-in exception policy. V8aovices are often based on
transfer of documents, which can be viewed as batches ofteetatls [35, 11].

Cook and Barfield [11] showed how a set of hand-written wrappan provide a
mapping between object interfaces and batched calls esqutess a web service doc-
ument. Remote Batch Invocation automates the process afirmyethe wrappers and
generalizes the technique to support branching, cursacseaception handling. As
a result, Remote Batch Invocation scales as well as an g@iniveb service, while
providing the raw performance benefits of RPC [13]. Web sexvichoreography [24]
defines how Web services interact with each other at the medseel. Remote Batch
Invocation can be seen as a choreography facility for tisteid objects.

6.3 Mobile Code

Mobile object systems such as Emerald [5] reduce latency &wing active objects,
rather than making multiple remote calls. JavaParty [2%]rates objects to adapt the
distribution layout of an application to enhance local&ynbassadors is a communi-
cation technique that uses object mobility [14] to minimibhe aggregate latency of
multiple inter-dependent remote methods. DJ [1] adds ejpfogramming constructs
for direct type-safe code distribution, improving bothfpemance and safety.

Mobile objects generally require sophisticated runtimgpsut not only for moving
objects and classes between different sites, but also findewith security issues. A
Java application can essentially disable the use of mobde by not allowing dynamic

class loading. An RBI server is fairly simple to implemenlie@ts only gain access to
interfaces that are reachable from the service root.

Even in an environment that supports mobile code, therech@ngages to Remote
Batch Invocation. This can be understood by consideringuastation from RBI to
mobile code. Abat ch statement could be implemented using mobile code by writing
two mobile classes, one that is sent from the client to thees¢o execute the remote
operations, and another that is sent from the server badketalient to transport the
results in bulk to the client. The first class would contaimmber variables to store all
the local data sent to the server, and a method body to exeoutiee server. At the
start of this method an instance of the second class is creai populated with data
created by the remote method. At the end of the method thé mdgect is sent back to
the client. A custom pair of classes is needed for émtfth statement in the program.
While mobile code is more flexible and powerful than RBI, it ed$p be more work to
use this power to implement common communication patterns.

6.4 Implicit Batching

Batched futureseduce the aggregate latency of multiple remote method# [@mote
methods are restructured to return futures, they can bédetd he invocation of the
batch can be delayed until a value of any of the batched fsiisrased in an operation
that needs its value. There are several different cliemtdation patterns that cannot be
batched in this model. For example, unrelated remote methtisiwill not be batched
together.

Future RMI [2] communicates asynchronously to speed up RMBEiid environ-
ments, when one remote method is invoked on the result ohand®emote results of
a batch are not transferred over the network, remaining ersénver to be used for
subsequent method invocations.

Yeung and Kelly [9] use byte-code transformations to detayiote methods calls
and create batches at runtime. A static analysis determines batches must be flushed.

In all of these implicit batching techniques, it is not cléeow to support loops,
branches, and exceptions as in Remote Batch Invocatiomlditi@n, small changes in
the program, for example introducing an assignment to d i@r#able, or an exception
handler, can cause a batch to be flushed. This means themarfoe is very sensitive
to the ordering of remote and local operations. On the otaedhRemote Batch In-
vocation automatically tries to reorder remote and locarapons to maintain a single
batch, while checking that the reordering makes sense.

6.5 Automatic Partitioning

Remote Batch Invocation can be seen as a language levehetismtrfor automatic ap-
plication partitioning, a semi-automatic approach forideg a distributed application
from a centralized one.

One line of research has explored coarse grained progratitiggang. The pro-
grammer, by means of a GUI or a configuration file, designafessent parts of a cen-
tralized application, typically at a class or object gramity, to run on different network
nodes. The resulting distribution specification then paanizes a compiler-based tool

that automatically rewrites the centralized applicationdistributed execution. To in-
troduce distribution, a partitioning tool may need to bdthmrge the structure of the ap-
plication (e.g., to introduce a proxy indirection) and addafeware functionality (e.g.,
to replace local calls with remote ones). In the Java woédent automatic partitioning
tools include Addistant [31], Pangaea [28], and one of thauwtbor’s J-Orchestra [33].
Addistant and J-Orchestra partition programs at a classutpety; Pangaea can parti-
tion at the individual object level. J-Orchestra addressechallenges of partitioning
programs safely in the presence of unmodifiable code thaés@s part of their runtime
systems.

Automatic program partitioning has also been applied at firenularaties. Swift [10]
partitions Java programs into a web application backendlawascript at the Java state-
ment level. Constraints on the locations of statementdésried from information flow
policies and the placement of statements is optimized tamime round-trips with
respect to those constraints. Similarly, RBI infers theatmmn of statements and ex-
pressions from a forward data-flow analysis. Some of theutbeasis have previously
developed Query Extraction [37]; a system for extractintpdase queries from Java
code traversing persistent object structures. Query Ebidra performs a very similar
analysis to RBI to extract the code operating over perdigdata and converts that
code’s loops and conditions join andwhereclauses in database queries.

6.6 Asynchronous Remote Invocation

Another approach to optimizing distributed communicaisdispatching remote calls
asynchronously. One example is ProActive [4]. An asyncbusiremote call in ProAc-
tive returns a future; a placeholder for to be computed tesWhen a client tries to
resolve the future’s actual value, the client blocks uh# tesult is available.

Although asynchronous remote invocations can optimizeynpatterns in client-
server communication, they offer no performance improvasér chains of remote
calls (i.e.,o. mL() . n2()). Compared to asynchronous invocation, the RBI program-
ming model does not involve futures and can combine chaingrbte calls into a
batch, thus improving their performance.

Although the current version of RBI does not take advantdgeicurrent process-
ing, in the future the script recorder could also convey dépeacies between batched
operations to the server, which can be used to safely int@doncurrency into the
batch execution on the server.

7 Conclusion

Most of the related work discussed in Section 6 improve ithisted programming using
libraries and compiler optimizations. On the other haeinote Batch Invocation (RBI)
addresses distributed programming with a language exteng/e argue that the ben-
efits of RBI over existing library and compiler approaches/rogercome the natural
inertia to changing a programming language. The benefitBoiftlude:

— RBI provides a strong performance model. One server rotipdst executed for
each lexical batch block.

— RBI allows multiple remote operations to be combined batchwhich is executed
in a single round-trip to a remote server. A batch supportis bontrol and data flow
dependencies between remote operations. As a conseqtienEmote server may
provide a flexible fine-grained interface.

— RBI allows the programmer to mix remote and local operatiatsirally. The com-
piler separates the remote operations and takes care efdrang multiple inputs
to the remote server and interpreting the multiple outputs.

RBI was implemented as a Java extension using a source toestranslator and
the BEST runtime middleware library. In the future, we walbk at incorporating trans-
actions and advanced failure handling approaches into RBI.

The performance of RBI was evaluated by comparing plain Rl band-coded
DTO designs. Predictably, RBI significantly outperforms Rd is only marginally
slower than hand-optimized DTO implementations. Since PBVides greater flex-
ibility and control to the programmer, the small overheaghased by its runtime is
compensated by the added usability and expressivenesss RIBb attractive compared
with implicit batching because it can combine a larger seeofote operations.

RBI combines the convenience and flexiblity of fine-graingdifaces with the per-
formance advantages of coarser-grained interfaces. liti@udhe RBI stateless exe-
cution model aligns well with the increasingly prevalemvese-oriented architectures,
a rapidly-emerging industry standard.

Availability:

The implementation and examples discussed in the paperecdovimloaded from:
http://research. cs. vt. edu/ vt spaces/ best

References

1. A. Ahern and N. Yoshida. Formalising Java RMI with explicit code mobility Proc. of
OOPSLA '05 pages 403-422, New York, NY, USA, 2005. ACM.

2. M. Alt and S. Gorlatch. Adapting Java RMI for grid computinfguture Generation Com-
puter System21(5):699-707, 2005.

3. D. Alur, J. Crupi, and D. MalksCore J2EE Patterns: Best Practices and Design Strategies
Prentice Hall PTR, 2003.

4. L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel,RnQuilici. Grid Com-
puting: Software Environments and Toateapter Programming, Deploying, Composing, for
the Grid. Springer-Verlag, January 2006.

5. A. P. Black, N. C. Hutchinson, E. Jul, and H. M. Levy. The develeptof the Emerald
programming language. HOPL lII, pages 11-1-11-51, 2007.

6. P. Bogle and B. Liskov. Reducing cross domain call overhead sitahed futuresACM
SIGPLAN Notices29(10):341-354, 1994.

7. E. Brevnov, Y. Dolgov, B. Kuznetsov, D. Yershov, V. Shakin;XD.Chen, V. Menon, and
S. Srinivas. Practical experiences with java software transactiomabnye In PPoPP '08:
Proceedings of the 13th ACM SIGPLAN Symposium on Principles antiqeaxt parallel
programming pages 287-288, New York, NY, USA, 2008. ACM.

8. N. Brown and C. Kindel. Distributed Component Object Model PrdtdaGOM/1.0, 1998.
Redmond, WA, 1996.

9.

10.

11.

12.

13.

14.

15.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

26.

27.

28.

29.
30.

31.

32.

K. Cheung Yeung and P. Kelly. Optimising Java RMI Programs by Conication Restruc-
turing. INACM Middleware Conferenc&pringer, 2003.

S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, andzheng. Secure web ap-
plication via automatic partitioning. IBOSP '07: Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principtegyes 31-44, New York, NY, USA, 2007. ACM.
W. Cook and J. Barfield. Web Services versus Distributed Objec@age Study of Per-
formance and Interface Design. the IEEE International Conference on Web Services
(ICWS’06) pages 419-426, 2006.

C. Damm, P. Eugster, and R. Guerraoui. Linguistic support fdrilalised programming
abstractions. IDistributed Computing Systems. Proceedings. 24th International Confere
on, pages 244-251, 2004.

C. Demarey, G. Harbonnier, R. Rouvoy, and P. Merle. Bendkinsathe Round-Trip La-
tency of Various Java-Based Middleware Platfori@tudia Informatica Universalis Regular
Issue 4(1):7—-24, 2005.

H. Detmold, M. Hollfelder, and M. Oudshoorn. Ambassadorscaired object mobility in
worldwide distributed systems. Proc. of ICDCS’99 pages 442—449, 1999.

H. Detmold and M. Oudshoorn. Communication Constructs for HigfoReance Dis-
tributed Computing. IfProceedings of th&9*" Australasian Computer Science Conference
pages 252-261, 1996.

T. Ekman and G. Hedin. The JastAdd Extensible Java Com@I&PLAN Not.42(10):1-
18, 2007.

T. Erl. Service-Oriented Architecture: Concepts, Technology, and DesRyentice Hall,
Upper Saddle River, NJ, USA, 2005.

M. Fowler. Patterns of Enterprise Application ArchitectureAddison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

R. Gabriel. Is worse really betterdournal of Object-Oriented Programming (JOQP)
5(4):501-538, 1992.

D. Krafzig, K. Banke, and D. Slaménterprise SOA : service-oriented architecture best
practices Prentice Hall, 2005.

E. Marques. A study on the optimisation of Java RMI programs. Msasteesis, Imperial
College of Science Technology and Medicine, University of Londof819

The Object Management Group (OMGhe Common Object Request Broker: Architecture
and Specification1997.

D. A. Patterson. Latency lags bandwi@ommun. ACM47(10):71-75, 2004.

C. Peltz. Web services orchestration and choreograpbmputer 36(10):46-52, 2003.

M. Philippsen and M. Zenger. JavaParty— transparent remotet®bjeJava.Concurrency
Practice and Experien¢®(11):1225-1242, 1997.

U. Saif and D. Greaves. Communication primitives for ubiquitoutegsys or RPC consid-
eredharmful. IrDistributed Computing Systems Workshop, 2001 International Conferenc
on, pages 240-245, 2001.

S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beamé&idler, and D. Noveck.
Network File System (NFS) version 4 Protocol, 2003.

A. Spiegel Automatic Distribution of Object Oriented ProgranfhD thesis, FU Berlin, FB
Mathematik und Informatik, 2002.

Sun Microsystemslava Remote Method Invocation Specificatib®97.

A. S. Tanenbaum and R. v. Renesse. A critique of the remotecanezeall paradigm. In
EUTECO 88pages 775-783. North-Holland, 1988.

M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano. A Bytecode TaéorSor Distributed Execu-
tion of "Legacy” Java Software. |IBuropean Conference on Object-Oriented Programming
(ECOOP) 2001.

B. Tay and A. Ananda. A survey of remote procedure callperating Systems Revigw
24(3):68-79, 1990.

33.

34.
35.

36.

37.

E. Tilevich and Y. Smaragdakis. J-Orchestra: Enhancing Jagagms with distribution
capabilities. ACM Transactions on Software Engineering and Methodolagpress.

S. Vinoski. RPC Under FirdEEE INTERNET COMPUTINGpages 93-95, 2005.

W. Vogels. Web services are not distributed objelcternet Computing, IEEE/(6):59-66,
2003.

J. Waldo, A. Wollrath, G. Wyant, and S. Kendall. A Note on Distributech@ating. Tech-
nical report, Sun Microsystems, Inc. Mountain View, CA, USA, 1994,

B. Wiedermann, A. Ibrahim, and W. R. Cook. Interprocedutedrg extraction for trans-
parent persistence. BOPSLA '08: Proceedings of the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and applicat@ges 19—-36, New York,
NY, USA, 2008. ACM.

