
Remote Batch Invocation
for Compositional Object Services

Ali Ibrahim2, Yang Jiao1, Eli Tilevich1, and William R. Cook2

1 Computer Science Department, Virginia Tech
{tilevich,jiaoyang}@cs.vt.edu

2 Department of Computer Sciences, The University of Texas at Austin
{aibrahim,wcook}@cs.utexas.edu

Abstract. Because Remote Procedure Calls do not compose efficiently, design-
ers of distributed object systems use Data Transfer and Remote Façade patterns to
create large-granularity interfaces, hard-coded for particular clientuse cases. As
an alternative to RPC-based distributed objects, this paper presentsRemote Batch
Invocation(RBI), language support for explicit client-defined batches. A Remote
Batch statement combines remote and local execution: all the remote codeis ex-
ecuted in a single round-trip to the server, where all data sent to the server and
results from the batch are communicated in bulk. RBI supports remote blocks, it-
eration and conditionals, and local handling of remote exceptions. RBI is efficient
even for fine-grained interfaces, eliminating the need for hand-optimized server
interfaces. We demonstrate RBI with an extension to Java, using RMI internally
as the transport layer. RBI supports large-granularity, stateless server interactions,
characteristic of service-oriented computing.

1 Introduction

The Remote Procedure Call (RPC) has long been the foundationof language-level ap-
proaches to distributed computing. The idea is simple: replace local calls with stubs
that transfer the procedure call to a remote machine for execution. RPC has been gen-
eralized for objects to create distributed object systems,including Common Object Re-
quest Broker Architecture (CORBA) [22], the Distributed Component Object Model
(DCOM) [8], or Java Remote Method Invocation (RMI) [29]. Stubs are defined on a
local object that acts as a proxy for a remote object. One advantage of this approach is
that it does not require language changes, but can be implemented using libraries and
stub generator tools.

Standard object-oriented designs, which focus on flexibility and extensibility through
the use of fine-grained methods, getters and setters, and small objects, do not perform
well when distributed remotely. Every method call on a remote proxy is a round trip to
the server. To achieve suitable performance, remote objects must be designed according
to a different set of principles3. Data Transfer Objects and Remote Façades are used to
optimize data transfer and combine operations to reduce thenumber of round trips [18].
One effect of this approach is that servers and protocols arehard-coded to support spe-
cific client invocation patterns. If a client changes significantly, then the entire system,
including the server and its interfaces, must be redesigned.

2 This work was supported by the National Science Foundation under Grant CCF-0448128.
3 Approaches using asynchronous messaging are discussed in relatedwork

This paper presentsRemote Batch Invocation(RBI), a new approach to distributed
object computing. Remote Batch Invocation allows multiplecalls on remote objects to
be invoked in a batch, while automatically transferring arguments and return values in
bulk. The following example uses a Remote Batch in Java to delete low-rated albums
from a personal online music database.

int minimum = 5;
Service musicService = new Service("MusicCloud", Music.class);
batch (Music favoriteMusic : musicService) {
for (Album album : favoriteMusic.getAlbums())
if (album.rating() < minimum) {
System.out.println("Playing: " + album.getTitle());
try {
album.play();

} catch (Exception e) {
System.out.println("error: " + e.getMessage());

}}}

The batch mixes local and remote computation. In this case, all the computation is
remote except the two calls toSystem.out. The semantics of Java is modified within
the batch to first perform all remote operations, then perform all local operations. Thus
the typical ordering between local and remote statements isnot necessarily preserved.
For example, all of the albums are played before any of the names are printed. All
loops and conditionals are executed twice: once on the server and then again on the
client. Exceptions on the server terminate the batch by default, and raise the error in the
analogous execution point on the client.

A remote batch transfers all data between client and server in bulk. In this case,
just theminimum rating is sent to the server. The server returns a list of all titles of
played albums. But it also returns a boolean for each album indicating whether it was
played. In general, any number of primitive or serializablevalues can be transfered to
and from the server. Remote Batch Invocation creates appropriate Data Transfer Objects
and Remote Façades on the fly, involving any number of objects and methods. Standard
Java objects can be published as a batch service by adding a single line of code. The
semantics of the batch statement require that only a single remote invocation is made
in the lexical block. This strong performance model is important, because the cost of
remote invocations may be several orders of magnitude higher than local invocations.

We demonstrate Remote Batch Invocation with an extension toJava. A source-to-
source translator converts thebatch statement to plain Java which uses Batch Exe-
cution Service and Translation (BEST), our middleware library for batched execution
using Java RMI. Remote Batch Invocation is not tied to RMI, but could also be imple-
mented using other middleware transport, for example web services or mobile objects.
A server can publish a remote service by making a single library call.

The performance benefits of batching operations are well-known, especially in high-
latency environments. We evaluate our language extension by comparing it with other
approaches to batching such as implicit batching, mobile code, and the Remote Façade
pattern.

In summary, Remote Batch Invocation is a new approach to distributed objects that
supports service-orientation rather than remote procedure calls and proxies. The funda-
mental insight is that remote execution need not work at the level of procedure calls,
but can instead operate at the level of blocks, with bulk transfer of data entering and

leaving the block. Unlike traditional distributed objectsthat maintain server side state,
Remote Batch Invocation has a stateless execution model that is characteristic of service
oriented computing [20, 17].

2 Remote Batch Invocation

Remote Batch Invocation allows clients to combine remote operations into a single re-
mote invocation. We will illustrate the features of Remote Batch Invocation by example.
The basis of our examples is a sample remote service described by Fowler inPatterns
in Enterprise Application Architecture[18]. This simple remote music service is com-
prised of three classes: Album, Artist, and Track as shown inFigure 1. TheAlbum
interface also provides theplay method which returns the lyrics on the album and
plays the album on a sound system.

interface Album {
String getTitle();
void setTitle(String title);
Artist getArtist();
void setArtist();
Track[] getTracks();
void addTrack(Track t);
void removeTrack(Track t);
String play();

}

A natural remote interface to these three classes is shown below:

interface Music {
Album createAlbum(String id, String title);
Album getAlbum(String id);
Artist addArtist(String id, String name);
Artist getArtist(String id);
Track createTrack(String title);

}

Using theMusic interface, a client can create and find artists and albums as well as
create tracks. A client may update object fields using the appropriate setters. We will
use this interface for our Remote Batch Invocation examples.

Unfortunately, this natural interface is too fine-grained in a system where individ-
ual method calls are expensive. Using the Remote Façade andData Transfer patterns,
Fowler wraps the Music interface:

interface FowlerMusic {
String play(String id);
AlbumDTO getAlbum(String id);
void createAlbum(String id, AlbumDTO dto);
void updateAlbum(String id, AlbumDTO dto);
void addArtistNamed(String id, String name);
void addArtist(String id, ArtistDTO dto);
ArtistDTO getArtist(String id);

}

Fig. 1: Fowler Album Class Diagram

FowlerMusic is a Remote Façade for theMusic interface. For example, the
FowlerMusic.play method is simply calling theMusic.getAlbum method followed
by the Album.play method. TheAlbumDTO, ArtistDTO, andTrackDTO are data
transfer objects (DTO) that transfer information in bulk toand from the remote server.
Fowler also definesAlbumAssembler, which maps between DTOs and objects resid-
ing on the server.

class AlbumAssembler {
public AlbumDTO writeAlbum(Album subject) {
AlbumDTO result = new ALbumDTO();
result.setTitle(subject.getTitle());
result.setArtist(subject.getArtist().getName());
writeTracks(result, subject);

}
void writeTracks(AlbumDTO result, Album subject) { ... }
void writePerformers(TrackDTO result, Track subject) { ... }
public void createAlbum(String id, AlbumDTO source) {
Artist artist = Registry.findArtistNamed(source.getArtist());
if (artist == null) throw new RuntimeException(...);
Album album = new Album(source.getTitle(), artist);
createTracks(source.getTracks(), album);
Registry.addAlbum(id, album);

}
void createTracks(TrackDTO[] tracks, Album album) { ... }
void createPerformers(Track newTrack, String[] performers) { ... }

}

Although AlbumAssembler encapsulates the logic of mapping between DTO and
model objects, it is not generic, containing a hard-coded decision about the DTO con-
tent. In the book, Fowler decides to have the Album DTO provide all the information
about a single album.

The next sub-sections give examples of using Remote Batch Invocation for batch
data retrieval, batch data transfer, loops, branching, andexceptions.

2.1 Batch Data Retrieval

A simple client may want to print the title and name of the artist for an album. With the
fine-grainedMusic interface, the client must execute four remote calls: a callto find
the album, a call to get the title of the album, a call to get theartist for the album, and a
call to get the name of the artist for the album.

Using Remote Batch Invocation, the client can use theMusic interface while still
executing a single remote call. The input to the remote batchis the id of the album “1”.
The output of the remote batch is the title of the album and thename of the artist of
the album. A remote batch can combine an arbitrary number of method calls as long as
they are invoked on objects transitively reachable from theroot object of the batch, in
this casemusic.

batch (Music music : musicService) {
final Album album = music.getAlbum("1");
System.out.println("Title: " + album.getTitle());
System.out.println("Artist: " + album.getArtist().getName());

}

The same client using the remote façadeFowlerMusic executes a single remote
methodgetAlbumwhich returnsAlbumDTO. For this client, the DTO is an over-approximation
of the data needed; a Remote Façade optimized for this client would need another DTO
for albums that only provides the title and artist name.

AlbumDTO album = music.getAlbum("1");
System.out.println("Title: " + album.getTitle());
System.out.println("Artist: " + album.getArtistName());

For other clients, the DTO may be an under-approximation of the data needed. For
example, this client prints the title of two different albums.

batch (Music music : musicService) {
final Album album = music.getAlbum("1");
System.out.println("Title: " + album.getTitle());
final Album album = music.getAlbum("2");
System.out.println("Title: " + album.getTitle());

}

FowlerMusic does not contain a method that matches this client pattern. Consequently,
the same client usingFowlerMusic must make an additional remote call compared
to using Remote Batch Invocation. Alternatively, theFowlerMusic interface can be
changed to include a method that takes two album IDs as input and returns a new DTO
containing two fields representing the titles of the input albums. This highlights one of
the disadvantages of the Remote Façade pattern; it createsa non-functional dependency
between the server interface and the client call patterns.

2.2 Batch Data Transfers

Remote Batch Invocation also allows clients to transparently transfer data in bulk to the
server. The following code createsAlbum, Artist, andTrack objects and wires them
together. The input to the remote batch is all the information about the album, artist,
and track to be created and there is no output. The actual construction of the objects and
method calls occur entirely on the server.

batch (Music music : musicService) {
final Album album = music.createAlbum("2", "First Album");
final Artist artist = music.addArtist("2", "John Smith");
album.setArtist(artist);
final Track track = music.createTrack("First track");
track.addPerformer(artist);
album.addTrack(track);

}

A client usingFowlerMusic can also create the objects using a single remote invoca-
tion using the appropriate DTOs.

AlbumDTO album = new AlbumDTO("First Album");
AlbumDTO artist = new ArtistDTO("2", "John Smith");
album.setArtist(artist);
TrackDTO track = new TrackDTO("First Track");
track.addPerformer(artist);
album.addTrack(track);
music.createAlbum("2", album);

A drawback to using data transfer objects for creating and updating objects, is that DTO
is under-specifying some of the semantics of the operation.In particular, the DTO does
not tell the server whether the artist object is an artist object which should be created or
if it already exists. This is a well-known problem in data mapping and commonly arises
in distributed systems. A common approach and the one taken by Fowler in his book,
is to specify a convention to either always create objects, always use existing objects,
or create an object if it does not already exist. Another approach is to enrich the DTO
with statusfields for each normal field that specify the right semantics.Sometimes this
status field is encoded into the field, for example, by usingnull as a special value.
A related problem is updating objects if the client only has apartial description of the
object. The client must be able to update the subset of fields which are known, but not
the fields which are unknown.

The remote batch is more explicit in that specifies that theartist is a newArtist
object. If the client wanted to reference an existing artistthe code would be rewritten as
follows:

batch (Music music : musicService) {
final Album album = music.createAlbum("2", "First Album");
final Artist artist = music.getArtist("2");
album.setArtist(artist);
final Track track = music.createTrack("First track");
track.addPerformer(artist);
album.addTrack(track);

}

2.3 Loops

So far, we have shown that Remote Batch Invocation supports straightline code. How-
ever, it is common for a client to need more complex logic involving branching and
loops. Remote Batch Invocation allows for remoting of the enhancedfor loop intro-
duced in Java 1.5 if the collection can be evaluated remotely. If data from the iterations

is needed locally, the remote batch constructs a data transfer object with an array of the
data needed and transparently maps it on the client. Below isa simple example which
shows how explicit batching can operate over arrays. The input to the remote batch is
simply the id of the album and output is the title of all of the tracks, the name of all of
the performers on the tracks, and the lyrics returned by theplay method.

batch (Music music : musicService) {
final Album album = music.getAlbum("1");
System.out.println("Tracks: ");
for (Track t : album.getTracks()) {
System.out.print(t.getTitle());
System.out.println(’,’);
System.out.print("Performed by: ");
for (Artist a : t.getPerformers()) {
System.out.print(a.getName());
System.out.print(’ ’);

}
System.out.print(’\n’);

}
System.out.println("Song: " + album.play());

}

TheFowlerMusic.getAlbum method in Remote Façade nearly provides all the func-
tionality required by this client; however, it does not include a call to theAlbum.play
method.

2.4 Branching

Conditional statements, includingif andelse, are remoted if their condition is a re-
mote operation. Below is a simple example that shows such a remoted conditional state-
ment also containing the primitive operator&&.

batch(Music music : musicService) {
final Album album = registry.getAlbum("1");
if (album.getName().startsWith("A")

|| album.getName().startsWith("B")) {
album.play();
System.out.print("Title starts with A or B: " + album.getTitle());

} else {
System.out.print("Title does not start with A or B: "

+ album.getArtist().getName());
}}

RBI supports boolean and numeric primitive operators, bothunary and binary. Condi-
tional code can also be included as part of operations on collections. In that case, the
conditions are reevaluated on each iteration over a collection. The following example
adds albums composed by Yo-Yo Ma to the favorites collection.

for (Artist a : t.getPerformers()) {
if (a.getName().equals("Yo-Yo Ma")) {
favorites.addArtist(a);

}}

2.5 Exceptions

Remote Batch Invocation separates exceptions caused by failures in communication
from logical exceptions that arise when executing the statements in the batch. The
batch statement itself can raise network exceptions, which must be handled by the sur-
rounding context. If there are no network errors, then exceptions raised by statements
in the batch can be handled in the client.

Within a batch, a remote operation can raise an exception on the server thatwill
terminate the batch. The thrown exception will be raised in the corresponding execution
point on the client. The client must use exception handlers as in regular Java code. In
addition, the execution of a remote batch may result in aRemoteException that can
be handled by wrapping an entirebatch block with atry/catch block.

For example, the following code extends an earlier example to include an exception
handler when trying to play an album, and another handler that deals with network and
communication errors raised at any point of executing the batch.

try {
batch (Music favoriteMusic : musicService) {
...
try {
album.play();

} catch (PermissionError pe) {
System.out.println("No permission to play album"
+ album.getTitle());

}
} //end batch

} catch (RemoteException re) {
System.out.println("Error communicating batch.");

}

The default behavior of a batch is to abort processing when anexception is thrown.
As future work, we would like to be able to apply a different exception policy, for
example to continue execution or restart the batch. Batchesalso provide a natural unit
of atomic execution. In many cases it is desirable for the entire batch to succeed or
fail, so that incomplete operations are never allowed. One way to achieve this is to use
transactional memory on the server [7].

Even so, it is possible for the batch to succeed on the server but for a communication
error to prevent the client from completing the batch. A standard two-phase commit
could be used to ensure that both the server and client parts of the batch have executed
to completion. These topics are beyond the scope of our current research, but we do not
see any obstacles to combining RBI with distributed transactions.

2.6 Service Implementation

Implementing a Remote Batch Invocation service is much simpler than implementing
a server using traditional distributed object middleware,including RMI or CORBA.
There is no need to create method stubs. Instead, the server simply registers a root
object with a single call after creating the server implementation object.

Music musicServer = new MusicImpl(...);
rbi.Server server = new rbi.Server("MusicCloud", musicServer);

The client connects to this service by using the same name andinterface.

rbi.Service musicService =
new rbi.Service("MusicCloud", Music.class);

As in most distributed systems, interface mismatches between client and server are
detected at runtime. Standard Java interfaces define the service contract.

2.7 Service-Oriented Interaction

Remote Batch Invocation supports a service-oriented styleof interaction, so it does
not support object proxies. This is not a problem for many client/server interactions,
which can be naturally accomplished in a single round-trip.These interactions have the
following pattern:

client
input
−→ server*

results
−→ client

The client sends any number of inputs to the server, which performs multiple actions
and returns any number of results to the client. There may be cases; however, when a
server computation depends upon client inputandpreviously defined server objects.

client
input
−→ server*

results
−→ client*

input2
−→ server*

results2

−→ client
6

This situation is easily handled in distributed object systems like CORBA and RMI,
since each server operation is controlled by the client and it can use proxies to refer to
the intermediate server results needed in the last step.

This interaction pattern requires some other solution in a stateless service-oriented
system. The simplest approach is to have the second server batch reload or recreate the
server objects that were defined in the first batch. The servermay also provide public
identifiers for its objects. The firstresultscan include a server object identifier, which
is used in the second batch to relocate the necessary server object. These patterns have
been studied extensively in the context of service-oriented computing [20, 17].

2.8 Allowed Remote Operations

Any Java code may appear inside the batch block; however, thecompiler enforces some
data flow restrictions described in Section 3. Many Java constructs such as constructor
calls, casts,while loops, and assignments cannot be remoted; they are always executed
on the client. Future work may relax some of these restrictions. If remote assignments
were allowed, then it would be possible to aggregate (e.g. sum or average) over collec-
tions remotely. General loops could also be remoted withoutsignificant changes to the
model.

Exceptions are a special case. The remote batch cannot catchexceptions remotely,
but it does propagate them to the client in the original location of the remote operation
that produced the exception. In this way, the client can catch exceptions raised remotely
and handle them locally.

Keeping the remoteable constructs simple and as universal as possible increases the
viability of using RBI against remote interfaces written inother languages.

3 Semantics

Our Java implementation of Remote Batch Invocation uses thefollowing syntax:

batch (Type Identifier : Expression) Block

The Identifier specifies the name of the root remote object. TheExpressionspecifies
the service which will provide the root remote object. TheBlockspecifies both remote
and local operations. A remote operation is an expression orstatement executed on the
server. All remote operations inside the batch block are executed in sequence followed
by the local operations in sequence. A single remote call is made which contains all
of the remote operations. This is the key property as it provides a strong performance
model to the programmer albeit lexically scoped. Exceptions in a remote operation are
re-thrown in the local operation sequence at the original location of the remote opera-
tion. If the remote operations fail due to a network error, then an exception is thrown
before any of the local operations execute. Operations inside the batch block are re-
ordered and it is possible that the block executes differently as a batch than it normally
would. The compiler does try to identify some of these cases and warn the programmer,
however, it is up to the programmer to be aware of the different Java semantics inside
the batch block.

Each expression in the batch is marked aslocal or remote. Local expressions are fur-
ther subdivided intostatic localsandnon-static locals. Remote expressions execute on
the server, possibly with input from static local expressions. Local expressions execute
on the client, possibly with output from remote expressions. Static local expressions are
literals and variable expressions defined outside of the batch and not assigned within the
batch before their use. All other local expressions are non-static.

The compiler determines the location of an expression statically. A component of
this analysis is a forward flow-sensitive data-flow analysisthat maps variables to loca-
tions. Locations are ordered as a small lattice wherestatic local< remote< non-static
local. The⊎ operator adds or changes a mapping for a variable. Thepred function re-
turns the predecessors of a statement node in the control flowgraph. For simplicity, we
will assume in this paper that all assignments are statements; however, in Java they are
actually expressions. The data flow analysis is defined in Figure 2.

Thebatch variable is remote. Variables only assigned outside the batch are static
locals. Variables declared final and initialized with remote expressions are remote. All
other variables inside a batch block are non-static locals.Assignments may change the
mapping of a variable up the lattice of locations. For this analysis, the only case where
this happens is a variable mapped as a static local may be remapped as a non-static
local. It cannot happen for variables mapped as remote, because final variables cannot
be reassigned.

Figure 3 defines thelocation function which maps expressions to locations. To
determine the location of a variable expression, the analysis looks up the variable name
in the result of the data flow analysis flowing into the statement containing the variable
expression. The mutual definition oflocation andgen introduces a cyclic dependency
which is resolved by taking the fix point of the two functions starting with the bottom
value of our location lattice (static locals). The locationof a primitive operation is the
join of the locations of the operands. The location of an instance method call expression

n, m ∈ Statement

e ∈ Expression

inBatch(e) =

{

true e is an expression inside a batch statement
false otherwise

varBatch(e) =

{

v e is an expression inside a batch statement of the formbatch(T v : e)

undefined otherwise

s ⊎ nil = s

s ⊎ [v 7→ l] =

{

s ∪ [v 7→ l] [v 7→] 6∈ s

(s − [v 7→ k]) ∪ [v 7→ l] [v 7→ k] ∈ s

in[n] =
⋃

m∈pred(n)

out[m]

out[n] = in[n] ⊎ gen(n)

gen(n) =



























[v 7→ remote] n = [[batch(T v : e)]]

[v 7→ static local]) n = [[v = e]] ∧ ! inBatch(n)

[v 7→ non-static local] n = [[v = e]] ∧ varBatch(n) 6= vb

[v 7→ location(e)] n = [[final v = e]] ∧ varBatch(n) 6= vb

nil otherwise

Fig. 2: Analysis of Java to identify local and remote variables

location([[v]]) = in[Stmt(v)](v)

location([[e1 op e2]]) = location(e1) ⊔ location(e2)

location([[o.m(ē)]]) = location(o)

location([[]]) =

{

non-static local inBatch()

static local ! inBatch()

Fig. 3: Location of Java expressions

is the location of the target of the method call. All other expressions inside or outside
the batch statement are non-static local or static local respectively.

One important thing to note in the rules is that general assignment is not supported in
the remote batch. Therefore, variables are only remote if they correspond to thebatch
variable or if they arefinal and assigned remote expressions. Java 1.5for statements
are executed remotely if their collection is a remote expression. A remotefor loop is
replayed locally to support local expressions or statements inside the loop. Similarly,
conditional statements are executed remotely if their condition is a remote expression. A
remote conditional is replayed locally to support local expressions or statements inside
theif statement.

Data is passed by value from the client to the server and from the server to the client.
For example, the remote identity function returns a copy of the local argument. This
implies that all input and output values of the batch must be serializable and specifically
in Java implement the Serializable interface. Remote values not used locally are not
subject to this restriction. Remote expressions do have identity as long as they are part
of computations on the server, and similarly local expressions have the normal notion
of identity in Java.

The compiler rejects all programs in which the remote operations cannot be legally
moved above the local operations. For example, parameter expressions in remote method
calls cannot contain local variables defined within the batch. The compiler also rejects
some programs in which moving the remote operations above the local operations might
result in non-intuitive behavior. For example, parameter expressions in remote method
calls should not have their value changed in the local operations. The following are
considered illegal expressions by the compiler.

– Method invocations on remote values that have a parameter which is a non-static
local expression or is not serializable.

– Expressions with remote locations inside of anif block where the condition is a
local expression.

– Expressions with remote locations inside of a loop construct where the condition is
local.

– Nested batch statements.

One design goal was to ensure that programmers could easily understand the semantics
of the batch construct. To that end, our analysis uses a very simple localdata flow
analysis and is lexically scoped. This may allow non-intuitive programs to be accepted
by the compiler, because they change the state of static local expressions via different
threads, heap aliasing, or local method calls [19]. The following example shows a case
where the compiler accepts a program that behaves non-intuitively from the point of
view of the programmer.

StringBuilder sb = new StringBuilder();
sb.append("My Album");
batch(Music music : musicService) {
m(sb);
music.createAlbum("1", sb);

}
...
void m(StringBuilder sb) { sb.append(": Blues"); }

The programmer might expect that the remote method callcreateAlbumwill be passed
the string"My Album: Blues", but in a remote batch it will be passed the string
"My Album", because the remote method call will occur first. Unfortunately Java
reflection, virtual methods, and dynamic class loading all complicate whole program
analysis. Our local lexical analysis trades off catching some non-intuitive behavior to
gain simplicity, practicality, and locality.

4 Implementation

Support for Remote Batch Invocation in Java is implemented as a source to source
translator which takes code containing remote batch constructs and translates them into
regular Java code. The output of the source to source translator uses a script recording
API that sends the remote operations as a single batch to the remote server. In the current
implementation, the script recorder uses the transport layer and the service discovery
mechanism of Java RMI. The support system for RBI is called BEST, which is an
acronym for Batch Execution Service and Translation. BEST is implemented as a layer
on top of Java RMI, without changes to the Java language or runtime. First, we discuss
the translation of the batch syntax. Then, we focus on the implementation issues of
BEST, its underlying techniques, and its integration with Java RMI. Section 5 quantifies
BEST performance benefits.

4.1 Language Translation

The source to source translator is implemented as an extension to JastAddJ [16]. Jas-
tAddJ is a Java compiler based on JastAdd and written as a circular attribute grammar.
JastAdd provides several useful features. As a circular attribute grammar, many static
analyses can be expressed naturally and fixed point computations are handled by the
JastAdd engine. In addition, JastAdd provides many aspect-oriented features which al-
low composition of different analyses and language features in a a modular fashion.
The data flow analysis is implemented on top of a control flow graph module written
by the authors of JastAddJ for Java 1.4. We modified the their module slightly to add
support for the newbatch construct and to support Java 1.5. For each expression, the
translator computes its location as described in Section 3.

The translator traverses the program abstract syntax tree (AST) downwards starting
from the root AST node. Outside of a batch, the translator does not change the Java
code. Inside a batch, the translator always produces two code strings, one for the re-
mote operations and one for the local operations. Once the entire batch is translated,
some boilerplate code to setup the batch is generated first, then the remote operations
are inserted, then a call to execute the batch is generated, and finally the local operations
are inserted. While translating code in a batch, the translator has two different modes of
operation. Initially the translator is in local mode. Expressions in local mode produce
no remote operations and produce themselves as local operations. Most statements be-
have similarly except for remote loops and remote conditionals which produce both
remote and local operations. Once the translator reaches anexpression whose location
is remote, it binds that remote value to a temporary variableas a remote operation and
enters remote mode for that expression. The translator alsoadds a local operation which
invokes theget method on the temporary variable. In remote mode, the translator can
safely assume all sub-expressions are remote operations.

Service musicService = new Service("MusicCloud", Music.class);
batch(Music music : musicService) {
final Album album = music.getAlbum("1");
if (album.getTitle().startsWith("A")) {
System.out.println("Tracks:");
for (Track t : album.getTracks()) {
System.out.print(’ ’);
System.out.print(t.getTitle());

}
} else {
System.out.print("Title does not start with A: "
+ album.getArtist().getName());

}}

Fig. 4: RBI source code

// Remote part
Service service$ = musicService;
{ Batch batch$ = service$.getRoot();
Handle album$73751 = batch$.doInvoke(batch$,"getAlbum",
new Class[] {String.class}, new Object[] {"1"});

Handle var$0 = batch$.doInvoke(
batch$.doInvoke(album$73751,"getTitle", null, null),
"startsWith", new Class[] {String.class}, new Object[] {"A"});

batch$.rIf(var$0);
cursor.Cursor t86036Cursor = batch$.createCursor(

batch$.doInvoke(album$73751,"getTracks", null, null));
Handle var$1 = t$86036$Cursor.doInvoke(

t86036Cursor,"getTitle", null, null);
batch$.rElse();
Handle var$2 =
batch$.doInvoke(batch$.doInvoke(album$73751,"getArtist", null, null),
"getName", null, null);

batch$.rEnd();
batch$.flush();
// Local part
if((Boolean)var$0.get()){
System.out.println("Tracks:");
while (t86036Cursor.next()) {
System.out.print(’ ’);
System.out.print((String)var$1.get());

}
} else {
System.out.print("Title does not start with A: "
+ (String)var$2.get());

}}

Fig. 5: Translation of Figure 4

Figure 4 shows a RBI program which uses many of the supported features. Fig-
ure 5 shows the translation into Java code which uses BEST. Aninteresting part of the
translation is how conditionals and loops require both remote and local operations.

4.2 BEST Client Interface

The main client interface of BEST is defined in Figure 6.

public interface Batch {
public Handle doInvoke(Object obj, String method,

Class[] types, Object[] args);
public Cursor createCursor(Handle value);
public Handle unary(Ops op, Handle val1);
public Handle binary(Ops op, Handle val1, Handle val2);
public Handle constant(Object o);
public Handle rIf(Handle condition);
public Handle rElse();
public Handle rEnd();
public void flush();

}

Fig. 6: Interface to the BEST batch execution runtime

A Batch is a client object that represents a collection of statements. Methodflush
delineates the boundary of a batch. Whenflush is called, all the recorded statements
are sent to the server in bulk, executed there, and the relevant results are returned back
together. Each recorded statement returns aHandle which is a placeholder for a remote
object, existing or created on the server. AHandle has two different semantics before
and afterflush is called. Beforeflush, aHandle serves as a placeholder for a result
which has not yet been obtained. Afterflush, a Handle object holds a result of a
remote operation that can be retrieved.

TheBatch interface describes a script recording service. To add a method to be in-
voked remotely, the API provides the methoddoInvoke. The parameters of this method
loosely mirror that ofMethod.invoke in the Java Reflection API. The method’s pa-
rameters are deliberately weakly-typed to enable greater flexibility. This design choice
fits well the BEST programming model, in which all the calls tothe script recording
API are automatically generated by the source-to-source translator, thereby ensuring
that the resulting code is type safe.

TheBatch interface also provides methods to express conditional remote control
flow and operators. These methods are used to express conditions and operations used
in a batch block. The translator maps Java conditional and primitive operators into
regular methods (e.g.,rIf, rElse, binary) that are recorded for remote execution.

ThemakeCursor method takes aHandle parameter and returns aCursor, which
represents an iteration context for the collection of objects existing on the server. The as-
sumption for callingmakeCursor is that itsHandle parameter represents anIterable
object such as ajava.util.Collection or an array.

TheCursor interface is implemented as follows:

public interface Cursor extends Batch {
public boolean next();
public void setPosition(int position)

throws IllegalArgumentException;
public int getPosition();

}

Remote operations recorded on aCursor interface will be replayed on each element
of anIterable collection on the server. Afterflush, theCursor can be iterated to
retrieve the results of remote operations for every element.

The end result of recording operations using theBatch interface is a list of method
descriptors, which are serializable objects sent to the server. Each recorded operation is
assigned a sequence number which acts as an identifier for that call. The sequence num-
bers are sent to the server, so that method arguments can be matched to prior method
return values.

4.3 Batch Execution

When the client callsflush, the recorded operations are sent to the server as a batch by
calling a regular RMI methodbatchInvoke. To make the BEST functionality available
to all RMI remote objects, thebatchInvokemethod is added toUnicastRemoteObject,
a super class extended by RMI application remote classes.

The BEST server runtime decodes method descriptors, invokes batched methods
one-by-one and returns the results back to the client. To implement conditional state-
ments such asif andelse, the BEST server interprets the operations by evaluating
the specified conditional statements and changing the control flow of a batch based
on their results. Similar strategy is applied to executing unary and binary operations.
While at the script recording time on the client the operands are represented by handles,
their actual values are obtained during the execution of a batch on the server. Then the
interpretation simply operates on the actual values as was specified by the script.

Cursor operations are interpreted analogously to regular operations, with the excep-
tion that each recorded operation is executed on each element of anIterable server
object with the results stored in a table. The rows in the table correspond to the different
variables associated with a cursor and the columns correspond to each iteration of the
cursor.

4.4 Result Interpretation

For each non-cursor clientHandle, the server returns a value, exception, or nothing.
The server returns no value for a clientHandle associated with an unexecuted remote
operation. At most oneHandle is assigned an exception, because the the remote batch
is terminated by the first exception. If aHandle has an exception, rather than a value,
then this exception is thrown when accessing its content.

For cursors, result interpretation is more complicated. Each timenext is called on
a Cursor, theHandle objects associated with it are assigned values from the return
value array. The number of values in the array is the number ofelements in theCursor
times the number ofHandle’s. Handle’s normally do not change value after they have
been assigned, with the exception when they are created within a cursor–theHandle
values may change on each iteration of the loop.

0

20

40

60

80

100

120

140

160

1 2 4 8 16 32 64

T
im

e
to

 c
o
m

p
le

te
 (

m
s)

Number of fields to access

Micro Benchmark

RMI

RBI

DTO

Fig. 7: Performance Comparison between RMI, RBI, and DTO versions

5 Performance

In essence,Batch Remote Invocationis a language level mechanism that optimizes re-
mote communication by leveraging the improved bandwidth characteristics of modern
networks [23], especially in high-latency environments. Although the performance ben-
efits of batching remote operations are well-known and have been the target of several
research efforts [6, 21, 9], the purpose of evaluating the performance of RBI is to en-
sure that the overhead of its runtime, BEST, does not impose an unreasonable perfor-
mance overhead. The following benchmark uses data objects with different numbers of
String fields: 1, 2, 4, 8, 16, 32, and 64. The benchmark emulates a common usage sce-
nario, in which the client retrieves the object from the server and updates its fields. This
scenario was implemented and measured using three different communication styles:
plain RMI, a hand-coded DTO, and RBI. Figure 7 shows the performance numbers for
each version.

All the experiments were run in the Windows XP version of JDK 1.6.0 13 (build
1.6.013-b03), with the server running Dual Core 3GHz processors,2 GB of RAM, and
the client running Dual Core 2.4GHz Processors, 2GB of RAM, connected via a LAN
with a 1Gbps, 1ms latency network. The results represent theaverage of running each
benchmark 1000 times after first running it 2000 times to warmthe JVM. Warming
the JVM ensured that the measured programs had been dynamically compiled before
measurements.

As expected, the RMI version is the slowest, with its slope growing linearly at a
fixed rate, as the number of fields increases. The DTO and RBI versions exhibit com-
parable performance, with DTO being faster by a small constant factor. These results
are predictable, as the execution time is dominated by the number of remote calls per-
formed by each version of the benchmark, and in most networking environments the
latency of a remote call is several orders of magnitude larger than that of a local call.

The specific number of remote calls performed by each versionof the benchmark is
as follows. Iff is the number of fields, the RMI version performs2 ∗ f remote calls (to
get and set every field); the DTO version performs only2 calls (i.e., getting and setting
all fields in bulk); and finally, the RBI version performs exactly 1 remote call.

Even though the RBI version performs only one remote call, whereas the DTO ver-
sion two, RBI is still slower due to the overhead imposed by its client and server run-
time. To provide flexibility, BEST uses Java language features that are known to have
a negative effect on performance, including reflection to locate and invoke methods as
well as multipleObject arrays to pass parameters. In addition, the current implemen-
tation of BEST has not been fine-tuned for performance. Finally, the BEST overhead
would be amortized more significantly in a higher-latency network environment. Com-
pared to the hard-coded interface of DTO, RBI makes it possible to create a flexible
DTO on the fly with the accompanying performance benefits due to the reduced net-
work communication enabled by its service-oriented execution model.

6 Related Work

6.1 RPC Critique

Even though Remote Procedure Call (RPC) [32] has been one of the most prevalent
communication abstracts for building distributed systems, its shortcoming and limita-
tions have been continuously criticized [30, 36, 26]. Recently some experts even express
the sentiment that RPC has had an overwhelmingly harmful influence on distributed
systems development and wish that a different communication abstraction had become
dominant instead [34]. A frequently mentioned alternativefor RPC is asynchronous
messaging and events, including publish-subscribe abstractions [12].

Despite all the criticisms of RPC and its object-oriented counterparts, exposing dis-
tributed functionality through a familiar procedure call paradigm has unquestionable
convenience advantages. Remote Batch Invocation is an attempt to address some of the
limitations of RPC, while retaining its advantages, without introducing the complica-
tions of asynchronous processing imposed by message- and event-based abstractions.

Among the main criticisms of RPC is its attempt to eliminate the distinction be-
tween the local and remote computing models, with respect tolatency, memory access,
concurrency, and partial failure [36]. By combining multiple operations into a single
batch, RBI reduces latency. By executing all remote operations on the server in bulk,
RBI maintains the local memory access model for method parameters. As future work,
a transactional execution model can be combined with RBI to achieve an all-or-nothing
execution property. And while batch invocations in RBI are synchronous, the resulting
execution model is explicit, giving the programmer a clear execution and performance
model.

6.2 Explicit Batching

Software design patterns [18] forRemote FaçadeandData Transfer Object(also called
Value Objects [3]) can be used to optimize remote communication. A Remote Façade
allows a service to support specific client call patterns using a single remote invocation.
Different Remote Façades may be needed for different clients. Remote Batch Invocation

provides a custom Remote Façade for each client as long as the client call pattern is
supported as a single batch. AData Transfer Objectis a Serializable class that
provides block transfer of data between client and server. As with the Remote Façade,
different kinds of Data Transfer Objects may be needed by different clients. Remote
Batch Invocation constructs an appropriate value object onthe fly, automatically, as
needed by a particular situation. Remote Batch Invocation also generalizes the concept
of a data transfer object to support transfer of data from arbitrary collections of objects.

The DRMI system [21] aggregates RMI calls as a middleware library much like
BEST. DRMI uses special interfaces to record and delay the invocation of remote calls.
DRMI only supports simple call aggregation and simple branching, while Remote Batch
Invocation and BEST also support cursors, primitive operations, and exception han-
dling. Like BEST, DRMI requires that the programmer partition the remote and local
operations themselves. This often forces the programmer toreplicate loops and con-
ditionals manually, whereas Remote Batch Invocation offers a more flexible style of
programming and relies on the source to source translator topartition the program into
remote and local operations.

Detmold and Oudshoorn [15] present analytic performance models for RPC and its
optimizations including batched futures as well as a new optimization construct termed
a responsibility. Their analytic models could be extended to model the performance
properties of the new optimization constructs of Remote Batch Invocation such as cur-
sors and branching.

Sometimes a communication protocol defines batches directly, as is in the com-
pound procedure in Network File System (NFS) version 4 Protocol [27], which com-
bines multiple NFS operations into a single RPC request. Thecompound procedure in
NFS is not a general-purpose mechanism; the calls are independent of each other, ex-
cept for a hard-coded current filehandle that can be set and used by operations in the
batch. There is also a single built-in exception policy. WebServices are often based on
transfer of documents, which can be viewed as batches of remote calls [35, 11].

Cook and Barfield [11] showed how a set of hand-written wrappers can provide a
mapping between object interfaces and batched calls expressed as a web service doc-
ument. Remote Batch Invocation automates the process of creating the wrappers and
generalizes the technique to support branching, cursors, and exception handling. As
a result, Remote Batch Invocation scales as well as an optimized web service, while
providing the raw performance benefits of RPC [13]. Web services choreography [24]
defines how Web services interact with each other at the message level. Remote Batch
Invocation can be seen as a choreography facility for distributed objects.

6.3 Mobile Code

Mobile object systems such as Emerald [5] reduce latency by moving active objects,
rather than making multiple remote calls. JavaParty [25] migrates objects to adapt the
distribution layout of an application to enhance locality.Ambassadors is a communi-
cation technique that uses object mobility [14] to minimizethe aggregate latency of
multiple inter-dependent remote methods. DJ [1] adds explicit programming constructs
for direct type-safe code distribution, improving both performance and safety.

Mobile objects generally require sophisticated runtime support not only for moving
objects and classes between different sites, but also for dealing with security issues. A
Java application can essentially disable the use of mobile code by not allowing dynamic

class loading. An RBI server is fairly simple to implement. Clients only gain access to
interfaces that are reachable from the service root.

Even in an environment that supports mobile code, there are advantages to Remote
Batch Invocation. This can be understood by considering a translation from RBI to
mobile code. Abatch statement could be implemented using mobile code by writing
two mobile classes, one that is sent from the client to the server to execute the remote
operations, and another that is sent from the server back to the client to transport the
results in bulk to the client. The first class would contain member variables to store all
the local data sent to the server, and a method body to executeon the server. At the
start of this method an instance of the second class is created and populated with data
created by the remote method. At the end of the method the result object is sent back to
the client. A custom pair of classes is needed for eachbatch statement in the program.
While mobile code is more flexible and powerful than RBI, it canalso be more work to
use this power to implement common communication patterns.

6.4 Implicit Batching

Batched futuresreduce the aggregate latency of multiple remote methods [6]. If remote
methods are restructured to return futures, they can be batched. The invocation of the
batch can be delayed until a value of any of the batched futures is used in an operation
that needs its value. There are several different client invocation patterns that cannot be
batched in this model. For example, unrelated remote methodcalls will not be batched
together.

Future RMI [2] communicates asynchronously to speed up RMI in Grid environ-
ments, when one remote method is invoked on the result of another. Remote results of
a batch are not transferred over the network, remaining on the server to be used for
subsequent method invocations.

Yeung and Kelly [9] use byte-code transformations to delay remote methods calls
and create batches at runtime. A static analysis determineswhen batches must be flushed.

In all of these implicit batching techniques, it is not clearhow to support loops,
branches, and exceptions as in Remote Batch Invocation. In addition, small changes in
the program, for example introducing an assignment to a local variable, or an exception
handler, can cause a batch to be flushed. This means the performance is very sensitive
to the ordering of remote and local operations. On the other hand, Remote Batch In-
vocation automatically tries to reorder remote and local operations to maintain a single
batch, while checking that the reordering makes sense.

6.5 Automatic Partitioning

Remote Batch Invocation can be seen as a language level abstraction for automatic ap-
plication partitioning, a semi-automatic approach for deriving a distributed application
from a centralized one.

One line of research has explored coarse grained program partitioning. The pro-
grammer, by means of a GUI or a configuration file, designates different parts of a cen-
tralized application, typically at a class or object granularity, to run on different network
nodes. The resulting distribution specification then parameterizes a compiler-based tool

that automatically rewrites the centralized application for distributed execution. To in-
troduce distribution, a partitioning tool may need to both change the structure of the ap-
plication (e.g., to introduce a proxy indirection) and add middleware functionality (e.g.,
to replace local calls with remote ones). In the Java world, recent automatic partitioning
tools include Addistant [31], Pangaea [28], and one of the co-author’s J-Orchestra [33].
Addistant and J-Orchestra partition programs at a class granularity; Pangaea can parti-
tion at the individual object level. J-Orchestra addressesthe challenges of partitioning
programs safely in the presence of unmodifiable code that comes as part of their runtime
systems.

Automatic program partitioning has also been applied at finer granularaties. Swift [10]
partitions Java programs into a web application backend andJavascript at the Java state-
ment level. Constraints on the locations of statements is inferred from information flow
policies and the placement of statements is optimized to minimize round-trips with
respect to those constraints. Similarly, RBI infers the location of statements and ex-
pressions from a forward data-flow analysis. Some of the co-authors have previously
developed Query Extraction [37]; a system for extracting database queries from Java
code traversing persistent object structures. Query Extraction performs a very similar
analysis to RBI to extract the code operating over persistent data and converts that
code’s loops and conditions tojoin andwhereclauses in database queries.

6.6 Asynchronous Remote Invocation

Another approach to optimizing distributed communicationis dispatching remote calls
asynchronously. One example is ProActive [4]. An asynchronous remote call in ProAc-
tive returns a future; a placeholder for to be computed results. When a client tries to
resolve the future’s actual value, the client blocks until the result is available.

Although asynchronous remote invocations can optimize many patterns in client-
server communication, they offer no performance improvements for chains of remote
calls (i.e.,o.m1().m2()). Compared to asynchronous invocation, the RBI program-
ming model does not involve futures and can combine chains ofremote calls into a
batch, thus improving their performance.

Although the current version of RBI does not take advantage of concurrent process-
ing, in the future the script recorder could also convey dependencies between batched
operations to the server, which can be used to safely introduce concurrency into the
batch execution on the server.

7 Conclusion

Most of the related work discussed in Section 6 improve distributed programming using
libraries and compiler optimizations. On the other hand,Remote Batch Invocation (RBI)
addresses distributed programming with a language extension. We argue that the ben-
efits of RBI over existing library and compiler approaches may overcome the natural
inertia to changing a programming language. The benefits of RBI include:

– RBI provides a strong performance model. One server round-trip is executed for
each lexical batch block.

– RBI allows multiple remote operations to be combined in abatchwhich is executed
in a single round-trip to a remote server. A batch supports both control and data flow
dependencies between remote operations. As a consequence,the remote server may
provide a flexible fine-grained interface.

– RBI allows the programmer to mix remote and local operationsnaturally. The com-
piler separates the remote operations and takes care of transferring multiple inputs
to the remote server and interpreting the multiple outputs.

RBI was implemented as a Java extension using a source to source translator and
the BEST runtime middleware library. In the future, we will look at incorporating trans-
actions and advanced failure handling approaches into RBI.

The performance of RBI was evaluated by comparing plain RMI and hand-coded
DTO designs. Predictably, RBI significantly outperforms RMI and is only marginally
slower than hand-optimized DTO implementations. Since RBIprovides greater flex-
ibility and control to the programmer, the small overhead imposed by its runtime is
compensated by the added usability and expressiveness. RBIis also attractive compared
with implicit batching because it can combine a larger set ofremote operations.

RBI combines the convenience and flexiblity of fine-grained interfaces with the per-
formance advantages of coarser-grained interfaces. In addition, the RBI stateless exe-
cution model aligns well with the increasingly prevalent service-oriented architectures,
a rapidly-emerging industry standard.

Availability:

The implementation and examples discussed in the paper can be downloaded from:
http://research.cs.vt.edu/vtspaces/best

References

1. A. Ahern and N. Yoshida. Formalising Java RMI with explicit code mobility. In Proc. of
OOPSLA ’05, pages 403–422, New York, NY, USA, 2005. ACM.

2. M. Alt and S. Gorlatch. Adapting Java RMI for grid computing.Future Generation Com-
puter Systems, 21(5):699–707, 2005.

3. D. Alur, J. Crupi, and D. Malks.Core J2EE Patterns: Best Practices and Design Strategies.
Prentice Hall PTR, 2003.

4. L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, andR. Quilici. Grid Com-
puting: Software Environments and Tools, chapter Programming, Deploying, Composing, for
the Grid. Springer-Verlag, January 2006.

5. A. P. Black, N. C. Hutchinson, E. Jul, and H. M. Levy. The development of the Emerald
programming language. InHOPL III, pages 11–1–11–51, 2007.

6. P. Bogle and B. Liskov. Reducing cross domain call overhead usingbatched futures.ACM
SIGPLAN Notices, 29(10):341–354, 1994.

7. E. Brevnov, Y. Dolgov, B. Kuznetsov, D. Yershov, V. Shakin, D.-Y. Chen, V. Menon, and
S. Srinivas. Practical experiences with java software transactional memory. In PPoPP ’08:
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel
programming, pages 287–288, New York, NY, USA, 2008. ACM.

8. N. Brown and C. Kindel. Distributed Component Object Model Protocol–DCOM/1.0, 1998.
Redmond, WA, 1996.

9. K. Cheung Yeung and P. Kelly. Optimising Java RMI Programs by Communication Restruc-
turing. InACM Middleware Conference. Springer, 2003.

10. S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and X.Zheng. Secure web ap-
plication via automatic partitioning. InSOSP ’07: Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles, pages 31–44, New York, NY, USA, 2007. ACM.

11. W. Cook and J. Barfield. Web Services versus Distributed Objects: ACase Study of Per-
formance and Interface Design. Inthe IEEE International Conference on Web Services
(ICWS’06), pages 419–426, 2006.

12. C. Damm, P. Eugster, and R. Guerraoui. Linguistic support for distributed programming
abstractions. InDistributed Computing Systems. Proceedings. 24th International Conference
on, pages 244–251, 2004.

13. C. Demarey, G. Harbonnier, R. Rouvoy, and P. Merle. Benchmarking the Round-Trip La-
tency of Various Java-Based Middleware Platforms.Studia Informatica Universalis Regular
Issue, 4(1):7–24, 2005.

14. H. Detmold, M. Hollfelder, and M. Oudshoorn. Ambassadors: structured object mobility in
worldwide distributed systems. InProc. of ICDCS’99, pages 442–449, 1999.

15. H. Detmold and M. Oudshoorn. Communication Constructs for High Performance Dis-
tributed Computing. InProceedings of the19th Australasian Computer Science Conference,
pages 252–261, 1996.

16. T. Ekman and G. Hedin. The JastAdd Extensible Java Compiler.SIGPLAN Not., 42(10):1–
18, 2007.

17. T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall,
Upper Saddle River, NJ, USA, 2005.

18. M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

19. R. Gabriel. Is worse really better?Journal of Object-Oriented Programming (JOOP),
5(4):501–538, 1992.

20. D. Krafzig, K. Banke, and D. Slama.Enterprise SOA : service-oriented architecture best
practices. Prentice Hall, 2005.

21. E. Marques. A study on the optimisation of Java RMI programs. Master’s thesis, Imperial
College of Science Technology and Medicine, University of London, 1998.

22. The Object Management Group (OMG).The Common Object Request Broker: Architecture
and Specification, 1997.

23. D. A. Patterson. Latency lags bandwith.Commun. ACM, 47(10):71–75, 2004.
24. C. Peltz. Web services orchestration and choreography.Computer, 36(10):46–52, 2003.
25. M. Philippsen and M. Zenger. JavaParty– transparent remote objects in Java.Concurrency

Practice and Experience, 9(11):1225–1242, 1997.
26. U. Saif and D. Greaves. Communication primitives for ubiquitous systems or RPC consid-

eredharmful. InDistributed Computing Systems Workshop, 2001 International Conference
on, pages 240–245, 2001.

27. S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M.Eisler, and D. Noveck.
Network File System (NFS) version 4 Protocol, 2003.

28. A. Spiegel.Automatic Distribution of Object Oriented Programs. PhD thesis, FU Berlin, FB
Mathematik und Informatik, 2002.

29. Sun Microsystems.Java Remote Method Invocation Specification, 1997.
30. A. S. Tanenbaum and R. v. Renesse. A critique of the remote procedure call paradigm. In

EUTECO 88, pages 775–783. North-Holland, 1988.
31. M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano. A Bytecode Translator for Distributed Execu-

tion of ”Legacy” Java Software. InEuropean Conference on Object-Oriented Programming
(ECOOP), 2001.

32. B. Tay and A. Ananda. A survey of remote procedure calls.Operating Systems Review,
24(3):68–79, 1990.

33. E. Tilevich and Y. Smaragdakis. J-Orchestra: Enhancing Java programs with distribution
capabilities.ACM Transactions on Software Engineering and Methodology. in press.

34. S. Vinoski. RPC Under Fire.IEEE INTERNET COMPUTING, pages 93–95, 2005.
35. W. Vogels. Web services are not distributed objects.Internet Computing, IEEE, 7(6):59–66,

2003.
36. J. Waldo, A. Wollrath, G. Wyant, and S. Kendall. A Note on Distributed Computing. Tech-

nical report, Sun Microsystems, Inc. Mountain View, CA, USA, 1994.
37. B. Wiedermann, A. Ibrahim, and W. R. Cook. Interprocedural query extraction for trans-

parent persistence. InOOPSLA ’08: Proceedings of the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and applications, pages 19–36, New York,
NY, USA, 2008. ACM.

