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Remote C6 Selective Ruthenium-Catalyzed C-H Alkylation of Indole

Derivatives via o-Activation
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ABSTRACT: The site-selective functionalization of an indole template offers exciting possibilities for the derivatization of
molecules with useful biological properties. Herein, we report the remote C6 selective C-H alkylation of indole derivatives
enabled by ruthenium(II) catalysis. Remote alkylation was achieved using N-pyrimidinyl indoles with an ancillary ester
directing group at the C3 position. This ancillary directing group proved pivotal to reactivity at C6, with yields up to 92%
achieved. A one-pot procedure to install this directing group followed by remote C6 functionalization has also been re-
ported, both shown to proceed via ruthenium redox catalysis. Computationally calculated Fukui indices elucidated that the
C6 position to be the most reactive vacant C-H site towards potential functionalization. When coupled with deuterium
incorporation studies, a C2 cyclometalation/remote c-activation pathway was deduced.
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Introduction

The development of transition metal catalyzed C-H function-
alization has emerged as a very powerful tool to synthesize
and derivate biologically interesting molecules.! The indole
heteroaromatic has received great attention over the past cen-
tury due to their prevalence in a large number of natural prod-
ucts, pharmaceuticals and agrochemicals.> Because of this, the
development of elegant methods for the synthesis of highly
decorated indoles has received huge efforts in recent years.3
Due to the high potential of these motifs, indoles have been
widely used as C-H activation templates. The C3 position has
been shown to be the C-H bond with the most intrinsic reac-
tivity in direct transition metal catalyzed C-H functionaliza-
tion (Figure 1).4 C2 functionalization has been achieved using
a variety of metal systems, primarily through functionaliza-
tion of the NH bond with a directing group. Here cyclomet-
alation is facilitated via chelation assistance to afford C-H in-
sertion and subsequent functionalization at C2.5
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Figure 1: Current sites of C-H functionalization of indoles.

Additionally, carefully designed phosphonate directing
groups have also granted access to C7 functionalized indoles
in selected examples.®

Remote reactivity at C6 of an indole has only been sparingly
observed. Selected examples include the use of ligand con-
trolled iridium catalysis by Baran,” templated C-H insertion by
Yu,8 and elegant studies by Shi and co-workers combining the
phosphonate directing group and other remote functionaliza-
tion techniques (Scheme 1).2 The ability to access remote un-
reactive C-H bonds has been a great challenge to catalytic
chemists in recent years.”® Despite this, a few methods have
prevailed: meticulous template design,” metal-directed o-acti-
vation, the use of a transient mediator,3 and the careful ma-
nipulation of steric/electronic effects (albeit sparingly). 4 The
use of o-activation lends itself as the most atom-economical
versus the other two methods which often lead to high quan-
tities of waste product streams. This is especially the case in
the templated work where often templates are pre-synthe-
sized, installed and then removed."

Our previous work in the area depicts the remote meta-alkyl-
ation of 2-phenylpyridine using the a-bromo ester coupling
partner.> This was postulated to proceed via an ortho-cy-
clometalation which promotes a remote c-activation para- to
metal insertion to afford net meta-substituted products.
Herein, we report the expansion of this methodology away
from privileged structures such as 2-phenylpyridine to biolog-
ically relevant structures such as indoles. Ackermann and co-
workers have recently explored the use of pyrimidinyl-substi-
tuted anilines in meta-functionalization2d and the expansion
of motifs for remote activation is pivotal in moving towards



broadly useful synthetic methodology. Here we have devel-
oped the remote C6 selective ruthenium-catalyzed C-H alkyl-
ation of pyrimidinyl-indole derivatives. It is proposed to pro-
ceed via a C2 cyclometalation c-activation pathway utilizing
an ancillary directing group present at the C3 position

Scheme 1. Previous work on remote transition
metal catalyzed C-H functionalization of indoles
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Results & Discussion

The investigation into the remote functionalization of indole
derivatives began by applying our previous meta-alkylation
conditions with 1-(pyrimidin-2-yl)-indole (1a, Scheme 2a).=¢
This gave rise to two products, primarily C3 alkylated indole
motif (3a) and interestingly the C3/C6 di-alkylated structure
was also observed (4a). Pleasingly, quantitative conversion of
starting material 1a to 3a and 4a was observed on addition of
acetic acid to the reaction mixture. The regioselectivity of
functionalization was further confirmed via single crystal X-
ray crystallography (Figure 2).15

In the absence of the ruthenium catalyst no reactivity to ei-
ther 3a nor 4a was maintained, despite the innate reactivity of
the C3 position. The use of 1H-indole (1b, Scheme 2b) in the
reaction gave solely the C3 functionalized motif (3b) in excel-
lent yields, however showed no selectivity to the C6 position
(4b). This was also shown not to require the addition of
AcOH, however still proceeded by a ruthenium-catalyzed
mechanistic pathway. Interestingly, neither tert-butoxycar-
bonyl nor benzyl N-substituted indoles gave conversion to ei-
ther product. This showed that an aromatic nitrogen or NH
were vital to any catalytic functionalization, and a strongly co-
ordinating directing group was key to granting access to C6
functionalized motifs. It should be noted that this initial C3

selectivity is complementary to the Cz selectivity that Ste-
phenson and co-workers observed using ruthenium photoca-
talysis with similar coupling partners.’

Scheme 2. Ruthenium(IT)-catalyzed C-H alkylation of
indoles”
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Figure 2: X-ray crystallographic structures of 3a and 4a which
confirm the functionalization regioselectivity. Ellipsoids as
depicted at 30% probability and hydrogen atoms have been
omitted for clarity. Atom colors: N, blue; O, red; C, grey.

As there was no observation of indole structures solely func-
tionalized in the C6 position, it was postulated that the C3
structure was an intermediate. This was investigated by resub-
mitting the C3 product (3a) to the reaction conditions. Pleas-
ingly high conversions to di-substituted structure (4a) were
observed via crude NMR analysis (entry 1, Table 1), leading to
excellent isolated yields for remote c-activation reactions.”
Reaction efficiency was maintained when using THF and 2-
MeTHF as solvent (entries 2-3). The reaction was also shown
to proceed with modest efficiency without AcOH (entry 5). It
is proposed that the added AcOH facilitates protodemeta-
lation at the end of the reaction cycle. However, it’s is not vital
to reactivity as 2 equivalents are formed in the reaction mix-
ture. Removal of KOAc nullified reactivity (entry 6) however
increased loading (4 eq, entry 7) of potassium acetate showed
some increased reactivity cf. without AcOH (entry 5). The re-
action did not proceed in the absence of ruthenium catalyst
(entry 8). This indicates that both C3 and C6 functionaliza-
tions are driven by ruthenium catalysis. The synthesis of 3a
was shown to be scalable, affording up to two grams of mate-
rial (see Scheme S1 in supporting information).



Table 1. Remote ruthenium(II)-catalyzed C6 C-H al-
kylation of indole derivative

OEt [RuCl,(p-cymene)], OFEt
(5 mol%)
o Br KOAc (2 eq) o
A . MOB AcOH (2 eq) A\
H N —_— N
N o 1,4-dioxane N
N 120°C,16h oo N7
<) Ar )
3a 2a 4a
Entry Alteration from Standard Conditions® 4a (%)
1 None 96 (80)°
2 THF used as solvent 95
3 2-MeTHF used as solvent 89
4 DME used as solvent 56
5 No AcOH 60
6 No KOAc -
7 4 eq KOAc, No AcOH 70
8 No [RuCl,(p-cymene)], -
9 Reaction carried out under air 9

@ Standard Conditions: 3a (0.25 mmol), 2a (0.75 mmol), [RuClL(p-cy-
mene)], (0.0125 mmol), KOAc (0.5 mmol), AcOH (0.5 mmol), 1,4-di-
oxane (1 mL), at 120 °C for 16 h under an argon atmosphere. * Direct
conversion between 3a and 4a observed via crude NMR analysis. ¢ Iso-
lated Yield.

To investigate whether the C3 functionalization solely func-
tioned as a positional block, permitting access to C6 function-
alization on steric grounds as the next most reactive site or if
the ester group had some ancillary directing group effect, a
pyrimidinyl indole bearing a methyl group in the C3 position
was submitted to the reaction conditions (1¢, Scheme 3a). No
conversion to any product was observed, which signifies the
importance of the nature of the C3 functionality in activating
the remote C6 position. A C2-Me blocked substrate was also
submitted to the reaction conditions (1d, Scheme 3b), giving
rise to neither the C3 mono-functionalized nor C3/C6 di-func-
tionalized products. This shows that the C2 cyclometalation
site is also necessary for the reaction to proceed.

Scheme 3. Remote C6 functionalization of C3-Me and
C2-Me indole derivatives
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Using this knowledge further indole derivatives with proposed
ancillary directing groups (A) were synthesized (Scheme 4a).
Firstly, an auxin derivative, without the gem-dimethyl substit-
uents, was shown to lead to conversion to product (4e) albeit

in lower quantities. An inseparable, uncharacterisable poly-
meric byproduct was also obtained with this example, this
could be due to the potential radical formed on the benzylic
position of the ancillary directing group. Neither acetoxy (4f)
nor formyl (4g) derivatives gave formation of C-6 alkylated
product.

Scheme 4. Ancillary (A) and primary (P) directing
group effects of remote C6 functionalization
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Further to this, a small screen of primary directing groups (P,
Scheme 4b) was investigated. Pyridine (4h) and chloro-pyrim-
idine (4i) derivatives gave rise to good yields and the lack of
primary directing group (4b) gave no conversion to product.
This, along with the previous results, highlight the necessity
for both the primary and ancillary directing groups for effec-
tive catalysis at C6 to take place.

Various tertiary alkyl halides were submitted to the reaction
conditions in order to create highly decorated indole struc-
tures (Scheme 5). The use of methyl a-bromoisobutyrate
granted access to orthogonally functionalized positions with
difficult to construct quaternary centers (4j). a-bromo ketones
have previously been used in ruthenium redox catalysis7 and
were also shown to be amenable to this reaction methodology
(4k). Fluorinated and cyclohexyl variants of the esters were
tolerated (41-m), although in poor yields Unfortunately, sec-
ondary esters were shown to give trace formation of C6 alkyl-
ated product (4n). primary esters, tertiary acids, tertiary am-
ides and tertiary nitriles were not tolerated in this methodol-
ogy under these reaction conditions (see supporting infor-
mation).



Scheme 5. Remote C6 functionalization of indole de-
rivatives
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Despite its use previous remote functionalizations,2¢d the use
of tert-butyl bromide as coupling partner also afforded no C6
alkylated motif (40) under these conditions.’® This shows the
unique reactivity of these a-ester radicals through captodative
stabilization.”? Indole structures bearing electron donating
groups gave excellent yields (4p), whereas electron poor
arenes gave poorer yields (4r), consistent with our previous
reports.>¢ The ortho-/para- directing character of alkoxy and
halogen substituents could have contributed to the improved
yields observed by further activation of the C6 position to-
wards radical attack. C4-F substituted indole was shown to re-
act in poor yields, exclusively at C7 (para- to the fluorine see
supporting information, Scheme S3). This was interpreted to
take place via radical attack to the organic non-cyclometalated
species which was also confirmed in silico to be the most re-
active vacant site (Figure S1).

It is possible to access the C3/C6 di functionalized motif (4a)
directly from the unsubstituted indole derivative (1a). This al-
lows one-pot ruthenium(II)-catalyzed C3 C-H alkylation and
subsequent C3 enabled remote C6 selective C-H alkylation.
Conditions were explored to drive the reaction methodology
to the di-substituted motif (4a, Table 2).

A solvent screen showed that the use of THF led to more fa-
vorable formation of di-functionalized product (entry 5). Sev-
eral different bases (entries 7 -10) and acids (entries 11-12) were
used in the reaction however none gave superior conversion
to the KOAc/AcOH couple. The reaction system using K,CO;
as base (entry 8) was however shown to be reactivated on ad-
dition of catalytic quantities of KOAc (entry 9). This clearly
demonstrates the need for a carboxylate partner for C-H met-
alation to take place at start the reaction.” Interestingly it was
shown increasing addition of AcOH correlated to increased
selectivity towards mono-functionalized product 3a. This was
exemplified by use of AcOH as solvent (entry 15) which led to
almost exclusive formation of 3a. This highlights the im-
portance of AcOH in the C3 functionalization of the pyrimidi-
nyl substituted indole (1a), but is then detrimental to C6 func-
tionalization in high quantities. This demonstrates that it is a
careful balance of acid and base that drives to di-functionali-
zation (4a).

Table 2. Optimization of ruthenium(II)-catalyzed C3
C-H alkylation of indole derivatives

OEt
[RuCl,(p-cymene)], OFt
H (5 mol%) o) 5
Base (2 eq)
/@E\g Acid (x eq) N\ A
H N —— “ ol N

>/\N Solvent )/\ N >\ N

N \ 120°C,16 h EtO” O N \\) N7 \

\§) Ar = \Q)

1a Br 4a-di 3a - mono

Moa 2a L .
O
En- Solvent Base Acid Acid 4a 3a
try Eq  %° (%P

1° 1,4-dioxane KOAc - - 8 21
2¢ 1,4-dioxane KOAc AcOH 2 33 66
3 2-MeTHF KOAc AcOH 2 34 62
4 DME KOAc AcOH 2 45 48
5 THF KOAc AcOH 2 57 39
6 THF - AcOH 2 o 26
7 THF NaOAc AcOH 2 9 35
8 THF K,CO, AcOH 2 3 6
9 THF K,CO4¢ AcOH 2 43 46
10 THF KOPiv AcOH 2 9 17
1n THF KOAc PivOH 2 32 65
12 THF KOAc TFA 2 3 31
13 THF KOAc AcOH 3 46 56
14 THF KOAc AcOH 10 31 69
15 THF KOAc AcOH 33¢ 5 91

2 General Conditions: 1-(pyrimin-2-yl)-1H-indole (1a, 0.25 mmol),
ethyl o-bromoisobutyrate (0.75 mmol), [RuCl*(p-cymene)]. (0.0125
mmol, 5 mol%), Base (2 eq), Additive (x eq), Solvent (1 mL), 120 °C, 16
h under argon atmosphere. » Direct 'H NMR conversion. ¢ From
Scheme 2 for comparison. ¢ + KOAc (30 mol%). ¢ AcOH used as solvent
instead of THF.

The scope of the one-pot C3 and subsequent C6 functionali-
zation was then explored (Scheme 6). 5-substituted indoles
(4mn-p) gave one-pot reactivity parallel to the C6 functionali-
zation shown previously with the electron rich structure per-
forming most efficiently. The pyridine directing group (4h)
was shown to be amenable to this reaction albeit in slightly
lower yields with respect to the pyrimidine counterpart. The



use of the 5-chloropyrimidine directing group (4i) led to the
highest yield of one-pot C3 and subsequent C6 alkylation. This
ability to carry out this double C-H functionalization allows
simple quick diversification to create highly decorated com-
plex structures.>> The mono-functionalized structures have
also been shown to be amenable to resubmission to the reac-
tion conditions to drive formation of the di-functionalized
motif or reacted with a different coupling partner to give or-
thogonal C-H functionalization.

Scheme 6. One-Pot C3/C6 functionalization of indole
derivatives
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Mechanistic Studies

In order to determine reaction mechanism, experimental and
computational mechanistic studies were undertaken. Our
previous investigations in remote c-activation methodology
proposed a dual cyclometalation and radical pathway.>c Here,
the presence of a radical mechanism was investigated by the
use of a radical trapping agent (Scheme 7). Neither remote C6
functionalization nor one-pot C3/C6 di-functionalization
were observed in the presence of stoichiometric TEMPO. One
catalytic turnover was also observed using catalytic quantities
of TEMPO, suggesting that a redox catalyst is unable to turn
over in the presence of the radical trapping agent. As both re-
actions (Scheme 7a & 7b) were affected by these investiga-
tions, it can be postulated that both C3 and C6 alkylation pro-
ceed via a radical pathway.>

Scheme 7. TEMPO studies on remote alkylation of in-
dole derivatives
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Deuterium incorporation studies using isotopically labelled
AcOD were then performed to determine whether formation
of C6 and C3 functionalized products are obtained via C2 in-
sertion or C7 insertion (Scheme 8). Deuterium was incorpo-
rated into the C2 position in significant quantities (33%,
Scheme 8a) and only in negligible amounts at C7 (<5%). This
highlights that the C6 functionalization is most likely not ac-
cessed through C7 insertion as observed in Shi’s work but
through a C2 cyclometalation c-activation pathway.? Also see-
ing that similar D-incorporation is observed in 3a and 4a in
the one-pot methodology (Scheme gb), it could be suggested
that these are formed through the same linear mechanistic
pathway.

Scheme 8. Deuterium incorporation investigations

OEt
[RuClz(p Cymene
0 (5 mol%)
N\ KOAc (2 eq) D
" N AcOD (2 eq)

)\N 1,4-dioxane )/\N
N\\) 120 c 16 h \
3a 4a: 74%
C-2:33% D
C-7:5% D

Et

[RuCIQ(p cymene
H (5 mol%)
KOAc (2 eq)
N _AOD (2eq) D \ D
H N

P THF )\

N N
7 120 °C, 16 h oP

N™ \ EtO
\§) Ar

1a 3a: 56% 4a:31%
C-2:34%D C-2:39% D
C-7:1%D C-7:2% D

The cyclometalated complex of 1a was synthesized and ex-
posed to the reaction conditions (Scheme 9).5¢ Comparable ef-
ficiency to both mono and di-functionalization found previ-
ously was observed. This implies that such a cyclometalated
species could be part of the catalytic cycle, either as a redox
catalyst in radical generation or through a ortho-c-activation
catalyst, activating the C3 position for initial radical attack.?



In order to elucidate the reasoning behind the exclusive C6
functionalization we employed computational methods. Rit-
ter and co-workers used nucleophilic Fukui indices as a simple
method to predict selectivity in aromatic radical reactions in
a recent report.3 We looked to apply this computational ap-
proach to the organic structures synthesized in this study as
well as the equivalent cyclometalated complexes.

Scheme 9. Remote functionalization using a well-de-
fine cyclometalated monomer
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In order to do this, the relative Fukui indices were calculated
from NBO calculations for carbon atoms in both the organic
(non-cyclometalated substrates) and a range of inorganic (cy-
clometalated at either the C2 or C7 position) structures,
shown in Figure 3 (additional structures in the SI).2¢ Our rela-
tive Fukui indices show the reactivity of carbons towards elec-
trophilic attack with the most reactive carbon site for func-
tionalization highlighted in red.>

The inherent reactivity of the organic indole reagent, 1a, is
unsurprisingly held at the C3 position according to the relative
Fukui indices. Cyclometalation at C2 (**B-C2) shows that C3 is
still the most reactive carbon, however, an increase in relative
reactivity of the C6 position is observed. As both these organic
and inorganic structures are shown to activate the C3 position,
it is still possible for initial C3 radical addition (to form 3a) to
be achieved through an inner sphere or outer sphere mecha-
nism. Cyclometalation at C7 (*B-C7) shows a huge increase in
reactivity at the C4 position. As this regioselectivity is not ob-
served experimentally, alongside deuterium incorporation ex-
periment results, it is concluded that this cyclometalated spe-
cies is not involved in the formation of the C-6 functionalized
product (4a). A computed free energy difference of 6.3 kcal
mol? between the more stable *B-C2 and 2B-Cy, also con-
firms the experimental regioselectivity.

Relative Fukui indices were also calculated for the C3 func-
tionalized material (3a), again cyclometalated at either the C2
or C7 position. Values for the organic 3a show that the most
reactive site for C-H functionalization is the C4 position.
Therefore, a radical addition mechanism to a non-cyclomet-
alated species can be dismissed and consequently this demon-
strates that the metal center and cyclometalation are directly
responsible for the observed regioselectivity of the reaction.
Two conformers of the C2 cyclometalated structure, 32B-C2
have been optimized and are shown in Figure 4. The most sta-
ble conformer, 32B-C2*, involves coordination of the ester
group to the Ru center through the carbonyl oxygen, forcing
ring-slippage of the para-cymene to 1 to accommodate this
additional binding to 3a, whilst the acetate coordinates
through both oxygen atoms (x2). This additional binding of
the ester group at the C3 position to the ruthenium stabilizes
the organometallic structure by 3.4 kcal mol~, when compared
to 32B-Ca2.
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Figure 3. Relative nucleophilicity Fukui indices for organic and
inorganic computed structures. Calculations were performed
at the BP86/6-31G**&SDD(Ru) level of theory. Fukui indices
were calculated with NBO total atomic charges from the opti-
mized neutral structure. Most reactive vacant C-H position is
highlighted in red.



The ability of 3a to access this more stable planar tridentate
binding motif through the ester group could explain the im-
proved remote functionalization via o-activation observed for
this substrate. Previously, remote functionalization via this
method has been primarily limited primarily to 2-phenylpyri-
dine due to its strong planar ruthenacycle. Identification of
this ancillary stabilization provided by the ester group at C3
presents the opportunity to explore similar structural motifs

with this methodology.
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Figure 4. Free energies of optimized conformers 32B-C2 and
3aB-C2* using BP86/6-31G**&SDD(Ru) in kcal mol* showing
the impact of ester binding. The ball-and-stick structure is of
3aB-C2* with the n?-para-cymene omitted for clarity.

Based on results from both computational and experimental
investigations, a plausible mechanism is proposed for the re-
mote radical functionalization of 3a (Scheme 10). The
[RuCL(p-cymene)], dimer is first broken apart using KOAc to
form the proposed catalytically active monomer [Ru(OAc).(p-
cymene)] (which is competent in the reaction, see supporting
information Scheme S2). Carboxylate assisted cyclometalation
at C2 then occurs, including a proposed ring slip of the para-
cymene to accommodate the primary and ancillary directing
groups. A ruthenium(II) catalyst then most likely creates the
tertiary alkyl radical via single electron transfer.>c The alkyl
radical then attacks the cyclometalated species at the most ac-
tivated vacant position, confirmed to be C6 in silico. Redox re-
aromatization then takes place using the ruthenium(III) gen-
erated previously and an equivalent of potassium acetate. Pro-
todemetalation then occurs using AcOH to give the C6 C-H
alkylated product (4a) and reforms the catalytically active
monomer.

CONCLUSION

In conclusion we have developed the first remote functional-
ization of indole derivatives via oc-activation. This was
achieved using a cyclometalated ruthenium species at the C2
position of the indole. It has been reported that an ester ancil-
lary directing group at C3 was essential for remote C-H alkyl-
ation at C6 to occur and yields of up to 92% were achieved
applying this methodology. We also reported the one-pot in-
stallation of the ester at C3 via ruthenium catalysis followed
by ruthenium-catalyzed remote C6 functionalization. Initial
C3 functionalisation has been shown to proceed via a redox
ruthenium-catalyzed pathway, as well as remote C6 function-
alization via radical trapping experiments. Computed Fukui
indices were applied to organic and cyclometallated inorganic
structures to explain the C6 position as the most reactive C-H
site for functionalization. Work is ongoing to apply this tem-
plate to other remote meta-functionalization reactions.

Scheme 10. Plausible mechanism for remote C6 C-H
alkylation of 3a

OEt OEt
[RUCly(p-cymene)],
o
A\ A\
r}\ 4a KOAc H N 3a
EtO / N
Ru(p-cm)(OAc),
AcOH \% AcOH
o
\ D /
N Ru p-cm Ru p-cm
)\/ OAc )\N/ OAc
E10”" N0 7
Ru(ll)
AcOH
0 ;
pr cm OEt
Ru(lll)
KOAc N/ OAc 0
EtO
k u(llnB
Br
Moa
o
ASSOCIATED CONTENT

Supporting Information

Synthetic procedures and full characterization of compounds
is available in the supporting information. Full crystallography
data is available via the CIF files attached as supporting infor-
mation.

The Supporting Information is available free of charge on the
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