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Remote control of self-assembled 

microswimmers
G. Grosjean1, G. Lagubeau1,2, A. Darras1, M. Hubert1, G. Lumay1 & N. Vandewalle1

Physics governing the locomotion of microorganisms and other microsystems is dominated 

by viscous damping. An effective swimming strategy involves the non-reciprocal and periodic 
deformations of the considered body. Here, we show that a magnetocapillary-driven self-assembly, 

composed of three soft ferromagnetic beads, is able to swim along a liquid-air interface when 

powered by an external magnetic field. More importantly, we demonstrate that trajectories can be 
fully controlled, opening ways to explore low Reynolds number swimming. This magnetocapillary 

system spontaneously forms by self-assembly, allowing miniaturization and other possible 

applications such as cargo transport or solvent flows.

A Reynolds number much smaller than unity indicates that viscous forces dominate over inertial forces in 
a given �ow. �is is usually the case at the microscopic scale, which strongly impacts locomotion mech-
anisms of both biological and arti�cial microswimmers. Indeed, to swim by changing its shape, a micro-
scopic body must break time-reversal symmetry1–3. Methods for producing arti�cial microswimmers are 
being actively researched4–8. One major unanswered problem is the control of swimming direction. A 
�ne control of swimming trajectories would be required for most practical applications, such as manip-
ulation and transport of small elements9 or micro-scale �uid �ow generation10. Furthermore, complex 
fabrication processes could limit potential micro-scale applications. Self-assembled systems present a 
clear advantage in this regard, as they require no direct manipulation of micro-components11–13. Floating 
so�-ferromagnetic particles have been shown to produce self-assembled structures when exposed to 
magnetic �elds14. Oscillating �elds can deform these assemblies in a way that produces low Reynolds 
locomotion, although by which mechanism remains obscure15. In the present paper, we propose an expla-
nation for the breaking of time-reversal symmetry in magnetocapillary swimmers, as well as demonstrate 
how swimming speed and direction can be �nely controlled in order to produce the desired trajectories.

�ree so� ferromagnetic spheres of size D are gently placed along a water-air interface, at the center 
of a triaxial Helmholtz system. �e weight of the particles creates menisci that induce an attractive cap-
illary interaction between neighboring beads16, as shown in Fig. 1(a,b). So� ferromagnetic particles are 

used, in which magnetic dipoles are induced along the direction of 
��

B with negligible hysteretic behavior. 
A magnetization cycle of the beads can be found at17. As a consequence, the breaking of time reversibility 
in our system does no come from magnetic hysteresis, as was proposed in recent studies based on 

two-particle systems18. When the particles are in presence of a magnetic �eld = +

��
� �

B B e B ex x z z
, 

dipole-dipole interaction competes with capillary attraction. A vertical magnetic �eld (Bx =  0) leads to 
the formation of a regular triangle, which size can be tuned by Bz

14,19, as shown in the supplementary 
video 1. In the following, the vertical �eld is kept constant at Bz =  30 G such that the bead center-to-center 
distance is close to two bead diameters 2D. When a constant horizontal �eld is added, symmetry break-
ing occurs in the system which then forms an isosceles. An oscillating horizontal �eld β π= ( )B ftsin 2x x  
thus periodically deforms the triangular structure. Amplitudes βx larger than Bz/2 cannot be reached 
because the system collapses, leading to hysteretic contacts19 between the beads.

In Fig.  1(c), one observes that small deformations of the triangle are accompanied by large rota-
tional motions of the whole structure. �ose repeated deformations/rotations come from the competition 
between magnetic, capillary and hydrodynamic interactions15. A signi�cant motion of the bead triplet 
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can be seen in Fig.  1 or in the supplementary video 2. Swimming has been found for frequencies f in 
between 0.1 Hz and 3 Hz. In the following paper, a frequency of 0.5 Hz has been chosen as a compro-
mise between low Reynolds number and practical constraints linked to experiment running time. �e 
relevant Reynolds number in the system is that of the individual particles, which in this case has typical 
values around Re ≈  10−1. It is possible, however, to further lower frequency f and/or �eld amplitude βx 
in order to emphasize that low Reynolds locomotion takes place, reaching typical values in the range 
Re =  [10−3, 10−2]. Another relevant dimensionless number in the system is the Stokes number, which 
can be de�ned as the ratio between the inertia of a particle and viscous forces. In that case, it can be 
shown that St ≈  Reρp/ρf where ρp and ρf represent the densities of the particle and the �uid, respectively. 
In the present situation, steel beads immersed in water give a ratio ρp/ρf =  7.81. �erefore, although St 
can approach unity in some cases, swimming has been observed down to St ≈  10−2 with little qualitative 
di�erence. �is suggests that neither �uid inertia nor bead inertia are the main ingredient required to 
explain the breaking of symmetry in this case20. One should notice that earlier studies on surface swim-
mers using magnetic particles relied on surface waves6,7. In these experiments, locomotion at Re ≈  100 
appears due to waves generated by oscillating particle chains. �is di�ers from our system, in which 
chain formation is not allowed and frequencies are much lower. As a consequence, vertical motion of 
the interface is negligible and capillary wavelength is much larger than the system, as was determined 
in previous work15.

Results
Figure 2 presents the Probability Distribution Function (PDF) of the normalized speeds for several swim-
mers using the same set of parameters : (a) without any o�set and (b) with a small o�set Bx0 =  0.75 G. 
�e swimming speed is found to be broadly distributed in the �rst case while it exhibits a narrow peak 
in the second case. In fact, various pulsation modes can be observed when the horizontal �eld oscillates, 
particularly with di�erent initial conditions. �e o�set Bx0 helps the triplet to select a unique oscillation 
mode. �e speed is then narrowly distributed, with only small �uctuations due to experimental varia-
tions, such as in bead properties, wetting conditions and small �ows in the bath. �e horizontal �eld 
becomes Bx =  [Bx0 +  βxsin(2π�)]. One should remark that the o�set enhances the deformation of the 
triangle but is kept as low as possible here in order to avoid the collapse of the structure.

Figure  3(a) shows the resulting speed v of the assembly normalized by the bead diameter D per 
forcing period T =  1/f, as a function of the amplitude of the �eld oscillations βx. For small oscillations 

Figure 1. Self-assembled magnetocapillary swimmer. (a) Sketch of the magnetocapillary system. So� 

ferromagnetic particles are self-assembling at the water-air interface in a Petri dish. A vertical and constant 

magnetic �eld Bz is applied through the system. An oscillating horizontal �eld Bx excites the motion of the 

self-assembled structure. (b) A top view of the interface emphasizes the self-assembly of D =  500µm beads 

in a vertical �eld: capillary attraction is counterbalanced by dipole-dipole repulsion. �e deformation of the 

liquid-air interface is evidenced by placing an array of pixels underneath the Petri dish. (c) Five snapshots of 

the beads over one period T of the forcing oscillation. �e traces of the initial positions are drawn in yellow 

for emphasizing the motion of the structure. One should notice the rotational oscillation of the structure 

during the period.
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(regime I), no signi�cant motion is observed. When the amplitude βx of the �eld oscillations becomes 
much larger than the o�set Bx0 (regime II), the speed increases and saturates at high �eld values. �e 
dimensionless speed reaches about 0.3 D/T, which can be considered an e�cient locomotion speed in 
the Stokes regime21,23. Amplitudes larger than βx =  15G cannot be used because the system collapses, 
leading to contacts between the beads. Close to collapse (regime III), speed exhibits large �uctuations, as 
seen in Fig. 3(a). It has proven hard to control the speed and the pulsation mode in that regime. We also 
noticed that large o�set values reduce the e�cient locomotion (regime II) into a sharp range of βx values.

Figure 2. Selection of swimming modes. Probability Distribution Function (PDF) of normalized speeds 

obtained in similar experimental conditions: βx =  7.5 G and f =  0.5 Hz, but (a) without an o�set, (b) with a 

constant o�set Bx0 =  0.75 G. �e plots are obtained from 55 independent realizations.

Figure 3. Swimming speeds. (a) Average speed of the self-assembled system as a function of the amplitude 

of oscillations, when the o�set is Bx0 =  0.75 G and f =  0.5 Hz. �e velocity is seen to increase and saturates 

around 0.3 D/T. �e curve is a guide for the eye. (b) �e maximum standard deviation δ of the angles 

from the regular triangle as a function of the amplitude βx. �e curve is a guide for the eye. Please note the 

large di�erences obtained near the collapse (βx ≈  15 G). �ree regimes (I, II and III) are indicated and are 

discussed in the main text.
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In order to quantify the triplet deformations, we computed the standard deviation δ of the internal 
angle departures (αi −  60) from the regular triangle (in degrees), i.e.

∑δ α= ( − ) .
( )=

1

3
60

1i
i

1

3

2

�e maximum value of this parameter over a period max {δ} is shown in Fig. 3(b) as a function of βx. 
When βx increases from zero, max {δ} presents a jump similar to v above Bx0 before saturating to around 
2 degrees (regime II). �e speed v and deformation δ are therefore correlated. It should be stressed that 
the deformation is relatively weak such that the locomotion should be linked to some additional motion 
of the beads such as the structure rotation. However, for higher amplitudes close to the collapse (regime 
III), the triangle is highly stretched providing much higher values of δ where the speed �uctuates.

�e major ingredient triggering the locomotion is the �eld amplitude βx. Once the triangle pulsa-
tion is selected, the oscillation mode remains unchanged and the swimmer trajectory is a straight line. 
Although di�erent from the x-axis, the swimming direction is in fact correlated to the oscillating �eld 
direction. Indeed, Fig.  4 presents three independent trajectories of swimmers which are prepared by 
adjusting slowly the horizontal magnetic �eld direction in the x −  y plane in order to induce U-turn, 
corner and loops, proving that the remote control can be fully exploited. �e paths form the letters of 
“ULg”, being the logo of our University. �e video of the U-turn is given in the supplementary materials. 
Slowly adjusting the horizontal �eld orientation o�ers therefore a convenient way to control the path of 
a microswimmer.

Discussion
Two main mechanisms can provide the breaking of time reversibility necessary for low Reynolds loco-
motion. Symmetry breaking can either occur in the sequence of shapes adopted by the swimmer1 or in 

the viscous drag felt by the swimmer22. Here, comparing typical strength of magnetic force ≈

µ

π
Fm

m

r

3

4
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and hydrodynamic interaction ≈
πη

Fh
R U

r

6
2

, where m is the magnetic moment of a bead, R its radius, U 

its speed and r is the center-to-center distance, yields a ratio ≈ 5 10
F

F

2m

h

. �e shape of the swimmer is 

thus driven by magnetic dipole-dipole interactions in our case. Note that hydrodynamics must be taken 
into account to fully explain the locomotion, as no swimming is possible in the absence of a �ow. 
However, to study the shapes adopted by the swimmer and the breaking of time reversibility, hydrody-
namics do not play any signi�cant role compared to magnetism.

A magnetocapillary model, similar to23 and based on the magnetic and capillary interactions only, 
allows us to capture the possible beads con�gurations when both vertical and horizontal magnetic �elds 
are applied. Moreover, it provides clues for the origin of the non-reciprocal motion behind low Reynolds 
locomotion, as seen below. For convenience, distances rij between beads i and j are adimensionalized by 

the capillary length, being the characteristic length of capillary interactions λ γ ρ= / ≈ .g 2 7mm
16. 

Considering only quasi-static situations, i.e. excluding hydrodynamic interactions, the dimensionless 
bead-bead potential is given by

Figure 4. Full control of swimming trajectories. �e remote control of a microswimmer, by adjusting the 

horizontal �eld orientation 

e , allows us to follow various paths such as U-turn, corner and loops. Laid next 

to one another, the three letters of “ULg” are then obtained. Bead centers are tracked for drawing the 

triangles at each period, emphasizing the orientation of the structure. �e colors indicate the time evolution 

of each trajectory from dark to red.
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where Mcz and Mcx are magnetocapillary numbers23 measuring the competition between magnetic and 
capillary interactions. �e Bessel function K0(r) is assumed to capture the attractive capillary interac-
tion16. Each magnetocapillary number is proportional to dipole-dipole interactions. One can �x the num-
ber Mcz in order to obtain an equilibrium distance rij =  2D/λ =  0.3 when the horizontal �eld is zero 
(Mcx =  0, Mcz ≈  0.01). �is distance corresponds to what we observe in our experiments. �e parameter 

/Mc Mcx z
 becomes then the only relevant parameter in the problem, reducing to the ratio Bx/Bz. In 

order to study the equilibrium con�gurations, we start from a regular triangle with edge length r =  0.3, 
the horizontal �eld is slightly modi�ed and the new equilibrium situation is found by simulated anneal-
ing searching for the local minimum of u =  u12 +  u23 +  u31, by producing tiny random moves for bead 
positions. �e results of these simulations are discussed below.

Figure  5(a) presents the evolution of the internal angles αi of the triplet at equilibrium and for 
di�erent values of an increasing then decreasing horizontal �eld, i.e. when the ratio Bx/Bz follows a 
quasi-static cycle. Arrows indicate how the structure evolves. �e collapse of the structure takes place 
around Bx/Bz ≈  1/2, as expected. In presence of a horizontal �eld, the triangle is roughly isosceles during 
the whole cycle since two angles are always close together. At low and increasing �eld strengths, one 
angle is larger than 60° and the other angles have similar values below 60°. For the lack of a proper term, 
we labelled this �rst type of isosceles “platy-isosceles”. It is characterized by internal angles

α δ
δ δ

( ) =





+ , − , −





 ( )
 60 2 60

2
60

2 3
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Figure 5. Model for non-reciprocal motion. (a) Internal angles given by the model as a function of the 

increasing or decreasing horizontal magnetic interaction (see arrows). Angles αi are colored a�er being 

sorted from the smallest to the largest. Two triangles are illustrated using the same color code in order to 

evidence the orientation of the structure at two speci�c situations:  and ∇  states. (b) Sketch of the platy-

isosceles () con�guration. Arrows indicate the horizontal components of the dipoles. Colors indicate 

whether a pair of dipoles attract or repel compared to zero horizontal �eld, which depends on their relative 

orientation. (c) Sketch of the lepto-isosceles (∇ ) con�guration.
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and occurs when one edge is perpendicular to the �eld axis, as sketched in the inset of Fig.  5(a). By 
symmetry, two con�gurations can be obtained: le� () and right (). Above some �eld strength, the 
system drastically changes since two angles have similar large values while the later is much smaller than 
60°. One has a second type, labelled “lepto-isosceles”, given by

α
δ δ

δ(∇) =





+ , + , −





 ( )
60

2
60

2
60 2

4
i

which is encountered when one side is parallel to the �eld. Two equivalent con�gurations are found: up 
(∆ ) and down (∇ ). In fact, this bifurcation between platy to lepto-isosceles, e.g. → ∇ , is accompanied 
by a rotation of 30° of the entire structure, as sketched in the Fig. 5(a). �e system remains trapped in 
this last con�guration till returning to a regular triangle at zero �eld. Figure  5(b,c) represents three 
dipoles in both platy and lepto-isosceles con�gurations. As a reminder, horizontal components of the 
dipole-dipole interaction can either generate an attraction or a repulsion, depending on the relative ori-
entation of the dipoles. �is is described by the sign of the last term in equation 2 and represented by a 
color code in Fig.  5(b,c). �ese attractions/repulsions determine the shape of the triangle. Because all 
dipole pairs are not aligned in a triangular con�guration, the system is energetically frustrated.

Such a switching behavior between two states is observed periodically in experiments. Indeed, 
Fig.  6(a) presents the evolution of the angles αi during three successive periods using the same color 
code: largest angle in red, lowest angle in green. During each period, the main qualitative characteristics 
predicted by the model are recovered: short successive periods during which both types of isosceles are 
seen. It should be noted that the model does not predict which con�guration is chosen when the �eld 
goes back to zero. At zero �eld, small residual magnetization becomes relevant and might explain why 
the same con�guration is always chosen, such that deformation is periodical. �is could also explain the 
in�uence of initial conditions on swimming velocities that was observed in Fig.  2(a). One should also 
remark that the experimental curves are much more complex than numerical ones due to the presence 
of hydrodynamic interactions and additional e�ects, such as a slow rotation of the beads due to tiny 
residual magnetization. Because of the presence of these additional e�ects, the angles exhibit periodic 
jumps from one isosceles type to the other one. Figure 6(b) presents the evolution of the orientation of 
the entire structure during the same three periods. �e angle θ is seen to oscillate over one period, as 
expected. Figure 6(c) illustrates the non-reciprocity of the shape succession necessary to propulsion. It 

Figure 6. Non-reciprocal motion in the experiment. (a) �ree periods T of the angles αi with the same 

color code as in Fig. 5(a), using our experimental data. One observes that the blue curve oscillates between 

the red and green ones in each period. �e system switches periodically between  and ∇  isosceles. (b) �e 

angle θ of the whole structure during three periods. Oscillations are seen evidencing the successive switches. 

(c) �is sketch shows the isosceles states as a function of θ forming a loop at each cycle, i.e. a non-reciprocal 

motion.
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has a clear magnetocapillary origin since each magnetic cycle induces a loop in the space of con�gura-
tions. �e successive switches between isosceles states are indeed the driving mechanism of locomotion.

Mesoscale self-assembly11 is recognized as an elegant way to fabricate microsystems. Because no micro-
fabrication techniques are involved, the experimental setup is quite straightforward. Furthermore, the use 
of magnetic �elds to control the assembly and power the motion o�ers great �exibility. A magnetocap-
illary swimmer can indeed be assembled, adjusted, destroyed and reassembled as o�en as necessary by 
only changing the magnetic �elds. �e spontaneous organization of a remote-controlled microswimmer 
thus represents a valuable achievement. Although the motion of the self-assembled swimmer is con-
strained along a liquid interface, many applications can be cited: for instance cargo transport, �uid mix-
ing or micromanipulator. Complex functionalities can be reached by considering speci�c beads and/or a 
larger number of beads. �e fact that the setup does not require the use of chemically active substances 
is an advantage in this regard. Besides applications, this bead triplet has the great advantage to possess 
a low number of degrees of freedom such that fundamental aspects of low Reynolds locomotion24,25 can 
now be experimentally explored in various conditions.

Methods
Hereina�er, we present methods and experimental setup. A large Petri dish is �lled with water. �e 
liquid/air interface is placed at the center of a triaxial Helmholtz system that compensates the Earth 
magnetic �eld, and that is able to produce a uniform �eld in any direction. When a current i is injected 
in such coils, a uniform and vertical magnetic �eld Bz is obtained in the Petri dish. Magnetic �elds up to 
30 G have been considered. Oscillations of the horizontal �eld Bx are provided by a function generator 
and an ampli�er. Chrome steel particles (selected alloy AISI 52100, ρs =  7830 kg/m3) are so� ferromag-
netic beads, and they do not exhibit any hysteretic behavior in the range of �eld values used herein. 
As a result, particles retain a negligible residual magnetic moment once the �eld is removed. We have 
estimated this residual magnetization to be roughly 50 times lower than the induced magnetization 
due to the applied �eld. Prior to experiments, spheres are washed with isopropyl alcohol and therea�er 
dried in an oven. Di�erent bead diameters have been studied but the results shown herein correspond 
to D =  500µm. At this scale, partial wetting ensures the �oatation of the spheres. A CCD camera records 
images from above. Image analysis provides the position of each bead as a function of time.

References
1. Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977).
2. Lauga, E. Life around the scallop theorem review. So� Matter 7, 3060–3065 (2011).
3. Lauga, E. & Powers, T. R. �e hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601 (2009).
4. Dreyfus, R. et al. Microscopic arti�cial swimmers. Nature 436, 862–865 (2005).
5. Snezhko, A. & Aranson, I. S. Magnetic manipulation of self-assembled colloidal asters. Nature Mat. 10, 698–703 (2011).
6. Snezhko, A., Belkin, M., Aranson, I. S. & Kwok, W.-K. Self-Assembled Magnetic Surface Swimmers. Phys. Rev. Lett. 102, 118103 

(2009).
7. Piet, D. L., Straube, A. V., Snezhko A. & Aranson, I. S. Viscosity Control of the Dynamic Self-Assembly in Ferromagnetic 

Suspensions. Phys. Rev. Lett. 110, 198001 (2013).
8. Williams, B. J., Anand, S. V., Rajagopalan, J. & Saif, M. T. A. A self-propelled biohybrid swimmer at low Reynolds number. Nature 

Comm. 5, 3081 (2014).
9. Tottori, S. et al. Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport. Adv. Mater. 24, 

811–816 (2012).
10. Darnton, N., Turner, L., Breuer, K. & Berg, H. C. Moving �uid with bacterial carpets. Biophys. J. 86, 1863–1870 (2004).
11. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).
12. Pelesko, J. A. Self-Assembly (Chapmann & Hall, Boca Raton, 2007).
13. Davies, G. B., Krüger, T., Coveney, P. V., Harting, J. & Bresme, F. Assembling Ellipsoidal Particles at Fluid Interfaces Using 

Switchable Dipolar Capillary Interactions. Adv. Mater. 26, 6715–6719 (2014).
14. Vandewalle, N., Obara, N. & Lumay, G. Mesoscale structures from magnetocapillary self-assembly. Eur. Phys. J. E 36, 127 (2013).
15. Lumay, G., Obara, N., Weyer, F. & Vandewalle, N. Self-assembled magnetocapillary swimmers. So� Matter 9, 2420–2425 (2013).
16. Vella, D. & Mahadevan, L. �e ‘Cheerios e�ect’. Am. J. Phys. 73, 817–825 (2005).
17. Lumay, G. & Vandewalle, N. Tunable random packings. New J. Phys. 9, 406 (2007).
18. Ogrin, F. Y., Petrov, P. G. & Winlove, C. P. Ferromagnetic microswimmers. Phys. Rev. Lett. 100, 218102 (2008).
19. Vandewalle, N. et al. Symmetry breaking in a few body system with magneto-capillary interactions. Phys. Rev. E 85, 041402 

(2012).
20. Lagubeau, G. et al. Statics and dynamics of magnetocapillary bonds. arXiv:1508.01885 preprint (2015).
21. Ledesma-Aguilar, R., Lowen, H. & Yeomans, J. M. A circle swimmer at low Reynolds number. Eur. Phys. J. E 35, 70 (2012).
22. Tierno, P., Golestanian, R., Pagonabarraga, I. & Sagus, F. Controlled swimming in con�ned �uids of magnetically actuated 

colloidal rotors. Phys. Rev. Lett. 101, 218304 (2008).
23. Chinomona, R., Lajeunesse, J., Mitchell, W. H., Yao, Y. & Spagnolie, S. E. Stability and dynamics of magnetocapillary interactions. 

preprint arXiv:1410.0429 (2014)
24. Olla, P. Pros and cons of swimming in a noisy environment. Phys. Rev. E 89, 032136 (2014).
25. Naja�, A. & Golestanian, R. Simple swimmer at low Reynolds number: �ree linked spheres. Phys. Rev. E 69, 062901 (2004).

Acknowledgements
�is work was �nancially supported by the FNRS (Grant PDR T.0043.14) and by the University of Liège 
(Grant FSRC 11/36). GG thanks FRIA for �nancial support. GLa was �nanced by the University of Liège 
and the European Union through MSCA-COFUND-BeIPD project. 



www.nature.com/scientificreports/

8Scientific RepoRts | 5:16035 | DOi: 10.1038/srep16035

Author Contributions
G.G., G.L. and A.D. collected and analyzed experimental data. Physical interpretations were provided by 
M.H., G.L. and N.V. �is manuscript was written by N.V.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing �nancial interests: �e authors declare no competing �nancial interests.

How to cite this article: Grosjean, G. et al. Remote control of self-assembled microswimmers. Sci. Rep. 
5, 16035; doi: 10.1038/srep16035 (2015).

�is work is licensed under a Creative Commons Attribution 4.0 International License. �e 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Remote control of self-assembled microswimmers
	Introduction
	Results
	Discussion
	Methods
	Additional Information
	Acknowledgements
	References


