
Remote Data Checking Using Provable Data Possession⋆

Giuseppe Ateniese∗, Randal Burns∗, Reza Curtmola†, Joseph Herring∗,

Osama Khan∗, Lea Kissner‡, Zachary Peterson♯, and Dawn Song§

We introduce a model for provable data possession (PDP) that can be used for remote data
checking: A client that has stored data at an untrusted server can verify that the server possesses

the original data without retrieving it. The model generates probabilistic proofs of possession by
sampling random sets of blocks from the server, which drastically reduces I/O costs. The client

maintains a constant amount of metadata to verify the proof. The challenge/response protocol

transmits a small, constant amount of data, which minimizes network communication. Thus, the
PDP model for remote data checking is lightweight and supports large data sets in distributed
storage systems. The model is also robust in that it incorporates mechanisms for mitigating
arbitrary amounts of data corruption.

We present two provably-secure PDP schemes that are more efficient than previous solutions.
In particular, the overhead at the server is low (or even constant), as opposed to linear in the
size of the data. We then propose a generic transformation that adds robustness to any remote
data checking scheme based on spot checking. Experiments using our implementation verify the

practicality of PDP and reveal that the performance of PDP is bounded by disk I/O and not by
cryptographic computation. Finally, we conduct an in-depth experimental evaluation to study the

tradeoffs in performance, security, and space overheads when adding robustness to a remote data

checking scheme.

Categories and Subject Descriptors: H.3.2 [Information Storage and Retrieval]: Information Storage.; E.3

[Data Encryption]:

General Terms: Security, Reliability, Performance

Additional Key Words and Phrases: Remote data checking, provable data possession, PDP, ho-
momorphic verifiable tags, archival storage, cloud storage security, robust auditing, erasure coding

1 Introduction

Clients with limited storage resources or that desire to outsource the management of

a data center distribute data to storage service providers (SSPs) that agree by contract to

preserve the data and to keep it readily available for retrieval. Verifying the authenticity

of data stored remotely on untrusted servers has emerged as a critical issue. It arises in

peer-to-peer storage systems [Kubiatowicz et al. 2000], network file systems [Li et al.

2004; Kallahalla et al. 2003], long-term archives [Maniatis et al. 2005], web-service object

stores [Yumerefendi and Chase 2007], and database systems [Maheshwari et al. 2000].

Such systems prevent storage servers from misrepresenting or modifying data by providing

authenticity checks when accessing data.

However, archival storage requires guarantees about the authenticity of data on storage,

namely that storage servers possess data. It is insufficient to detect data corruption when

∗Dept. of Comp. Sci., Johns Hopkins University - {ateniese, randal, jrh, okhan}@cs.jhu.edu
†Dept. of Comp. Sci., New Jersey Institute of Technology - crix@njit.edu
‡Google, Inc. - chialea@gmail.com
♯ Comp. Sci. Dept., Naval Postgraduate School - znpeters@nps.edu
§Comp. Sci. Division, University of California, Berkeley - dawnsong@cs.berkeley.edu
⋆Portions of this article were previously published in [Ateniese et al. 2007] and [Curtmola et al. 2008].

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · Giuseppe Ateniese et al.

accessing the data, because it may be too late to recover lost or damaged data. Archival

storage servers retain tremendous amounts of data, little of which are accessed. They also

hold data for long periods of time during which there may be exposure to data loss from

administration errors as the physical implementation of storage evolves, e.g., backup and

restore, data migration to new systems, and changing memberships in peer-to-peer systems.

In this scenario, it is desirable to audit that the SSP meets its contractual obligations.

SSPs have many motivations to fail these obligations; e.g., an SSP may try to hide data loss

incidents in order to preserve its reputation or it may discard data that are rarely accessed

so that it may resell the same storage. Remote data checking (RDC) allows an auditor to

challenge a server to provide a proof of data possession in order to validate that the server

possesses the data that were originally stored by a client. We say that an RDC scheme

seeks to provide a data possession guarantee.

Archival network storage presents unique performance demands. Given that file data are

large and are stored at remote sites, accessing an entire file is expensive in I/O costs to the

storage server and in transmitting the file across a network. Reading an entire archive, even

periodically, greatly limits the scalability of network stores. Furthermore, I/O incurred to

establish data possession interferes with on-demand bandwidth to store and retrieve data.

We conclude that clients need to be able to verify that a server has retained file data without

retrieving the data from the server and without having the server access the entire file.

A scheme for auditing remote data should be both lightweight and robust. Lightweight

means that it does not unduly burden the SSP; this includes both overhead (i.e., computa-

tion and I/O) at the SSP and communication between the SSP and the auditor. This goal

can be achieved by relying on spot checking, in which the auditor randomly samples small

portions of the data and checks their integrity, thus minimizing the I/O at the SSP. Spot

checking allows the client to detect if a fraction of the data stored at the server has been

corrupted, but it cannot detect corruption of small parts of the data (e.g., 1 byte). Robust

means that the auditing scheme incorporates mechanisms for mitigating arbitrary amounts

of data corruption. Protecting against large corruptions ensures the SSP has committed

the contracted storage resources: Little space can be reclaimed undetectably, making it

unattractive to delete data to save on storage costs or sell the same storage multiple times.

Protecting against small corruptions protects the data itself, not just the storage resource.

Many data have value well beyond their storage costs, making attacks that corrupt small

amounts of data practical. For example, modifying a single bit may destroy an encrypted

file or invalidate authentication information.

Previous solutions do not meet all these requirements for proving data possession. Some

schemes [Golle et al. 2002] provide a weaker guarantee by enforcing storage complexity:

The server has to store an amount of data at least as large as the client’s data, but not

necessarily the same exact data. Moreover, most previous techniques require the server

to access the entire file, which is not feasible when dealing with large amounts of data,

or require storage on the client linear with the size of the data, which does not conform

with the notion of storage outsourcing. A notable exception is the work of Schwarz and

Miller [Schwarz and Miller 2006], which meets most of the requirements for proving data

possession, but provides a less formal security analysis.

We introduce a model for provable data possession (PDP) that allows remote data check-

ing, i.e., provides proof that a third party stores a file. The model is unique in that it is

lightweight, i.e. by using spot checking it allows the server to access small portions of

ACM Journal Name, Vol. V, No. N, Month 20YY.

Remote Data Checking Using Provable Data Possession · 3

the file to generate the proof; all previous techniques must access the entire file. Within

this model, we give the first provably-secure scheme for remote data checking. The client

stores a small O(1) amount of metadata to verify the server’s proof. Also, the scheme uses

O(1) network bandwidth1. The challenge and the response are each slightly more than 1

Kilobit. We also present a more efficient version of this scheme that proves data possession

using a single modular exponentiation at the server, even though it provides a weaker pos-

session guarantee. Concurrently with this work, another model for proofs of retrievability

(PoRs) [Juels and Kaliski 2007] was proposed to perform remote data checking.

Both our schemes use homomorphic verifiable tags. Because of the homomorphic prop-

erty, tags computed for multiple file blocks can be combined into a single value. The client

pre-computes tags for each block of a file and then stores the file and its tags with a server.

At a later time, the client can verify that the server possesses the file by generating a random

challenge against a randomly selected set of file blocks. The server retrieves the queried

blocks and their corresponding tags, using them to generate a proof of possession. The

client is thus convinced of data possession, without actually having to retrieve file blocks.

Our PDP schemes provide data format independence, which is a relevant feature in prac-

tical deployments (more details on this in the remarks of Section 3.3), and put no restriction

on the number of times the client can challenge the server to prove data possession. Also,

a variant of our main PDP scheme offers public verifiability (described in Section 3.3).

To enhance possession guarantees in our model, we define the notion of robust audit-

ing, which integrates forward error-correcting codes (FECs) with remote data checking.

Attacks that corrupt small amounts of data do no damage, because the corrupted data may

be recovered by the FEC. Attacks that do unrecoverable amounts of damage are easily de-

tected, because they must corrupt many blocks of data to overcome the redundancy. We

identify the requirements that guide the design, implementation, and parameterization of

robust auditing schemes. Important issues include the choice of an FEC code, the organi-

zation or layout of the output data, and the selection of encoding parameters. The forces on

this design are subtle and complex. The integration must maintain the security of remote

data checking regardless of the adversary’s attack strategy and regardless of the access

pattern to the original data. The integration must also maximize the encoding rate of data

and the I/O performance of the file on remote storage, and minimize storage overhead for

redundancy and the I/O complexity of auditing remote data. Identifying specific encodings

that preserve security and performance is challenging. Indeed, several of the proposed use

of FEC codes [Juels and Kaliski 2007; Shacham and Waters 2008] is not optimal and may

result in poor I/O and encoding performance.

We propose a generic transformation that meets the specified requirements and that en-

codes a file using FECs in order to add robustness to any RDC scheme based on spot

checking. We provide a detailed analysis of the reliability of the resulting encoding that

measures the probability of a successful attack against a robust auditing scheme.

We implement one of our PDP schemes (E-PDP) and show experimentally that proba-

bilistic possession guarantees make it practical to verify possession of large data sets. With

sampling, E-PDP verifies a 64MB file in about 0.4 seconds as compared to 1.8 seconds

without sampling. Further, I/O bounds the performance of E-PDP; it generates proofs as

quickly as the disk produces data and it is 185 times faster than the previous secure pro-

tocol on 768 KB files. Finally, we provide an in-depth evaluation of robust auditing that

1Storage and network overhead are constant in the size of the file, but depend on the chosen security parameter.

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Giuseppe Ateniese et al.

serverF client F'

m

Client generates
fingerprint (m) and

modifed file (F')

Client Store Server Store

m F'

Input file

No server
processing

(a) Pre-process and store

client

m

(1) client generates a
random challenge R

Client Store Server Store

m F'

(3) client verifies
server's proof

server

(2) server computes
proof of possession P

F'

R

P0/1

(b) Verify file possession by server

Fig. 1: Protocol for provable data possession.

studies tradeoffs in performance, security, and space overhead as a function of encoding

parameters and the audit strategy. For reasonable parameters, robustness improves the pos-

session guarantee by 8 orders of magnitude (i.e., from 10−2 to 10−10). When used together,

the analysis and experimental evaluation are constructive: They allow system designers to

identify the specific configurations that realize performance and security goals.

Paper Organization. The rest of the paper is organized as follows. In Section 2, we de-

scribe a framework for provable data possession, emphasizing the features and parameters

that are relevant for PDP. In Section 3, we introduce homomorphic verifiable tags, followed

by definitions for PDP schemes and then we give our constructions (S-PDP and E-PDP).

Section 4 presents generic mechanisms to incorporate robustness in remote data checking

schemes. We support our theoretical claims with experiments that show the practicality of

our schemes in Section 5. We review related work in Section 6 and conclude in Section 7.

2 Provable Data Possession (PDP)

We describe a framework for provable data possession. A PDP protocol (Fig. 1) checks

that an outsourced storage site retains a file, which consists of f blocks. The client C (data

owner) pre-processes the file, generating a small piece of metadata that is stored locally,

transmits the file to the server S, and may delete its local copy. The server stores the file

and responds to challenges issued by the client. Storage at the server is Ω(f) and storage

at the client is O(1), conforming to our notion of an outsourced storage relationship.

As part of pre-processing, the client may alter the file to be stored at the server. The

client may encrypt, encode or expand the file, or may include additional metadata to be

stored at the server. Before deleting its local copy of the file, the client may execute a data

possession challenge to make sure the server has successfully stored the file.

At a later time, an auditor issues a challenge to the server to establish that the server has

retained the file. The auditor requests that the server compute a function of the stored file,

which it sends back to the client. Using its local metadata, the auditor verifies the response.

We will assume for ease of exposition that the client (data owner) is the same entity

as the auditor. However, our solutions can be easily extended to a setting where these two

may be separate entities (e.g., if business requirements require separation, or if data privacy

is a concern and the auditor should not have access to the plain data ([Shah et al. 2008]).

Adversarial model. Although the server S must answer challenges from the client C
(failure to do so represents a data loss), it is not trusted to store the file and may try to

convince the client it possesses (i.e., stores) the file even if the file is totally or partially

ACM Journal Name, Vol. V, No. N, Month 20YY.

Remote Data Checking Using Provable Data Possession · 5

corrupted. Protection against corruption of a large portion of the data is necessary in order

to handle servers that discard a significant fraction of the data. This applies to servers that

are financially motivated to sell the same storage resource to multiple clients.

Protection against corruption of a small portion of the data is necessary in order to handle

servers that try to hide data loss incidents. This applies to servers that wish to preserve their

reputation. Data loss incidents may be accidental (e.g., management errors or hardware

failures) or malicious (e.g., insider attacks). Later, in Section 4 we show how to incorporate

robustness in order to mitigate arbitrary amounts of data corruption.

Requirements and Parameters. The important performance parameters of PDP include:

Computation complexity: The computational cost to pre-process a file (at C), to gen-

erate a proof of possession (at S) and to verify such a proof (at C);

Block access complexity: The number of file blocks accessed to generate a proof of

possession (at S);

Communication complexity: The amount of data transferred (between C and S).

For a scalable solution, the amount of computation and block accesses at the server

should be minimized, because the server may be involved in concurrent interactions with

many clients. We stress that in order to minimize bandwidth, an efficient PDPscheme

cannot consist of retrieving entire file blocks. While relevant, the computation complexity

at the client is of less importance, even though our schemes minimize that as well.

To meet these performance goals, our PDP schemes sample the server’s storage, ac-

cessing a random subset of blocks. In doing so, the PDP schemes provide a probabilistic

guarantee of possession; a deterministic guarantee cannot be provided without accessing

all blocks. In fact, as a special case of our PDP scheme, the client may ask proof for all

the file blocks, making the data possession guarantee deterministic. Sampling proves data

possession with high probability based on accessing few blocks in the file, which radically

alters the performance of proving data possession. Interestingly, when the server corrupts a

fraction of the file, the client can detect server misbehavior with high probability by asking

proof for a constant amount of blocks, independently of the total number of file blocks.

As an example, for a file with f = 10, 000 blocks, if S has corrupted 1% of the blocks,

then C can detect server misbehavior with probability greater than 99% by asking proof of

possession for only 460 randomly selected blocks. For more details, see Section 4.2.1.

3 Provable Data Possession Schemes

3.1 Preliminaries

The client C wants to store on the server S a file F which is a finite ordered collection

of f blocks: F = (b1, . . . ,bf). We denote the output x of an algorithm A by A → x. We

denote by |x| the length of x (in bits).

Homomorphic Verifiable Tags (HVTs). We introduce the concept of a homomorphic

verifiable tag that will be used as a building block for our PDP schemes.

Given a message b (corresponding to a file block), we denote by Tb its homomorphic

verifiable tag. The tags will be stored on the server together with the file F. Homomorphic

verifiable tags act as verification metadata for the file blocks and, besides being unforge-

able, they also have the following properties:

Blockless verification: Using HVTs the server can construct a proof that allows the client

to verify if the server possesses certain file blocks, even when the client does not have

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Giuseppe Ateniese et al.

access to the actual file blocks.

Homomorphic tags: Given two values Tbi
and Tbj

, anyone can combine them into a

value Tbi+bj
corresponding to the sum of the messages bi + bj .

In our construction, an HVT is a pair of values (Ti,b,Wi), where Wi is a random value

obtained from an index i and Ti,b is stored at the server. The index i can be seen as a

one-time index because it is never reused for computing tags (a simple way to ensure that

every tag uses a different index i is to use a global counter for i). The random value Wi is

generated by concatenating the index i to a secret value, which ensures that Wi is different

and unpredictable each time a tag is computed. HVTs and their corresponding proofs have

a fixed constant size and are (much) smaller than the actual file blocks.

We emphasize that techniques based on aggregate signatures [Boneh et al. 2003], multi-

signatures [Micali et al. 2001; Okamoto 1988], batch RSA [Fiat 1990], batch verification of

RSA [Harn 1998; Bellare et al. 1998], condensed RSA [Mykletun et al. 2004], etc. would

all fail to provide blockless verification, which is needed by our PDP scheme. Indeed, the

client should have the ability to verify the tags on specific file blocks even though he does

not possess any of those blocks.

3.2 Definitions

We start with the definition of a provable data possession scheme and protocol, followed

by the security definition that captures the data possession property.

DEFINITION 3.1. (PROVABLE DATA POSSESSION SCHEME (PDP)) A PDP scheme is

a collection of four polynomial-time algorithms (KeyGen,TagBlock,GenProof,CheckProof)
such that:

KeyGen(1k)→ (pk, sk) is a probabilistic key generation algorithm that is run by the client

to setup the scheme. It takes a security parameter k as input, and returns a pair of

matching public and secret keys (pk, sk).

TagBlock(pk, sk,b)→ Tb is a (possibly probabilistic) algorithm run by the client to gen-

erate the verification metadata. It takes as inputs a public key pk, a secret key sk and

a file block b, and returns the verification metadata Tb.

GenProof(pk,F, chal,Σ)→ V is run by the server in order to generate a proof of posses-

sion. It takes as inputs a public key pk, an ordered collection F of blocks, a challenge

chal and an ordered collection Σ which is the verification metadata corresponding

to the blocks in F. It returns a proof of possession V for the blocks in F that are

determined by the challenge chal.

CheckProof(pk, sk, chal,V)→ {“success”, “failure”} is run by the client in order to

validate a proof of possession. It takes as inputs a public key pk, a secret key sk, a

challenge chal and a proof of possession V . It returns whether V is a correct proof of

possession for the blocks determined by chal.

We construct a PDP protocol from a PDP scheme in two phases, Setup and Challenge:

Setup: The client C is in possession of the file F and runs KeyGen(1k) → (pk, sk), fol-

lowed by TagBlock(pk, sk,bi) → Tbi
, for all 1 ≤ i ≤ f . C stores the pair (sk,pk).

C then sends pk,F and Σ = (Tb1
, . . . ,Tbf

) to S for storage and may delete F and Σ.

Challenge: C generates a challenge chal that, among other things, indicates the specific

blocks for which C wants a proof of possession. C then sends chal to S. S runs

GenProof(pk,F, chal,Σ) → V and sends to C the proof of possession V . Finally, C

ACM Journal Name, Vol. V, No. N, Month 20YY.

Remote Data Checking Using Provable Data Possession · 7

can check the validity of the proof V by running CheckProof(pk, sk, chal,V).

In the Setup phase, C computes tags for each file block and stores them together with

the file at S. In the Challenge phase, C requests proof of possession for a subset of the

blocks in F. This phase can be executed an unlimited number of times in order to ascertain

whether S still possesses the selected blocks. We note that GenProof and CheckProof may

receive different input values for chal, as these algorithms are run by S andC, respectively.

We state the security for a PDP protocol using a game that captures the data possession

property. Intuitively, the Data Possession Game captures that an adversary cannot success-

fully construct a valid proof without possessing all the blocks corresponding to a given

challenge, unless it guesses all the missing blocks.

Data Possession Game:

Setup: The challenger runs KeyGen(1k) → (pk, sk), sends pk to the adversary and

keeps sk secret.

Query: The adversary makes tagging queries adaptively: It selects a block b1

and sends it to the challenger. The challenger computes the verification metadata

TagBlock(pk, sk,b1) → Tb1
and sends it back to the adversary. The adversary con-

tinues to query the challenger for the verification metadata Tb2
, . . . ,Tbf

on the blocks

of its choice b2, . . . ,bf . As a general rule, the challenger generates Tbj
for some

1 ≤ j ≤ f , by computing TagBlock(pk, sk,bj)→ Tbj
. The adversary then stores all

the blocks as an ordered collection F = (b1, . . . ,bf), together with the corresponding

verification metadata Tb1
, . . . ,Tbf

.

Challenge: The challenger generates a challenge chal and requests the adversary to

provide a proof of possession for the blocks bi1 , . . . ,bic determined by chal, where

1 ≤ ij ≤ f, 1 ≤ j ≤ c, 1 ≤ c ≤ f .

Forge: The adversary computes a proof of possession V for the blocks indicated by

chal and returns V .

If CheckProof(pk, sk, chal,V) = “success”, then the adversary has won the Data Posses-

sion Game.

DEFINITION 3.2. A PDP protocol (Setup,Challenge) built on a PDP scheme (KeyGen,
TagBlock,GenProof,CheckProof) guarantees data possession if for any (probabilistic

polynomial-time) adversaryA the probability thatA wins the Data Possession Game on a

set of file blocks is negligibly close to the probability that the challenger can extract those

file blocks by means of a (probabilistic polynomial-time) knowledge extractor E .

In our security definition, the notion of a knowledge extractor is similar with the standard

one introduced in the context of proofs of knowledge [Bellare and Goldreich 1992]. If

the adversary is able to win the Data Possession Game, then E can execute GenProof

repeatedly until it extracts the selected blocks. On the other hand, if E cannot extract

the blocks, then the adversary cannot win the game with more than negligible probability.

We refer the reader to [Juels and Kaliski 2007] for a more generic and extraction-based

security definition for proofs of retrievability (PoR) and to [Naor and Rothblum 2005] for

the security definition of sub-linear authenticators.

3.3 Efficient and Secure PDP Schemes

In this section we present our PDP constructions: The first (S-PDP) provides a data

possession guarantee, while the second (E-PDP) achieves better efficiency at the cost of

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Giuseppe Ateniese et al.

weakening the data possession guarantee.

We start by introducing some additional notation used by the constructions. Let p =
2p′ + 1 and q = 2q′ + 1 be safe primes and let N = pq be an RSA modulus. Let g be a

generator of QRN , the unique cyclic subgroup of Z
∗
N of order p′q′ (i.e., QRN is the set

of quadratic residues modulo N). We can obtain g as g = a2, where a
R
← Z

∗
N such that

gcd(a ± 1, N) = 1. All exponentiations are performed modulo N , and for simplicity we

sometimes omit writing it explicitly. Let h : {0, 1}∗ → QRN be a secure deterministic

hash-and-encode function2 that maps strings uniformly to QRN .

The schemes are based on the KEA1 assumption which was introduced by Damgard in

1991 [Damgard 1992] and subsequently used by several others, most notably in [Hada and

Tanaka 1998; Bellare and Palacio 2004a; 2004b; Krawczyk 2005; Dent 2006a]. In particu-

lar, Bellare and Palacio [Bellare and Palacio 2004a] provided a formulation of KEA1, that

we follow and adapt to work in the RSA ring:

KEA1-r (Knowledge of Exponent Assumption): For any adversary A that takes input

(N, g, gs) and returns group elements (C, Y) such that Y = Cs, there exists an “extrac-

tor” Ā which, given the same inputs as A, returns x such that C = gx.

Recently, KEA1 has been shown to hold in generic groups (i.e., it is secure in the generic

group model) by A. Dent [Dent 2006b] and independently by Abe and Fehr [Abe and Fehr

2007]. In private communication, Yamamoto has informed us that Yamamoto, Fujisaki,

and Abe introduced the KEA1 assumption in the RSA setting in [Yamamoto et al. 2005]3.

Later in this section, we also show an alternative strategy which does not rely on the

KEA1-r assumption, at the cost of increased network communication.

Overview of S-PDP. We first give an overview of our provable data possession scheme

that supports sampling. In the Setup phase, the client computes a homomorphic verifiable

tag Ti,bi
for each file block bi. To maintain constant storage, the client generates the

random values Wi (used to obtain Ti,bi
) by concatenating the block index i to a secret value

v; thus, TagBlock has an extra parameter, i. Each value Ti,bi
is a function of the index i

of the block bi. This binds the tag on a block to that specific block and prevents using the

tag to obtain a proof for a different block. The values Ti,bi
and the file F are stored at the

server. The extra storage at the server is the overhead for allowing thin clients that only

store a small, constant amount of data, regardless of the file size.

In the Challenge phase, the client asks the server for proof of possession of c file blocks

whose indices are randomly chosen using a pseudo-random permutation keyed with a fresh

randomly-chosen key for each challenge. This spot checking technique prevents the server

from anticipating which blocks will be queried in each challenge. C also generates a fresh

(random) challenge gs = gs to ensure that S does not reuse any values from a previous

Challenge phase. The server returns a proof of possession that consists of two values: T and

2Here, h is modeled as a random oracle. In practice, h is computed by squaring the output of the full-domain

hash function for the provably secure FDH signature scheme [Bellare and Rogaway 1993; 1996] based on RSA.

We refer the reader to [Bellare and Rogaway 1993] for ways to construct an FDH function out of regular hash

functions, such as SHA-1. Alternatively, h can be the deterministic encoding function used in RSA-PSS [Bellare

and Rogaway 1998].
3Their assumption, named NKEA1, is the same as ours, KEA1-r, except that we restrict g to be a generator of

the group of quadratic residues of order p′q′. As noted in their paper [Yamamoto et al. 2005], if the order is not

known then the extractor returns an x such that C = ±gx.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Remote Data Checking Using Provable Data Possession · 9

KeyGen(1k): Generate pk = (N, g) and sk = (e, d, v), such that ed ≡ 1(mod p′q′), e is a

large secret prime such that e > λ and d > λ , g is a generator of QRN and v
R
← {0, 1}κ.

Output (pk, sk).

TagBlock(pk, sk,b, i):

1. Let (N, g) = pk and (d, v) = sk. Generate Wi = v||i.

Compute Ti,b =
`

h(Wi) · g
b
´d

mod N .

2. Output Ti,b.

GenProof(pk,F = (b1, . . . ,bf), chal,Σ = (T1,b1 , . . . ,Tf,bf
)):

1. Let (N, g) = pk and (c, k1, k2, gs) = chal.

For 1 ≤ j ≤ c:
—compute the indices of the blocks for which the proof is generated: ij = πk1

(j)
—compute coefficients: aj = θk2

(j).

2. Compute T = T
a1

i1,bi1
·. . .·Tac

ic,bic
=

`

h(Wi1)
a1 · . . . · h(Wic)

ac · ga1bi1
+...+acbic

´d
mod

N . // (note that Tij ,bij
is the ij-th value in Σ).

3. Compute ρ = H(g
a1bi1

+...+acbic
s mod N).

4. Output V = (T, ρ).

CheckProof(pk, sk, chal,V):

1. Let (N, g) = pk, (e, v) = sk, (c, k1, k2, s) = chal and (T, ρ) = V .

2. Let τ = Te. For 1 ≤ j ≤ c:

—compute ij = πk1
(j), Wij = v||ij , aj = θk2

(j), and τ =
τ

h(Wij)
aj

mod N

(As a result, one should get τ = ga1bi1
+...+acbic mod N)

3. If H(τs mod N) = ρ, then output “success”. Otherwise output “failure”.

We construct a PDP protocol from a PDP scheme in two phases, Setup and Challenge:

Setup: The client C runs KeyGen(1k) → (pk, sk), stores (sk, pk) and sets (N, g) = pk,

(e, d, v) = sk. C then runs TagBlock(pk, (d, v),bi, i) → Ti,bi for all 1 ≤ i ≤ f and sends

pk,F and Σ = (T1,b1 , . . . ,Tf,bf
) to S for storage. C may delete F and Σ from local storage.

Challenge: C requests proof of possession for c distinct blocks of the file F (with 1 ≤ c ≤ f):

1. C generates the challenge chal = (c, k1, k2, gs), where k1

R
← {0, 1}κ, k2

R
← {0, 1}κ,

gs = gs mod N and s
R
← Z

∗
N . C sends chal to S.

2. S runs GenProof(pk,F, chal,Σ = (T1,b1 , . . . ,Tf,bf
))→ V and sends to C the proof

of possession V .

3. C sets chal = (c, k1, k2, s) and checks the validity of the proof V by running

CheckProof(pk, (e, v), chal,V).

Fig. 2: S-PDP: a PDP scheme that guarantees data possession.

ρ. T is obtained by combining into a single value the individual tags Ti,bi
corresponding to

the requested blocks. ρ is obtained by raising the challenge gs to a function of the requested

blocks. The value T contains information about the indices of the blocks requested by the

client (in the form of the h(Wi) values). C can remove all the h(Wi) values from T because

it has both the key for the pseudo-random permutation (used to determine the indices of the

requested blocks) and the secret value v (used to generate the values Wi). C finally verifies

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Giuseppe Ateniese et al.

the validity of the server’s proof by checking if a certain relation holds between T and ρ.

Details of S-PDP. Let κ, ℓ, λ be security parameters (λ is a positive integer) and let H
be a cryptographic hash function. In addition, we make use of a pseudo-random function

(PRF) θ and a pseudo-random permutation (PRP) π with the following parameters:

θ : {0, 1}κ × {0, 1}log2
(f) → {0, 1}ℓ;

π : {0, 1}κ × {0, 1}log2
(f) → {0, 1}log2

(f)

We write θk(x) to denote θ keyed with key k applied on input x. Our S-PDP scheme

is described in Fig. 2. The purpose of including the aj coefficients in the values for ρ
and T computed by S is to ensure that S possesses each one of the requested blocks.

These coefficients are determined by a PRF keyed with a fresh randomly-chosen key for

each challenge, which prevents S from storing combinations (e.g., sums) of the original

blocks instead of the original file blocks themselves. Also, we are able to maintain constant

communication cost because tags on blocks can be combined into a single value.

In Appendix A [Ateniese et al. 2010], we prove:

THEOREM 3.3. Under the RSA and KEA1-r assumptions, S-PDP guarantees data pos-

session in the random oracle model.

Regarding efficiency, we remark that each challenge requires a small, constant amount

of communication between C and S (the challenge and the response are each slightly more

than 1 Kilobit). In terms of server block access, the demands are c accesses for S, while

in terms of computation we have c exponentiations for both C and S. When S corrupts

a fraction of the file blocks, c is a relatively small, constant value (for more details, see

Section 4.2.1). Since the size of the file is O(f), accommodating the additional tags does

not change (asymptotically) the storage requirements for the server.

In our analysis we assume w.l.o.g. that the indices for the blocks picked by the client in

a challenge are different. One way to achieve this is to implement π using the techniques

proposed by Black and Rogaway [Black and Rogaway 2002]. In a practical deployment,

our protocol can tolerate collisions of these indices.

Notice that the server may store the client’s file F however it sees fit, as long as it is able

to recover the file when answering a challenge. For example, it is allowed to compress

F (e.g., if all the blocks of F are identical, then only storage slightly larger than one full

block may be needed). Alternatively, w.l.o.g., one could assume that F has been optimally

compressed by the client and the size of F is equal to F’s information entropy function.

A concrete example of using S-PDP. For a concrete example of using S-PDP, we con-

sider a 1024-bit modulus N and a 4 GB file F which has f = 1, 000, 000 4KB blocks.

During Setup, C stores the file and the tags at S. The tags require additional storage of

128 MB. The client stores about 3 Kbytes (N, e, d each have 1024 bits and v has 128 bits).

During the Challenge phase, C and S use AES for π (used to select the random block

indices i), HMAC for θ (used to determine the random coefficients a) and SHA1 for H .4

In a challenge, C sends to S four values which total 168 bytes (c has 4 bytes, k1 has 16

bytes, k2 has 20 bytes, gs has 1024 bits). Assuming that S corrupts at least 1% of F, then

C can detect server misbehavior with probability over 99% by asking proof for c = 460

4Clearly, these are simplifications. As such, instantiating correctly a random oracle requires more careful consid-

erations. One strategy is to use SHA-384 (the truncated version of SHA-512 with strengthened Merkle-Damgard

transform) and apply it multiple times over the input and an index and then concatenate the resulting blocks.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Remote Data Checking Using Provable Data Possession · 11

randomly selected blocks (see Section 4.2.1 for details on how to derive this number). The

server’s response contains two values which total 148 bytes (T has 1024 bits, ρ has 20

bytes). We emphasize that the server’s response to a challenge consists of a small, constant

value; in particular, the server does not send back to the client any of the file blocks.

A more efficient scheme, with weaker guarantees (E-PDP). Our S-PDP scheme pro-

vides the guarantee that S possesses each one of the c blocks for which C requested proof

of possession in a challenge. We now describe a more efficient variant of S-PDP, which

we call E-PDP, that achieves better performance at the cost of offering weaker guarantees.

E-PDP differs from S-PDP only in that all the coefficients aj are equal to 1:

In GenProof (steps 2 and 3) the server computes T = Ti1,b1
· . . . · Tic,bc

and ρ =

H(g
bi1

+...+bic
s mod N).

In CheckProof (step 2) the client computes τ =
Te

h(Wi1) · . . . · h(Wic)
mod N .

The E-PDP scheme reduces the computation on both the server and the client to one

exponentiation (see Server Computation details in Section 5.1, the server computes ρ as

one exponentiation to a value whose size in bits is slightly larger than |bi|).

We emphasize that E-PDP only guarantees possession of the sum of the blocks bi1 +
. . . + bic and not necessarily possession of each one of the blocks for which the client

requests proof of possession. In practice, this guarantee may be sufficient if the client

adopts a probabilistic approach for multiple audits (as we assume in this paper) and chooses

appropriate parameters for E-PDP to reduce the server’s ability to cheat. For example, if

the server pre-computes and stores the sums of all possible combinations of c out the

f blocks (
(

f
c

)

values), then the server could successfully pass any challenge with 100%

probability. However, for reasonable parameters e.g. f = 1000 and c = 101, the server

would need to pre-compute and store ≈ 10140 values and might be better off trying to

factor N . It is advisable to set c as a prime number to prevent the server from storing

combinations of sums of blocks, with each sum having a number of blocks that is a divisor

of c. As pointed out, for a similar setting, in [Shacham and Waters 2008] (Appendix B),

the server may also try to cheat with a lower success probability by storing no more than

f blocks. However, when c is a prime (or any odd integer) their attack is not directly

applicable to our scheme since it requires knowledge of the order of the group, which is

unknown in our case (but it is known for their scheme). Nevertheless, this does not exclude

that there are other techniques that could work against E-PDP since, we stress again, it only

guarantees possession of the sum of the blocks. The client could further reduce the server’s

ability to cheat by choosing different values for c over the duration of multiple audits.

An alternative strategy (No KEA1-r Assumption). Instead of the value ρ, S could send

the sum of the queried blocks as an integer (S does not know the order of QRN) and let

C verify the proof of possession using this value. Thus, we will not have to rely on the

KEA1-r assumption. However, network communication will increase to slightly more than

the size of a file block. In addition, notice that any solution based on proofs of knowledge

of the sum would require even more bandwidth than just sending the sum itself. Again, this

is because S does not know the order of QRN and would have to work with large integers.

Public verifiability. The variant of the protocol described above that does not rely on

KEA1-r can be further modified in order to offer the public verifiability property, which

allows anyone, not just the data owner, to challenge the server for data possession. The

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Giuseppe Ateniese et al.

advantages of having public verifiability are akin to those of public-key over symmetric-

key cryptography. We describe next the P-PDP scheme, which offers public verifiability.

The size of the each file block and the coefficients ai’s (the outputs of the pseudo-random

function θ) are now limited so that the sum of any c blocks will be less than λ/2 (recall

that e > λ). The following changes should be applied to the S-PDP protocol in Fig. 2:

—the client (data owner) makes e public (along with N and g).

—the values Wi are generated as Wi = wv(i), where w is a PRF such that w : {0, 1}κ ×

{0, 1}log2
(f) → {0, 1}ℓ and v

R
← {0, 1}κ.

—after the initial Setup phase, the client (data owner) publishes v (the key for the PRF w).

—in GenProof and in CheckProof, the challenge chal does not contain the values gs and

s anymore (also, in the Challenge phase these values are not used anymore).

—in GenProof the server computes M = a1bi1 + . . . + acbic instead of ρ and returns

V = (T,M).

—in CheckProof, step 3, the client now checks whether gM = τ and, in addition, the client

checks whether |M | < λ/2. (This test ensures that, in the proof in Appendix A [Ate-

niese et al. 2010], the condition gcd(e, 2(M∗ −M)) = 1 is verified.)

The communication cost of this variant is slightly larger than the size of a file block. We

leave as an open problem devising publicly-verifiable PDP schemes where the size of chal-

lenges and responses is less than the size of a single file block. In Appendix A [Ateniese

et al. 2010], we prove:

THEOREM 3.4. Under the RSA assumption, the P-PDP scheme guarantees data pos-

session in the random oracle model.

Remark 1 (Data Format Independence). Our PDP schemes put no restriction on the

format of the data, in particular files stored at the server do not have to be encrypted. This

feature is very relevant since we anticipate that PDP schemes will have the biggest impact

when used with large public repositories (e.g., digital libraries, astronomy/medical/legal

repositories, archives etc.).

Remark 2 (Prime-order Group Variant). Alternatively, our PDP schemes can potentially

be modified to work within a group of a publicly-known prime order q. In this case,

however, file blocks (seen as integers) must be less than q, otherwise the server could

simply store them reduced modulo q. In a prime-order setting, network communication

is further reduced (particularly in the elliptic curve setting), but pre-processing becomes

more expensive given the small size of the file blocks. In contrast, the RSA setting allows

us to work with arbitrarily large file blocks.

4 Robust Auditing of Outsourced Data

In this section, we propose a generic transformation to add robustness to any remote data

checking scheme based on spot checking. Toward robustness, we integrate forward error-

correcting codes (FECs) with remote data checking in order to strengthen the guarantee

achieved by an audit. We start by identifying the requirements that guide the design, im-

plementation, and parameterization of robust auditing schemes. We then define the notion

of robust auditing and present the generic transformation that provides protection against

arbitrary small amounts of data corruption. Finally, we analyze the reliability of our pro-

posed data layout and then give practical guidelines for the selection of its parameters.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Remote Data Checking Using Provable Data Possession · 13

4.1 Requirements: Integrating FECs with RDC

We provide a brief review of forward error correction and then analyze the requirements

and tradeoffs that drive the design of a scheme that integrates FECs with RDC.

Forward Error Correction. Forward error correcting (FEC) codes are classified by their

parameters. An (n, k, d) FEC code takes k input symbols, outputs n output symbols and

has distance d = n− k. We refer to the redundant symbols as check symbols.

Codes are further characterized by the number of erasures and errors from which they

can recover. Our application is concerned with erasures only, because each block has

integrity and authenticity metadata so that the block is either present and correct, or miss-

ing/deleted. Corrupted blocks are detected and treated as erasures. An important class of

codes are minimum-distance separable (MDS) codes that can recover from d erasures. The

Reed-Solomon (RS) codes that we use are MDS codes. We denote by (n, k) a RS code

that can correct up to n− k erasures.

For performance reasons, it is typical to choose small values for n, k, d so that the input

file is divided into segments of k blocks each. Blocks from the same encoding segment

are constrained with respect to each other and a segment is called a constraint group.

Constraint groups are independent, i.e., they can be computed in parallel.

Requirements for Integrating FECs with RDC. We identify the following requirements:

Reliability. Maximizing reliability is, perhaps, the most obvious requirement. Reliability

here refers to minimizing the probability of an adversary successfully deleting some (or all)

original data, regardless of the deletion strategy. The measure of reliability is independent

of the spot checking scheme.

Sequentiality. We consider systematic codes that embed the unmodified input within

the output, because they efficiently support sequential I/O to the original file. In contrast,

schemes that permute the original file in the encoded output [Juels and Kaliski 2007] turn

sequential reads to the original file into random reads in the encoded file. Throughput for

sequential data exceeds that of random data by more than an order of magnitude in modern

disk drives. The sequentiality requirement is critical even when retrieving the entire file,

e.g., in an archival object store: The data may be streamed from disk sequentially to the

network; no buffering, data reorganization, or random I/O are needed.

Space overhead. In introducing redundancy, FECs expand the size of the input data,

which increases storage costs and reduces the space available for other data. However,

reliability is derived from redundancy and, thus, from space overhead. In order to offer the

maximum amount of reliability with a minimum amount of space overhead, we use MDS

(maximum distance separable) FEC codes.

Encoding throughput. The performance of erasure coding varies widely depending upon

the specific code and its parameters. In general, performance decreases with increasing

code width and redundancy. Also, MDS codes are less efficient than non-MDS codes. In

practice, coding parameters can be chosen so that other aspects of RDC limit throughput.

Access pattern robustness. Accessing the original data should not compromise the ro-

bustness of the scheme. This is of concern for schemes that rely on using the encryption

and permutation of blocks to hide constraints among the blocks of a file [Juels and Kaliski

2007]. In this case, sequential access to the original file would reveal the original order

of blocks in the permuted file and a deleting attacker would gain knowledge which could

be used to perform a targeted attack on constraint groups. Thus, for security reasons, in

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Giuseppe Ateniese et al.

a scheme that lacks access pattern robustness, accessing a small sequential portion of the

original file would require retrieving the entire encoded file.

Design Tradeoffs. The obvious application of FEC uses codes in which the redundancy

covers the entire input file. So, for a file of size f , one would use a systematic, MDS

(n, f, d) code. This encoding resists the deletion of any fraction d/n of the data blocks.

Having the redundancy cover the entire input provides many benefits. It maximizes relia-

bility and minimizes space overhead. The scheme also fulfills sequentiality and has access

pattern robustness, because the file layout is known to the attacker.

While such codes are theoretically possible, they are impractical owing to poor encoding

performance. Reed-Solomon codes and their variants are the only MDS codes for arbitrary

values of (n, k, d) and their performance is unacceptable (O(n log n) to encode). Further-

more, one needs to construct a new code for each different file size used and the encoder

needs space in O(n2).
Practical applications of RS-codes break input files into fix-sized segments and then en-

code each segment separately. For our application, acceptable data rates are only achieved

for n ≤ 28, i.e., encoding rates that compare well with disk I/O transfer rates. However,

this makes the file less reliable, because each segment may be attacked individually. An

attacker may corrupt a fixed number of blocks d+ 1 from any segment to damage the file.

The reliability reduction can be overcome by securely concealing the constraint groups

from the attacker. Our scheme pursues this approach.

Other approaches that use redundancy covering the entire file do not meet other re-

quirements. Rateless codes, such as fountain codes [Byers et al. 1998] or online codes

[Maymounkov 2003], present a very efficient alternative to MDS codes (O(n) encoding

and decoding time) in which all blocks are constrained. However, they do not achieve

access pattern robustness and sequentiality.

4.2 Robust Auditing of Outsourced Data

A robust auditing scheme incorporates mechanisms for mitigating arbitrary amounts of

data corruption. We consider a notion of mitigation that includes the ability to both effi-

ciently detect data corruption and be impervious to data corruption. When data corruption

is detected, the owner can act in a timely fashion (e.g., data can be restored from other

replicas). Even when data corruption is not detected, a robust auditing scheme ensures that

no data will be lost. More formally, we define a robust auditing scheme as follows:

DEFINITION 4.1. A robust auditing schemeRA is a tuple (C, T), where C is a remote

data checking scheme for a file F and T is a transformation that yields F̃ when applied on

F. We say thatRA provides δ-robustness when:

the auditor will detect with high probability if the server corrupts more than a δ-fraction

of F̃ (protection against corruption of a large portion of F̃)

the auditor will recover the data in F with high probability if the server corrupts at most

a δ-fraction of F̃ (protection against corruption of a small portion of F̃)

In essence, by adding robustness to a RDC scheme C, we seek to improve the original

data possession guarantee offered by C. Whereas a RDC scheme offers a data possession

guarantee, a robust auditing scheme offers a robust data possession guarantee.

RDC schemes based on spot checking meet the lightweight requirement; they also pro-

vide partial robustness, in that they efficiently detect with high probability when a con-

siderable portion of the data is corrupted (e.g., over 1%). To fully meet the robustness

ACM Journal Name, Vol. V, No. N, Month 20YY.

Remote Data Checking Using Provable Data Possession · 15

c(numberofqueriedblocks,asapercentageoff)

f(
n

u
m

b
er

o
ff

ile
b

lo
ck

s)

0.99

0.9
0.80.70.6

0.5

0 5 10 15 20
0

2000

4000

6000

8000

10000

Fig. 3: PX , the probability of server misbehavior detection. We show PX as a function of f and c

for x = 1% of f (where x is the number of blocks corrupted by the server).

requirement, we combine spot checking with data encoding (using erasure codes). Note

that spot checking is a general technique that is beneficial for auditing, regardless of the de-

tails of a specific auditing scheme (e.g., auditing based on retrieving the data objects [Kotla

et al. 2007], or auditing based on retrieving fingerprints of the data objects [Ateniese et al.

2007; Juels and Kaliski 2007]). The notion of robustness we introduce here is relevant

for any auditing scheme based on spot checking. Although spot checking has been previ-

ously considered for auditing, we are the first to consider the robustness dimension of spot

checking-based auditing and the various tradeoffs related to it.

In this section, we present our auditing schemes based on spot checking and analyze

the guarantees they provide. We start with BSCA (Basic Spot Checking Audit), which per-

forms simple spot checking of the original data and was used in the PDP schemes presented

in Section 3. BSCA serves as a comparison baseline for our Robust Spot Checking Audit

(RSCA) schemes, which improve the basic scheme through the use of erasure encoding.

4.2.1 Basic Spot Checking Audit (BSCA). The server stores an f -block file, out of

which it corrupts x blocks. The client C spot checks by randomly selecting for audit c
different blocks over the entire file. This “sampling” mechanism, used in our PDP schemes

in Section 3.3, greatly reduces the workload on the server S.

Let X be a discrete random variable defined as the number of blocks chosen by C that

match the blocks corrupted by S. We compute PX , the probability that at least one of the

blocks picked by C matches one of the blocks corrupted by S. We have:

PX = P{X ≥ 1} = 1−P{X = 0} = 1−
f − x

f
·
f − 1− x

f − 1
·
f − 2− x

f − 2
·. . .·

f − c+ 1− x

f − c+ 1

It follows that: 1−

(

1−
x

f

)c

≤ PX ≤ 1−

(

1−
x

f − c+ 1

)c

PX indicates the probability that, if S corrupts x blocks of the file, then C detects server

misbehavior after a challenge in which it asks proof for c blocks. Fig. 3 plots PX for

different values of fand c.
However, when the server only corrupts a small portion of the file (e.g., one block), an

auditor using the BSCA scheme would have to dramatically increase the number of audited

blocks in order to achieve detection with high probability. This would render impractical

the whole concept of lightweight audit through spot checking. To conclude, BSCA does

not provide satisfactory audit guarantees when a small number of blocks is corrupted.

4.2.2 Robust Spot Checking Audit (RSCA). The data possession guarantee offered by

a remote data checking scheme for a file F can be transformed into a robust data possession

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Giuseppe Ateniese et al.

guarantee for F by first using an FEC code to encode F into F̃, and then using the encoded

file F̃ as input to the RDC scheme. The intuition behind encoding the file is that encod-

ing complements spot checking and extends the robustness of the auditing mechanism to

be impervious to small amounts of data corruption. This generic transformation can be

applied to any remote data checking scheme based on spot checking.

There are various ways to perform the encoding step, which can lead to remote data

checking schemes with significantly different properties and performance characteristics.

We will compare two such encodings that meet most or all of our requirements. For effi-

ciency, both use RS codes with fixed parameters applied to sub-portions of the file. They

both also rely on the careful application of permutation and encryption to conceal the de-

pendencies among blocks within each sub-region from the attacker. The first one gives an

attacker no information about the constraints among file blocks, but the original file data

lack sequentially in the output. The second one gives an attacker limited information about

constraints, but outputs the original data unmodified. Our analysis reveals that this extra

information does not noticeably decrease the robust possession guarantee.

For performance reasons, it is desirable to fix the parameters of the RS encoding. This

also fixes the code generation matrix. We divide the f -block file F into k-block chunks

and apply a (n, k) RS code to each chunk, expanding it into a n-block codeword. The first

k blocks of the codeword are the original k blocks, followed by d = n − k check blocks.

We call a constraint group the blocks from the same codeword, i.e., the original k blocks

and their corresponding d check blocks. The number of constraint groups in the encoded

file F̃ is the same as the number of chunks in the original file F: fk .

We now describe several encoding schemes that lead to remote data checking schemes

with different properties and performance characteristics. The main difference between

these encoding schemes comes from the design choices of how to permute/encrypt the

blocks in each constraint group.

Let (G,E,D) be a symmetric-key encryption scheme and π, ψ, ω be pseudo-random

permutations (PRPs) defined as:

π : {0, 1}κ × {0, 1}log2
(fn/k) → {0, 1}log2

(fn/k)

ψ : {0, 1}κ × {0, 1}log2
(f) → {0, 1}log2

(f)

ω : {0, 1}κ × {0, 1}log2
(fd/k) → {0, 1}log2

(fd/k)

We use the keys w, z, v, u for the encryption scheme, and for PRPs π, ψ, ω, respectively.

Simple-RS. A simple encoding takes a file F = b1, . . . ,bf and generates the encoded file

F̃ = b1, . . . ,bf ,c1, . . . ,c f
k
d, with blocks bik+1, . . . ,b(i+1)k constrained by check blocks

cid+1, . . . ,c(i+1)d, for 0 ≤ i ≤ f
k − 1. The blocks of the input file are separated from the

check blocks, rather than interleaved, in order to meet the sequentiality requirement.

However, with fixed values of k and d, an attacker can effectively corrupt data by delet-

ing a fixed number of blocks: Deleting any d+1 blocks of F̃ drawn from the same constraint

group will result in a loss of data from the original file F. Remote data checking schemes

based on spot checking can only detect corruption of a δ-fraction of F̃ (as per Def. 4.1) and

will not detect corruption of d blocks for fixed values of d (i.e., independent of f). Thus,

this encoding does not meet the requirement for robust data possession guarantee.

Permute-All (πA). The problem with Simple-RS is that an adversary can distinguish

which blocks belong to the same constraint group. The constraints among blocks can

be concealed by randomly permuting the blocks of the encoded file. Encryption is then

ACM Journal Name, Vol. V, No. N, Month 20YY.

Remote Data Checking Using Provable Data Possession · 17

b1 b2 b3 b4 b5 b6 b7 b8 c1 c2 c3 c4

b1 b2 b3 b4 b5 b6 b7 b8 r2 r4 r3 r1

encrypt and permute

= Output File

(6,4) RS encoder
randomly select groups

of k blocks from F

+

Fig. 4: Computation of a (6, 4) code with πR. The file has two constraint groups (different colors).

applied to all blocks so that constraints among the permuted blocks cannot be uncovered.

We first generate, like in Simple-RS, the file F̂ = b1, . . . ,bf ,c1, . . . ,c f
k
d. We then use

π and E to randomly permute and then encrypt all the blocks of F̂, obtaining the encoded

file F̃, where F̃[i] = Ew(F̂[πz(i)]), for 1 ≤ i ≤ fn/k.

This strategy (also used by Juels and Kaliski in [Juels and Kaliski 2007]) leads to a robust

data possession guarantee (as shown by our analysis in Section 4.3). However, the scheme

has several drawbacks: The resource-intensive nature of permuting the entire encoded file

can be rather slow (as acknowledged in [Juels and Kaliski 2007]); also, the scheme does

not meet the sequentiality requirement. Moreover, the scheme does not achieve access

pattern robustness, because sequentially accessing the original data (i.e., data in F) reveals

dependencies among constraint groups in F̃.

Permute-Redundancy (πR). We can overcome the drawbacks of the πA scheme by

observing that it is sufficient to only permute the check blocks. We encode the input file

F = b1, . . . ,bf as follows:

(1) Use ψ to randomly permute the blocks of F to obtain the file P = p1, . . . ,pf , where

pi = bψv(i), 1 ≤ i ≤ f . (As explained below, this step is not explicitly required.)

(2) Compute check blocks C = c1, . . . ,c f
k
d so that blocks pik+1, . . . ,p(i+1)k are con-

strained by cid+1, . . . ,c(i+1)d, for 0 ≤ i ≤ f
k − 1.

(3) Permute and then encrypt the check blocks to obtain R = r1, . . . ,r f
k
d, where ri =

Ew(cωu(i)), 1 ≤ i ≤ f
kd.

(4) Output redundancy encoded file F̃ = F||R.

Fig. 4 shows the computation of πR and the resulting output file layout. The original

file data is output sequentially and unencrypted, followed by permuted and encrypted re-

dundancy. We emphasize that the permutation in step (1) is included for ease of exposition

and the scheme does not require the blocks of the file F to be physically permuted. In-

stead, the check blocks in step 2 are computed directly as a function of the blocks with the

corresponding permuted index.

By computing RS codes over the permuted input file, rather than the original input file,

an attacker does not know the relationship among blocks of the input file. By permuting

the check blocks, the attacker does not know the relationship among the blocks in the

redundant portion R of the output file. By encrypting the check blocks, an attacker cannot

find the combinations of input blocks that correspond to output blocks. In the challenge

phase, the block dependencies (i.e., constraint groups) remain hidden because the client

asks for proof of possession of randomly chosen blocks over the entire encoded file.

However, πR does reveal some information about the structure of the file. An attacker

knows that the file is divided into two parts, the original data (F) and the redundancy infor-

mation (R) and can corrupt data differentially among these two regions to some advantage.

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Giuseppe Ateniese et al.

For example, an attacker guarantees damage to a file by deleting all blocks in R and one

block in F. No deterministic attack that corrupts the same number of blocks exists for πA.

The πR scheme meets all the requirements put forth in Section 4.1: The use of a system-

atic code, which outputs the original blocks as part of the output, ensures the sequentiality

and access pattern robustness requirements. RS codes are space optimal because they are

Maximum Distance Separable. Also, RS codes with fixed parameters are computationally

efficient and ensure that only a constant amount of I/O is required for accessing and repair-

ing small portions of the file. However, the encryption step required for robustness breaks

the data format independence feature described in Section 3.3 (still, the use of a systematic

code partially achieves this feature). We leave as an open problem the design of schemes

that are robust and also fully meet data format independence.

4.3 Scheme Analysis

We turn to an analysis of the probability of a successful attack against πA and πR as a

function of the RS encoding parameters and the RDC checking discipline. By comparing

the results, we identify that an attacker gains no detectable advantage from the πR strategy

when compared with πA.

An attack is successful if: (a) the attacker causes damage to the original data and (b)

the attack is not detected by the auditing mechanism. Both need to happen. Clearly, an

attacker that does not cause damage to the original data is not successful. Also, an attacker

whose actions are detected is not successful, because the data owner is able to repair the

damage in a timely fashion (e.g., from other replicas). Thus:

P (attack) = P (damage) · (1− P (detect)) (1)

We analyze next P (damage) and P (detect) and their dependency on the attacker’s dele-

tion strategy and the client’s auditing strategy. In general, the auditing strategy is fixed

and is publicly known. This allows the attacker to adapt her deletion strategy in order to

maximize P (attack).
In what follows, we assume the attacker corrupts x blocks and the auditor checks c

blocks, out of the fn
k -block file F̃.

4.3.1 Probability of data damage: P (damage). An attacker causes damage to the

original file F if it corrupts d + 1 blocks that belong to the same constraint group in the

encoded file F̃.

Analysis of πA and πR. We encode an f -block file with a (n, k) code that corrects for

up to d corruptions. This produces an encoded file of length f nk blocks, which has f/k
different constraint groups. In πA, all the file blocks are encrypted and permuted and the

attacker deletes x blocks of the file at random. In πR, only the check blocks are encrypted

and permuted and the attacker splits her deletions between the unencoded blocks (F) and

the encrypted and permuted redundancy blocks (R).

In Appendix B [Ateniese et al. 2010] we derive formulas for P (damage) for both

πA and πR. However, the formulas are not in closed form and evaluating the inclu-

sion/exclusion series of the hypergeometric distribution is not computationally reasonable

(the alternating signs of the inclusion/exclusion terms do not allow to bound the expansion

by evaluating fewer terms and inclusion/exclusion processes do not always converge fast).

Monte-Carlo Results. Thus, we turn to Monte-Carlo simulation to determineP (damage).
Our Monte-Carlo simulation models an attacker that corrupts blocks randomly, but may

ACM Journal Name, Vol. V, No. N, Month 20YY.

Remote Data Checking Using Provable Data Possession · 19

Fraction of deletions allocated to R

P
(d

a
m

a
g

e
)

Fig. 5: Identification of the best strategy to dam-

age F by varying where blocks are corrupted.

! !

P
(d
a
m
a
g
e
)

Fig. 6: Probability of damaging F against the πA

and πR encodings for different RS parameters.

choose the distribution of those corruptions over the two portions of the πR encoding. It

then runs one million trials of the attacker, in order to analyze the probability of a success-

ful attack. We implement the simulation in C++ using the Gnu simulation library (gsl).

Our presentation of results uses specific parameters for encoding and data checking, but the

results are general in that they hold across a wide-range of parameterizations with which

we experimented.

We analyze the benefit an attacker realizes from πR when compared with πA. To do

so, we identify the attacker’s best strategy in πR and then compare the probability of

successful attack using that strategy with an attack against πA. Based on an understanding

of the probability of a successful attack, we use the simulation to determine the encoding

and data checking parameters that a system can use to achieve its data protection goals.

Attacker’s Best Strategy. An attacker that corrupts x blocks can split those blocks be-

tween the original file data (F) and the redundancy information (R). Examining the prob-

ability of deletion as a function of the attacker’s choice reveals the best strategy, which is

to distribute the deletions between F and R in proportion to their size. Fig. 5 shows the

probability of an attacker damaging a file as a function of this choice for a file of 100,000

blocks unencoded and 108,000 blocks encoded with a (108, 100) RS code, in which the

attacker corrupts 1080 blocks (1% of the data). The attacker maximizes P (damage) when

it allocates 5-10% of the total deletions to R. Although the results are somewhat noisy,

they match well with the fact that R represents 7.4% of the total encoded file.

Restricted choice provides the intuition behind the correspondence of the data distribu-

tion and the attackers strategy. A successful attack requires d + 1 blocks to be corrupted

from a single constraint group. Deleting a block in a constraint group reduces the number

of blocks remaining in that constraint group, restricting the probability of finding another

block from this constraint group. Restricting the probability happens more rapidly in R

than in F, because there are fewer blocks in each constraint group. The attacker balances

these probabilities by deleting data proportionately between R and F so that the probability

of deletion match in each side of the file.

(Near) Equivalence of πA and πR. We now quantify the difference in P (damage) be-

tween the πR and πA encodings. This experiment uses similar configuration parameters:

an unencoded file of 100,000 blocks encoded with (100 + d, 100) RS with d ∈ (1, 10) in

which the attacker corrupts 1% of the data. Fig. 6 shows that P (damage) for an attacker

matches closely between the two encodings.

While πR gives some advantage to an attacker, it is minor and quantifiable. A system

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Giuseppe Ateniese et al.

Fig. 7: Surface map of P (damage) when adversary corrupts 1% (top) and 5% (bottom) of data

from F and R (k and d are given in number of blocks). The areas on the far right and on the far left

correspond to P (damage) = 0 and P (damage) = 1, respectively.

that uses πR will have to use more redundancy or check more blocks. At the same time,

πR has the advantages of meeting several requirements that πA does not: Sequentiality

and access pattern robustness.

Visualizing Damage Probability in πR. Fig. 7 shows the damage probability in πR for

different encoding parameters. We measure this probability at two deletion levels: 1%

and 5%. As is expected, the amount of reliability goes up with the distance of the code d

(due to the increased redundancy). However, it also goes up with decreasing k. Smaller k

translates to more constraint groups and more storage overhead (while holding d constant).

4.3.2 Probability of attack detection: P (detect). In Section 4.3.1, we established that

the attacker’s best strategy to damage the original file is to distribute her deletions between

F and R in proportion to their size. In this section, we examine the probability of attack

detection, P (detect). The auditor must distribute the audited (checked) blocks between F

and R. Because detecting attacks in F and in R are not mutually exclusive events, we have:

P (detectF̃) = P (detectF) + P (detectR)− P (detectF) · P (detectR) (2)

Ideally, the auditor should distribute the checked blocks to match the attacker’s strategy of

distributing deletions between F and R (recall that the attacker corrupts x out of f blocks).

However, the auditor does not know the attacker’s deletion strategy a priori. Thus, the

auditor assumes that the attacker has maximized her P (damage) and checks the blocks

accordingly, by distributing the c checked blocks between F and R in proportion to their

size. More precisely, if F̃ = F||R, where F has f blocks, R has fkd blocks, and F̃ has f+ f
kd

blocks, then F represents a fraction k
n of F̃ and R represents a fraction d

n of F̃. Thus, the

auditor checks cF = k
nc blocks from F and cR = d

nc blocks from R.

Given this checking strategy, we determine if the attacker can adapt her deletion strategy

in order to increase her chances to evade detection (i.e., minimize P (detectF̃)). We have:

P (detectF) ≥ 1−

(

1−
xF
f

)cF

; P (detectR) ≥ 1−

(

1−
x− xF
f
kd

)cR

in which xF is the number of blocks corrupted from F. We replace in Eq. 2 and take

the first derivative to determine the value of xF for which P (detectF̃) is minimized. This

yields xF = k
nx. Thus, when the auditor distributes the checked blocks between F and

R according to their size, the attacker’s best strategy to minimize her probability of attack

detection is to also distribute her deletions between F and R according to their size.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Remote Data Checking Using Provable Data Possession · 21

x
R

 = .01x

x
R

 = .02x

x
R

 = .03x

x
R

 = .04x

x
R

 = .99x

o
f
F̃

.

Fig. 8: Charting all possible adversarial dele-

tion strategies given a priori knowledge of the

checking strategy.

0!

0.2!

0.4!

0.6!

0.8!

1!

0! 1000! 2000! 3000! 4000! 5000!

Blocks Deleted!

1- P(detect)! P(damage)!

Fig. 9: 1 − P (detect) and P (damage) as a

function of the number of corruptions by the

attacker.

In Fig. 8, we analyze all possible deletion strategies, for all possible checking strategies

given a 100,000 block unencoded file expanded using a (108,100) RS code. The adversary

corrupts 1080 blocks in all. The figure confirms that by checking proportionately to the

size of F and R, the auditor maximizes the minimum P (detectF̃) the adversary can achieve

by varying her deletion strategy when it has a priori knowledge of the checking strategy.

We conclude that the auditor should choose this checking strategy.

4.3.3 Probability of a successful attack: P (attack). We use our analysis to show that

the πR encoding realizes the robust possession guarantee. We give an example in which

we set a robust possession target: no attack should succeed with P (attack) > 10−10.

We used the parameter selection guidelines that we outline in the next section to identify

the specific parameterization that meets the robust possession goal. We selected the solu-

tion that minimized the number of blocks spot-checked during audit for which the space

overhead was < 10% and k was equal to 128. This produces an (140, 128, 12)-RS code

and an auditor that checks 1188 blocks for an input file 128, 000 blocks.

For this configuration, Fig. 9 allows us to visualize robustness. An attacker chooses the

number of blocks to corrupt, between 0 blocks and the entire file. We show only 0 to 5000.

For small deletions, P (damage) is essentially zero. For large deletions, 1− P (detect) is

negligible. In the interesting region from 500–3000 blocks corrupted, both quantities take

low values (always < 10−4) and their product P (attack) remains below 10−10.

4.4 Parameter Selection

We use our analytical and experimental results to define specific parameterizations of the

encoding scheme. At the highest level, the parameter selection process chooses values for

the encoding discipline (i.e., the RS-encoding parameters (n, k, d)) and for the checking

discipline (i.e., the number of blocks c to check in each audit) that meet application require-

ments on the encoding rate, space overhead, audit performance, and the robust possession

guarantee. This is an optimization process for which we will search the parameter space

for the best solution. Applications can minimize (or maximize) one of the user require-

ments and constrain the values of all other requirements. A simple hill-climbing approach

suffices because all of the user requirements are monotonic in their dependent parameters.

We can enhance this search at times by using binary search on parameter values.

Parameter selection is best described through an example. Thus, we describe the solution

used in Section 4.3.3. In this case, we find the parameterization on (n, k, d) and c for a

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Giuseppe Ateniese et al.

file of 128,000 blocks that maximizes the audit performance (minimizes c) subject to the

robust possession goal that P (attack) < 10−10. The output is a list of parameter values

that meet the robust possession goal. The user may then select a specific encoding and

audit discipline from this list using any criteria.

The system searches the parameter space for configurations of (n, k, d) and c that meet

the target, using our Monte-Carlo simulator to evaluate P (damage) and our analysis for

P (detect) to evaluate P (attack) (Eq. 1). There are three degrees of freedom in this search

and we select k, d, and c: for RS codes n− k = d.

We observe that for specific values of n and k, there will be a minimum value of c that

realizes the robust possession goal. This is always true: For arbitrary k and d = 0, the

auditor can check all blocks to get a 100% guarantee that no blocks were damaged. An

inefficient search executes:

1: for all k ∈ kmin . . . kmax do

2: for all d ∈ dmin . . . dmax do

3: find c such that P (attack) < 10−10

To speed the discovery of the appropriate value of c, we can use binary search to implement

find, because P (attack) is monotone in parameter c. We can also prune the search for d
using branch and bound principles.

Other requirements and reasonable values further constrain the search and define

kmin, kmax, dmin and dmax. To realize acceptable encoding rates, k + d < 256 so that

we can use the Cauchy variant of Reed-Solomon encoding [Plank and Xu 2006]. At the

same time, k will tend to be as large as possible in order to increase reliability. In many

cases, small values do not need to be searched. Many applications will limit the amount

of space overhead (d/k) in order to meet cost or capacity limitations. Often k or n can be

fixed a priori, because the storage devices have natural alignment, e.g., in a RAID array

it is beneficial to have n be evenly divisible by the number of disks. Finally, lightweight

auditing mandates that c should be small. Restricting c renders many combinations of k
and d infeasible, which can be determined quickly.

In this example, we place further requirements on the solution: Space overhead should

be < 10% and k = 128. These constraints may be used to select from all possible con-

figurations. However, they are better used to prune the search space. In this case, we can

fix k = 128 and restrict d to be 12 or fewer. This still outputs many solutions: d ∈ [0, 12]
and the corresponding values for c. We selected parameters (140, 128, 12)-RS code and an

auditor that checks 1188 blocks, i.e., the lowest value of c and the highest value of d.

This example was one specific search and similar search processes can be used to op-

timize many different user requirements. Some users may wish to maximize reliability

subject to constraints on c, space overhead, and encoding rate. We demonstrate the rela-

tionship between encoding rate and RS-parameters in Fig. 14. Alternatively, one may wish

to minimize storage costs (space overhead) subject to reliability and audit performance.

5 System Implementation and Performance Evaluation

5.1 PDP Schemes

We measure the performance of E-PDP and the benefits of sampling based on our imple-

mentation of E-PDP. As a basis for comparison, we have also implemented the scheme of

Deswarte et al. [Deswarte et al. 2003] and Filho et al. [Filho and Baretto 2006] (B-PDP),

ACM Journal Name, Vol. V, No. N, Month 20YY.

Remote Data Checking Using Provable Data Possession · 23

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10000 20000 30000 40000 50000 60000

File Size (KB)

T
im

e
 (

se
c
o
n

d
s)

All Blocks

99%

95%

(a) Server (in cache)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10000 20000 30000 40000 50000 60000

File Size (KB)

T
im

e
 (

se
c
o
n

d
s)

All Blocks

99%

95%

(b) Server (on disk)

Fig. 10: Performance of sampling at multiple confidence levels.

and the more efficient scheme in [Golle et al. 2002] (MHT-SE) suggested by David Wagner

(these schemes are described in Appendix C [Ateniese et al. 2010] and briefly in Section 6).

We conducted experiments on an Intel 2.8 GHz Pentium IV system with a 512 KB

cache, an 800 MHz EPCI bus, and 1024 MB of RAM. The system runs Red Hat Linux 9,

kernel version 2.4.22. Algorithms use the crypto library of OpenSSL version 0.9.8b with a

modulusN of size 1024 bits and files have 4KB blocks. Experiments that measure disk I/O

performance do so by storing files on an ext3 file system on a Seagate Barracuda 7200.7

(ST380011A) 80GB Ultra ATA/100 drive. All experimental results represent the mean of

20 trials. Because results varied little across trials, we do not present confidence intervals.

Sampling. To quantify the performance benefits of sampling for E-PDP, we compare the

client and server performance for detecting 1% corrupted data at 95% and 99% confidence

(Fig. 10). These results are compared with using E-PDP over all blocks of the file at large

file sizes, up to 64 MB. We measure both the computation time only (in memory) as well

as the overall time (on disk), which includes I/O costs.

Examining all blocks uses time linear in the file size for files larger than 4MB. This is the

point at which the computation becomes bound from either memory or disk throughput.

Larger inputs amortize the cost of the single exponentiation required by E-PDP. This

is also the point at which the performance of sampling diverges. The number of blocks

needed to achieve the target confidence level governs performance.

For larger files, E-PDP generates data as fast as it can be accessed from memory and

summed, because it only computes a single exponentiation. In E-PDP, the server generates
∑c
i=1 bi, which it exponentiates. The maximum size of this quantity in bits is |bi| +

log2(c); its maximum value is c ·2|bi|. Thus, the cryptographic costs grows logarithmically

in the file size. The linear cost of accessing all data blocks and computing the sum dominate

this logarithmic growth.

Comparing results when data are on disk versus in cache shows that disk throughput

bounds E-PDP’s performance when accessing all blocks. Except the first blocks of a file,

I/O and the challenge computation occur in parallel. Thus, E-PDP generates proofs faster

than the disk can deliver data: 1.0 second versus 1.8 seconds for a 64 MB file. Because I/O

bounds performance, no protocol can outperform E-PDP by more than the startup costs.

While faster storage may remove the I/O bound today, assuming that over time increases

in processor speeds will exceed those of disk bandwidth, then the I/O bound will hold.

Sampling breaks the linear scaling relationship between time to generate a proof of data

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Giuseppe Ateniese et al.

0.001

0.01

0.1

1

10

100

1000

0 200 400 600

File Size (KB)

T
im

e
 (

se
c
o
n

d
s)

B()*)

+,-(./

/()*)

(a) Challenge time compared

0.001

0.01

0.1

1

10

100

0 200 400 600

File Size (KB)

T
im

e
 (

se
c
o

n
d

s)

B()*)

+,-(./

/()*)

(b) Pre-processing time compared

Fig. 11: Computation performance.

possession and the file size. At 99% confidence, E-PDP can build a proof of possession

for any file, up to 64 MB in size in about 0.4 seconds. Disk I/O incurs about 0.04 seconds

of additional runtime for larger file sizes over the in-memory results. Sampling perfor-

mance characterizes the benefits of E-PDP. Probabilistic guarantees make it practical to

use public-key cryptography constructs to verify possession of very large data sets.

Server Computation. The next experiments look at the worst-case performance of gen-

erating a proof of possession, which is useful for planning purposes to allow the server to

allocate enough resources. For E-PDP, this means sampling every block in the file, while

for MHT-SE this means computing the entire hash tree. We compare the computation

complexity of E-PDP with other algorithms, which do not support sampling. All schemes

perform an equivalent number of disk and memory accesses.

In step 3 of the GenProof algorithm of S-PDP, S has two ways of computing ρ: Either

sum the values ajbij (as integers) and then exponentiate gs to this sum or exponentiate gs
to each value ajbij and then multiply all values. We observed that the former choice takes

considerable less time, as it only involves one exponentiation to a (|bi| + ℓ + log2(c))-bit

number, as opposed to c exponentiations to a (|bi|+ ℓ)-bit number (typically, ℓ = 160).

Fig. 11(a) shows the computation time as a function of file size used at the server when

computing a proof for B-PDP, MHT-SE and E-PDP. Note the logarithmic scale. Compu-

tation time includes the time to access the memory blocks that contain file data in cache.

We restrict this experiment to files of 768 KB or less, because of the amount of time con-

sumed by B-PDP.

E-PDP radically alters the complexity of data possession protocols and even outper-

forms protocols that provide weaker guarantees, specifically MHT-SE. For files of 768

KB, E-PDP is more than 185 times faster than B-PDP and more than 4.5 times as fast

as MHT-SE. These performance ratios become arbitrarily large for larger file sizes. For

B-PDP performance grows linearly with the file size, because it exponentiates the entire

file. For MHT-SE, performance also grows linearly, but in disjoint clusters which represent

the height of the Merkle-tree needed to represent a file of that size.

Pre-Processing. In preparing a file for outsourced storage, the client generates its local

metadata. In this experiment, we measure the processor time for metadata generation only.

This does not include the I/O time to load data to the client or store metadata to disk, nor

does it include the time to transfer the file to the server. Fig. 11(b) shows the pre-processing

time as a function of file size for B-PDP, MHT-SE and E-PDP.

E-PDP exhibits slower pre-processing performance. The costs grow linearly with the

ACM Journal Name, Vol. V, No. N, Month 20YY.

Remote Data Checking Using Provable Data Possession · 25

0

20

40

60

80

100

120

1000 10000 100000 1000000

Block Size (bytes)

T
im

e
 (

se
co

n
d

s)

Challenge

Pre-Process

Fig. 12: E-PDP pre-processing versus challenge trade-offs with block size for a 1 MB file.

file size at 162 KB/s. E-PDP performs an exponentiation on every block of the file in order

to create the per-block tags. For MHT-SE, preprocessing performance mirrors challenge

performance, because both protocol steps perform the same computation. It generates data

at about 433 KB/s on average.

The preprocessing performance of B-PDP differs from the challenge phase even though

both steps compute the exact same signature. This is because the client has access to φ(N)
and can reduce the file modulo φ(N) before exponentiating. In contrast, the security of the

protocol depends on φ(N) being a secret that is unavailable to the server.

E-PDP also exponentiates data that was reduced modulo φ(N) but does not reap the

same speed up, because it must do so for every block. This creates a natural trade-off

between preprocessing time and challenge time by varying the block size; e.g., the protocol

devolves to B-PDP for files of a single block. Fig. 12 shows this trade-off and indicates

that the best balance occurs at natural file system and memory blocks sizes of 4-64 KB

(note that in this example all file blocks are checked in a challenge). We choose a block

size of 4K in order to minimize the server’s effort.

Given the efficiency of computing challenges, pre-processing represents the limiting

performance factor for E-PDP. The rate at which clients can generate data to outsource

bounds the overall system performance perceived by the client. However, there are several

mitigating factors. (1) Outsourcing data is a one time task, as compared to challenging

outsourced data, which will be done repeatedly. (2) The process is completely paralleliz-

able. Each file can be processed independently at a different processor. A single file can

be parallelized trivially if processors share key material.

5.2 Encoding Schemes for Robustness

In this section, we will study how the I/O performance and the encoding rate are af-

fected by the choice of encoding scheme and encoding parameters respectively. The I/O

experiments help us compare the disk read performance for the three proposed schemes:

Simple-RS, πA and πR. Encoding rate experiments allow us to determine the parameteri-

zations that meet the encoding rate goals defined as a user requirement.

I/O Performance. The sequentiality of the data layout, achieved by both the Simple-RS

and the πR schemes, has significant implications for I/O read performance. In Fig. 13,

we study the effects of the three encoding schemes (Simple-RS, πA, and πR) on the rate

at which data can be read from the disk. Measuring this rate is useful for both parame-

ter selection and for comparing the I/O performance of the three encoding schemes. For

each encoding scheme, we consider two typical data access patterns in a storage system:

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Giuseppe Ateniese et al.

Sequential Random

Simple-RS 53,650 463

πA 458 458

πR 53,650 463

Fig. 13: I/O read performance for the three

schemes (Simple-RS, πA, and πR) under two

different workloads (sequential and random).

The throughput values are in KB/sec.

Fig. 14: Sensitivity of encoding parameters to

encoding rate (k and d are given in number of

blocks).

sequential and random.

We measure I/O performance on the original file data, i.e., I/Os are performed to lo-

cations in the original file F. Our system maps these logical offsets to the disk locations

in the corresponding encoded file F̃. This mapping is not important for Simple-RS and

πR, which systematically embed the input file in the output. It does matter for πA, which

permutes the blocks of F into F̃. We used Iozone v3.308 [Iozone] to measure the perfor-

mance. The experiment was run on a dual core Intel Pentium 4 running at 3 GHz, with 1

GB memory The L1 cache size was 16KB while the L2 cache size was 2048KB. The hard

disk was a Western Digital SATA II 80GB hard disk running at 7200 RPM.

This experiment shows the benefit of a systematic layout, such as πR, on sequential

read performance. Permuting the blocks as in πA decreases performance for this workload

by more than two orders of magnitude. The permutation turns the sequential workload in

F into a random workload in F̃.

Encoding Performance. We examine the effect of the encoding parameters on perfor-

mance of encoding files. This experiment was conducted on a 2 GHz dual core AMD

Opteron 2212 processor with a HyperTransport bus running at 1 GHz and 4 GB of mem-

ory at 667MHz. The L1 cache is 64 KB and the L2 cache is 1 MB. The hard disk is a

250GB 7.2K RPM Serial ATA 3Gbps 3.5-in Cabled Hard Drive. Jerasure v1.0 [Plank et al.

2008] was used to perform Cauchy Reed Solomon encoding (we use Reed Solomon en-

coding based on Cauchy matrices [Plank and Xu 2006], which was shown to be twice as

fast as classical Reed Solomon encoding based on Vandermonde matrices [Plank 2005]).

Fig. 14 shows how the encoding rate varies with k and d. The encoding rate is far

more sensitive to the distance d than to width of the code k. Therefore, for the purpose

of encoding performance, at a given space overhead, it is preferable to have smaller, more

numerous constraint groups (and hence smaller code distances).

As described in Section 4.4, encoding rates serve as an input to parameter selection,

often allowing us to prune the parameter search space. These results allow us to define

the specific parameterizations that meet encoding goals. Typically, encoding performance

requirements take a lower bound.

6 Related Work

Deswarte et al. [Deswarte et al. 2003] and Filho et al. [Filho and Baretto 2006] provide

techniques to verify that a remote server stores a file using RSA-based hash functions.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Remote Data Checking Using Provable Data Possession · 27

Unlike other hash-based approaches, it allows a client to perform multiple challenges using

the same metadata. In this protocol, communication and client storage complexity are both

O(1). The limitation of the algorithm lies in the computational complexity at the server,

which must exponentiate the entire file, accessing all of the file’s blocks. Further, RSA

over the entire file is extremely slow — 20 seconds per Megabyte for 1024-bit keys on

a 3.0 GHz processor [Filho and Baretto 2006]. In fact, these limitations led us to study

algorithms that allowed for sub-file access (sampling). We implement this protocol for

comparison with our PDP scheme and refer to it as B-PDP (basic PDP). A description of

B-PDP is provided in Appendix C [Ateniese et al. 2010]. Shah et al. [Shah et al. 2007]

use a similar technique for third-party auditing of data stored at online service providers

and put forth some of the challenges associated with auditing online storage services.

Schwarz and Miller [Schwarz and Miller 2006] propose a scheme that allows a client

to verify the storage of m/n erasure-coded data across multiple sites even if sites collude.

The scheme can also be used to verify storage on a single server and relies on a special

construct, called an “algebraic signature”: A function that fingerprints a block and has the

property that the signature of the parity block equals the parity of the signatures of the

data blocks. The parameters of the scheme are comparable with our PDP schemes and the

authors propose performance optimizations to achieve checking throughputs of hundreds

of Mbytes/sec. However, the scheme receives a less formal security analysis.

Sebe et al. [Sebe et al. 2004] give a protocol for remote file integrity checking, based

on the Diffie-Hellman problem in ZN . The client has to store N bits per block, where N
is the size of an RSA modulus, so the total storage on the client is O(n) (which does not

conform to our notion of an outsourced storage relationship). Indeed, the authors state that

this solution only makes sense if the size of a block is much larger than N . Moreover, the

protocol requires the server to access the entire file. Similar techniques were proposed by

Yamamoto et al. [Yamamoto et al. 2007], in the context of checking data integrity through

batch verification of homomorphic hash functions.

Related to provable data possession is the enforcement of storage complexity, which

shows that a server retains an amount of information at least as large as the file received

from the client; the server does not necessarily retain the original file. To the best of

our knowledge, Golle et al. [Golle et al. 2002] were the first to propose a scheme that

enforces storage complexity. Golle et al. also briefly mention a scheme suggested by David

Wagner, based on Merkle hash trees, which lowers the computational requirements for the

server at the expense of increased communication. We implement Wagner’s suggestion for

comparison with our PDP scheme and refer to it as MHT-SE. A description of MHT-SE

is provided in Appendix C [Ateniese et al. 2010].

Oprea et al. [Oprea et al. 2005] propose a scheme based on tweakable block ciphers

that allows a client to detect the modification of data blocks by an untrusted server. The

scheme does not require additional storage at the server and if the client’s data has low

entropy then the client only needs to keep a relatively low amount of state. However,

verification requires the entire file to be retrieved, which means that the server file access

and communication complexity are both linear with the file size per challenge. The scheme

is targeted for data retrieval. It is impractical for verifying data possession.

Simultaneously with PDP, Juels and Kaliski have introduced a similar notion, that of

proof of retrievability (PoR) [Juels and Kaliski 2007], which allows a client to be con-

vinced that it can retrieve a file previously stored at the server. The main PoR scheme uses

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Giuseppe Ateniese et al.

disguised blocks (called sentinels) hidden among regular file blocks in order to detect data

corruption by the server. Although comparable in scope with PDP, their PoR scheme can

only be applied to encrypted files and can handle a limited number of queries, which has

to be fixed a priori. In contrast, our PDP schemes can be applied to public databases (e.g.,

digital libraries, astronomy/medical/legal repositories, archives, etc.) and put no restric-

tion on the number of challenges that can be executed. Shacham and Waters [Shacham and

Waters 2008] give two PoR protocols based on homomorphic authenticators. The first is

based on bilinear maps and achieves public verifiability, whereas the second is based on

pseudo-random functions, more efficient, but is only privately verifiable.

The issue of integrating forward error correcting codes was initially introduced by Juels

and Kaliski [Juels and Kaliski 2007]. They discuss breaking the file into chunks of size

k and using an (n, k, d)-error correcting code on each chunk. The resulting output will

be encrypted and permuted, ensuring that dependencies among contrained blocks (in the

same chunk) remain hidden. While secure, this scheme results in very poor encoding and

sequential I/O performance. The output file must be written randomly and, thus, one block

at a time. The resulting file layout does not support sequential I/O, because sequential

blocks in the original file have no spatial relationship in the resulting output. This is the

πA scheme that permutes all blocks, which we implemented and evaluated for comparison.

Shacham and Waters [Shacham and Waters 2008] propose using Online codes [May-

mounkov 2003] in a similar fashion. However, they improve upon the strategy of Juels and

Kaliski by using tweakable ciphers, which avoids the permutation step.

Bowers et al. [Bowers et al. 2009b] describe an integration of Reed-Solomon codes with

a systematic file layout that is similar to our file layout. It was identified independently and

at roughly the same time (as our initial paper [Curtmola et al. 2008]). Both their scheme

and ours meet the requirements we put forth. While they establish the bounds under which

a client is able to retrieve data from the server, their treatment does not include practical

guidance as to how to configure and use FECs with RDC, nor does it include our analysis,

system implementation or evaluation.

Other extensions to remote data checking include extending the data possession guaran-

tee to multiple servers based on replication without encoding each replica separately [Curt-

mola et al. 2008], based on erasure coding [Wang et al. 2009; Bowers et al. 2009a] and

based on network coding [Chen et al. 2010], and to efficiently support dynamic data up-

dates [Ateniese et al. 2008; Erway et al. 2009].

7 Conclusion

We focused on the problem of auditing if an untrusted server stores a client’s data. We

introduced a model for provable data possession, in which it is desirable to minimize the

file block accesses, the computation on the server, and the client-server communication.

Our solutions for PDP fit this model: They incur a low (or even constant) overhead at the

server and require a small, constant amount of communication per challenge. Key compo-

nents of our schemes are the support for spot checking, which ensures the schemes remain

lightweight, and the homomorphic verifiable tags, which allow to verify data possession

without having access to the actual data file. We also define the notion of robust auditing,

which integrates RDC with FEC to mitigate arbitrarily small file corruptions and propose

a generic transformation for adding robustness to any spot checking-based RDC scheme.

Experiments show that our schemes make it practical to verify possession of large data

ACM Journal Name, Vol. V, No. N, Month 20YY.

Remote Data Checking Using Provable Data Possession · 29

sets. Previous schemes that do not allow sampling are not practical when PDP is used to

prove possession of large amounts of data, as they impose a significant I/O and computa-

tional burden on the server.

REFERENCES

ABE, M. AND FEHR, S. 2007. Perfect NIZK with adaptive soundness. In Proc. of Theory of Cryptography.

ATENIESE, G., BURNS, R., CURTMOLA, R., HERRING, J., KHAN, O., KISSNER, L., PETERSON, Z., AND

SONG, D. 2010. Remote data checking using provable data possession. e-appendix.

ATENIESE, G., BURNS, R., CURTMOLA, R., HERRING, J., KISSNER, L., PETERSON, Z., AND SONG, D. 2007.

Provable data possession at untrusted stores. In Proc. of ACM CCS ’07.

ATENIESE, G., PIETRO, R. D., MANCINI, L. V., AND TSUDIK, G. 2008. Scalable and efficient provable data

possession. In Proc. of Securecomm.

BELLARE, M., GARAY, J., AND RABIN, T. 1998. Fast batch verification for modular exponentiation and digital

signatures. In Proc. of EUROCRYPT ’98. LNCS. 236–250.

BELLARE, M. AND GOLDREICH, O. 1992. On defining proofs of knowledge. In Proc. of CRYPTO ’92.

BELLARE, M. AND PALACIO, A. 2004a. The knowledge-of-exponent assumptions and 3-round zero-knowledge

protocols. In Proc. of CRYPTO ’04. Lecture Notes in Computer Science. Springer, 273–289.

BELLARE, M. AND PALACIO, A. 2004b. Towards plaintext-aware public-key encryption without random ora-

cles. In Proc. of ASIACRYPT ’04. LNCS, vol. 3329. Springer, 48–62.

BELLARE, M. AND ROGAWAY, P. 1993. Random oracles are practical: A paradigm for designing efficient

protocols. In First Conference on Computer and Communications Security. ACM, 62–73.

BELLARE, M. AND ROGAWAY, P. 1996. The exact security of digital signatures - How to sign with RSA and

Rabin. In EUROCRYPT. 399–416.

BELLARE, M. AND ROGAWAY, P. 1998. PSS: Provably secure encoding method for digital signatures. IEEE

P1363a: Provably secure signatures.

BLACK, J. AND ROGAWAY, P. 2002. Ciphers with arbitrary finite domains. In Proc. of CT-RSA. Springer-Verlag.

BONEH, D., GENTRY, C., LYNN, B., AND SHACHAM, H. 2003. Aggregate and verifiably encrypted signatures

from bilinear maps. In Proc. of EUROCRYPT ’03. LNCS, vol. 2656. Springer, 416–432.

BOWERS, K. D., JUELS, A., AND OPREA, A. 2009a. HAIL: a high-availability and integrity layer for cloud

storage. In Proc. of ACM CCS ’09.

BOWERS, K. D., JUELS, A., AND OPREA, A. 2009b. Proofs of retrievability: Theory and implementation. In

Proc. of the 2009 ACM workshop on Cloud computing security (CCSW ’09).

BYERS, J. W., LUBY, M., MITZENMACHER, M., AND REGE, A. 1998. A digital fountain approach to reliable

distribution of bulk data. In Proc. of ACM SIGCOMM. 56–67.

CHEN, B., CURTMOLA, R., ATENIESE, G., AND BURNS, R. 2010. Remote data checking for network coding-

based distributed storage systems. In Proc. of ACM Cloud Computing Security Workshop (CCSW ’10).

CURTMOLA, R., KHAN, O., AND BURNS, R. 2008. Robust remote data checking. In Proc. of ACM StorageSS.

CURTMOLA, R., KHAN, O., BURNS, R., AND ATENIESE, G. 2008. MR-PDP: Multiple-replica provable data

possession. In Proc. of ICDCS.

DAMGARD, I. 1992. Towards practical public key systems secure against chosen ciphertext attacks. In Proc. of

CRYPTO ’91, J. Feigenbaum, Ed. Vol. 576. Springer, 445–456.

DENT, A. W. 2006a. The Cramer-Shoup encryption scheme is plaintext aware in the standard model. In Proc.

of EUROCRYPT ’06. LNCS, vol. 4004. Springer, 289–307.

DENT, A. W. 2006b. The hardness of the DHK problem in the generic group model. Cryptology ePrint Archive,

Report 2006/156. http://eprint.iacr.org/2006/156.

DESWARTE, Y., QUISQUATER, J.-J., AND SAIDANE, A. 2003. Remote integrity checking. In Proc. of IICIS.

ERWAY, C., KUPCU, A., PAPAMANTHOU, C., AND TAMASSIA, R. 2009. Dynamic provable data possession.

In Proc. of ACM CCS.

FIAT, A. 1990. Batch RSA. In Proc. of CRYPTO ’89. Springer-Verlag, 175–185. LNCS.

FILHO, D. L. G. AND BARETTO, P. S. L. M. 2006. Demonstrating data possession and uncheatable data

transfer. IACR ePrint archive. Report 2006/150, http://eprint.iacr.org/2006/150.

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · Giuseppe Ateniese et al.

GOLLE, P., JARECKI, S., AND MIRONOV, I. 2002. Cryptographic primitives enforcing communication and

storage complexity. In Financial Cryptography. 120–135.

HADA, S. AND TANAKA, T. 1998. On the existence of 3-round zero-knowledge protocols. In Proc. of CRYPTO.

HARN, L. 1998. Batch verifying multiple RSA digital signatures. Electronics Letters 34, 12, 1219–1220.

Iozone. Iozone filesystem benchmark. http://www.iozone.org/.

JUELS, A. AND KALISKI, B. S. 2007. PORs: Proofs of retrievability for large files. In Proc. of ACM CCS.

KALLAHALLA, M., RIEDEL, E., SWAMINATHAN, R., WANG, Q., AND FU, K. 2003. Plutus: Scalable secure

file sharing on untrusted storage. In Proc. of FAST.

KOTLA, R., ALVISI, L., AND DAHLIN, M. 2007. Safestore: a durable and practical storage system. In USENIX

Annual Technical Conference.

KRAWCZYK, H. 2005. HMQV: A high-performance secure Diffie-Hellman protocol. In Proc. of CRYPTO ’05.

KUBIATOWICZ, J., BINDEL, D., CHEN, Y., EATON, P., GEELS, D., GUMMADI, R., RHEA, S., WEATHER-

SPOON, H., WEIMER, W., WELLS, C., AND ZHAO, B. 2000. Oceanstore: An architecture for global-scale

persistent storage. In Proceedings of ACM ASPLOS ’00. ACM.

LI, J., KROHN, M., MAZIÈRES, D., AND SHASHA, D. 2004. Secure untrusted data repository (SUNDR). In

Proceedings of OSDI.

MAHESHWARI, U., VINGRALEK, R., AND SHAPIRO, W. 2000. How to build a trusted database system on

untrusted storage. In Proc. of OSDI.

MANIATIS, P., ROUSSOPOULOS, M., GIULI, T., ROSENTHAL, D., BAKER, M., AND MULIADI, Y. 2005. The

LOCKSS peer-to-peer digital preservation system. ACM Transactions on Computing Systems 23, 1, 2–50.

MAYMOUNKOV, P. 2003. Online codes. Tech. Rep. TR2003-883, NYU.

MICALI, S., OHTA, K., AND REYZIN, L. 2001. Accountable-subgroup multisignatures: extended abstract. In

Proc of ACM CCS ’01. 245–254.

MILLER, G. L. 1976. Riemann’s hypothesis and tests for primality. JCSS 13, 3, 300–317.

MYKLETUN, E., NARASIMHA, M., AND TSUDIK, G. 2004. Authentication and integrity in outsourced

databases. In Proceedings of NDSS. The Internet Society.

NAOR, M. AND ROTHBLUM, G. N. 2005. The complexity of online memory checking. In Proc. of FOCS.

OKAMOTO, T. 1988. A digital multisignature schema using bijective public-key cryptosystems. ACM Transac-

tions on Computer Systems 6, 4, 432–441.

OPREA, A., REITER, M. K., AND YANG, K. 2005. Space-efficient block storage integrity. In Proc. of NDSS.

PLANK, J. S. 2005. Erasure codes for storage applications. Tutorial Slides, presented at FAST 2005.

PLANK, J. S., SIMMERMAN, S., AND SCHUMAN, C. D. 2008. Jerasure: A library in C/C++ facilitating erasure

coding for storage applications - Version 1.2. Tech. Rep. CS-08-627, University of Tennessee. August.

PLANK, J. S. AND XU, L. 2006. Optimizing cauchy reed-solomon codes for fault-tolerant network storage

applications. In Proc. of IEEE NCA ’06.

SCHWARZ, T. S. J. AND MILLER, E. L. 2006. Store, forget, and check: Using algebraic signatures to check

remotely administered storage. In Proceedings of ICDCS ’06. IEEE Computer Society.

SEBE, F., MARTINEZ-BALLESTE, A., DESWARTE, Y., DOMINGO-FERRER, J., AND QUISQUATER, J.-J. 2004.

Time-bounded remote file integrity checking. Tech. Rep. 04429, LAAS. July.

SHACHAM, H. AND WATERS, B. 2008. Compact proofs of retrievability. In Proc. of Asiacrypt 2008.

SHAH, M., BAKER, M., MOGUL, J. C., AND SWAMINATHAN, R. 2007. Auditing to keep online storage

services honest. In Proc. of HotOS XI. Usenix.

SHAH, M. A., SWAMINATHAN, R., AND BAKER, M. 2008. Privacy-preserving audit and extraction of digital

contents. ePrint Archive Report 2008/186.

SHAMIR, A. 1983. On the generation of cryptographically strong pseudorandom sequences. ACM Trans. Com-

put. Syst. 1, 1, 38–44.

WANG, C., WANG, Q., REN, K., AND LOU, W. 2009. Ensuring data storage security in cloud computing. In

Proc. of IWQos Workshop.

YAMAMOTO, G., FUJISAKI, E., AND ABE, M. 2005. An efficiently-verifiable zero-knowledge argument for

proofs of knowledge. Tech. Rep. ISEC2005-48, IEICE. July.

YAMAMOTO, G., ODA, S., AND AOKI, K. 2007. Fast integrity for large data. In Proc. of SPEED ’07.

YUMEREFENDI, A. Y. AND CHASE, J. 2007. Strong accountability for network storage. In Proc. of FAST ’07.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Remote Data Checking Using Provable Data Possession · 31

A Proofs

Proof of Theorem 3.3. Under the KEA1-r assumption, we reduce the security of our

S-PDP scheme to the security of the RSA problem and the security of integer factoring.

We model both hash functions h(·) and H(·) as random oracles. However we do not use

the ”full power” of the random oracle model and indeed a scheme that does not use any

random oracles can be easily derived from ours but at the cost of increased computational

cost and bandwidth requirement.

We assume there exists an adversary B that wins the Data Possession Game on a chal-

lenge picked by A and show that A will be able to extract the blocks determined by the

challenge. If B can break the data possession guarantee of the S-PDP scheme, we show

how to construct an adversary A that uses B in order to either break RSA or factor the

product of two large primes.

For the RSA problem, A is given (N, e, y), with y
R
← Z

∗
N , and needs to find a value

b ≡ y1/e mod N . We assume w.l.o.g. that e is a large prime number. A will play the role

of the challenger in the Data Possession Game and will interact with B.

We first look at the case when in GenProof and CheckProof all the coefficients

a1, . . . , ac are equal to 1. This corresponds to the case where the server proves it pos-

sesses the sum of the requested blocks. We then generalize the proof to the case where

the coefficients are random and pairwise distinct, which corresponds to the case where the

server proves it possesses each individual block.

A simulates a PDP environment for B as follows:

Setup: A computes g = y2 mod N , sets the public key pk = (N, g) and sends pk to B.

A generates the secret value v
R
← {0, 1}κ.

Query: B makes tagging queries adaptively: B selects a block m1 and is also allowed

to select an index i1. B sends m1 and i1 to A. A generates Ti1,m1
and sends it back to

B. B continues to query A for the tags Ti2,m2
, . . . ,Tif ,mf

on the blocks m2, . . . ,mf and

indices i1, . . . , if of its choice. The only restriction is that B cannot make tagging queries

for two different blocks using the same index.

A answers B’s tagging oracle queries as follows:

when A receives a tagging query for a block m and index i, with 1 ≤ i ≤ f :

—if a previous tagging query has been made for the same m and i, then A retrieves the

recorded tuple (m, i, ri,Wi) and returns Ti,m = ri.

—else, A picks ri
R
← QRN , computes Wi = v||i, records the tuple (m, i, ri,Wi) and

returns Ti,m = ri.

when A receives a hash query for a value x:

—if a previous hash query was made for a value x, then A retrieves the recorded tuple

(x, ωx) and returns h(x) = ωx.

—else A picks ω
R
← QRN , records the tuple (x, ωx) and returns h(x) = ωx.

A’s view of the hash values h(Wi), for 1 ≤ i ≤ f , is: h(Wi) = rei · g
−mi mod N .

Clearly B could query the random oracle on values Wi with only negligible probability.

Notice that in the random oracle model h(Wi) behaves simply as a PRF under the secret v.

Challenge: A generates the challenge chal = (gs, i1, . . . , ic), where gs = gs mod N , s
R
←

Z
∗
N and i1, . . . , ic are the indices of the blocks for which A requests proof of possession

(with 1 ≤ ij ≤ f , 1 ≤ j ≤ c, 1 ≤ c ≤ f). A sends chal to B.

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · Giuseppe Ateniese et al.

Forge: B generates a proof V = (T, ρ) about the blocks mi1 , . . . ,mic determined by

i1, . . . , ic, where T = T{i1,...,ic},mi1
+...+mic

. Note that V is a valid proof that passes

CheckProof(pk, sk, chal,V). B returns V to A and A checks the validity of V . Let M =
mi1 + . . .+mic .

As H is a random oracle, with overwhelming probability we can extract the pre-image

value ρp that B utilized to calculate ρ. (By the definition of a random oracle, B can guess

a valid value of ρ with only negligible probability.)

A has given B both g, gs and B has implicitly returned τ =
Te

∏c
j=1 h(Wij)

, ρp by return-

ing T, ρ. Because τ s = ρp, by KEA-1r, A can utilize the extractor B̄ to extract a value

M∗ such that gM
∗

= τ (if −gM
∗

= τ then A sets T = −T mod N).

If M∗ = M , then A was able to successfully extract the correct message M . We

analyze next the case when M∗ 6= M . Note that M∗ is the “full-domain” value utilized

by this calculation. (If the extractor B̄ is able to extract a value M ′ 6= M∗ such that

gM
′

= gM
∗

mod N , this will allow to compute a multiple of φ(N), from which the

factorization of N can be efficiently computed [Miller 1976].)

From τ = gM
∗

we get Te = (
∏c
j=1 h(Wij)) · g

M∗

, where clearly gM
∗

6= gM , and thus:

T =

c
∏

j=1

h(Wij)

 · gM
∗

d

=

c
∏

j=1

(reij · g
−mij)

 · gM
∗

d

=

c
∏

j=1

rij

 ·
(

gM
∗−M

)d

A computes:

z =
T

∏c
j=1 rij

=
(

gM
∗−M

)d

We have ze = gM
∗−M = y2(M∗−M). Notice that gcd(e, 2(M∗ − M)) = 1 with

overwhelming probability (this holds because e is a large prime number unknown to B).

Applying Shamir’s “trick” [Shamir 1983], A uses the extended Euclidian algorithm to

efficiently compute integers u and v such that u · e + v · 2(M∗ −M) = 1 and outputs

y1/e = yuzv .

Note that the interactions of A with B are indistinguishable to B from interactions with

an honest challenger in the Data Possession Game, as A chooses all parameters according

to our protocol (and in particular note that B does not learn the value e by interacting with

A).

The proof generalizes to the case where the coefficients a1, . . . , ac are random and

pairwise distinct. Indeed, in this case it is enough to apply the same simulation shown

above and in addition to notice that at the end of the simulation A will be able to extract

M̄ = a1mi1 + . . .+ acmic . We now have to show that our protocol constitutes a proof of

ACM Journal Name, Vol. V, No. N, Month 20YY.

Remote Data Checking Using Provable Data Possession · 33

knowledge of the blocksmi1 , . . . ,mic when a1, . . . , ac are pairwise distinct. We show that

a knowledge extractor E may extract the file blocks mi1 , . . . ,mic . Note that each time E
runs the PDP protocol, E obtains a linear equation of the form M̄ = a1mi1 + . . .+acmic .

By choosing independent coefficients a1, . . . , ac in c executions of the protocol on the

same blocks mi1 , . . . ,mic , E obtains c independent linear equations in the variables

mi1 , . . . ,mic . E may then solve these equations to obtain the file blocks mi1 , . . . ,mic .

Proof of Theorem 3.4. The proof of Theorem 3.4 follows directly from the proof of

Theorem 3.3. The main difference is that we do not need to use the KEA1-r extractor

since the message is given to A directly. In addition, we allow the adversary B to select

only messages mi of a certain size and to check the validity of tags after each tag query.

Recall that we model h as a random oracle but now h is not just computed by the client

over local and private values. (While mapping elements of arbitrary size into QRN is

sound in the random oracle model, in practice we instantiate the random oracle by squaring

the output of a full-domain hash, the latter being effectively a square root of the output of

h. This is not an issue since extending the publicly-verifiable scheme and its proof to work

within the larger group Z
∗
N is straightforward.)

When B makes a tagging query for a block mi and index i, with 1 ≤ i ≤ f , then A

picks ri
R
← QRN , computes Wi = wv(i) and returns (Ti,m,Wi), where Ti,m = ri. B may

verify the tag by checking whether the relation (Ti,mi
)e = h(Wi) · g

mi holds. Indeed,

when B makes a hash query for a value Wi, A will return h(Wi) = rei · g
−mi mod N .

Now, if B releases a sum M∗ that passes CheckProof such that M∗ 6= M , then we

can clearly solve the RSA instance since gcd(e, 2(M∗ −M)) = 1 given that e is a prime

bigger than |M∗ −M | (both |M∗| and |M | are smaller than λ/2 and e > λ).

B Analysis of Probability of Data Damage: P (damage)

Analysis of πA. We encode an f -block file with a (n, k) code that corrects for up to d cor-

ruptions. This produces an encoded file of length f nk , which has f/k different constraint

groups. The file is encrypted and permuted using πA. An attacker deletes x blocks of the

file at random and Xi is the number of blocks corrupted from constraint group i.
In deleting blocks, an attacker is performing sampling without replacement, which is

governed by the hypergeometric distribution. Let Ai be the event that constraint group ci
has more than d blocks corrupted from it: Xi > d. The probability of Ai is merely the

sum of the hypergeometric distributions evaluated for all numbers larger than d:

p(Ai) =

n
∑

j=d+1

p(Xi = j) =

n
∑

j=d+1

(

n
j

)(

f−n
x−j

)

(

f
x

)

The file is damaged when any of the constraint groups experiences more than d deletions.

Thus, the quantity of interest is: p(
⋃f/k
i=1 Ai) which can be accurately evaluated through an

inclusion/exclusion process:

p(

f/k
⋃

i=1

Ai) =

f/k
∑

i=1

p(Ai)−

f/k
∑

i=1

f/k
∑

j=i+1

p(Ai ∩Aj) +

f/k
∑

i=1

f/k
∑

j=i+1

f/k
∑

l=j+1

p(Ai ∩Aj ∩Al)− . . .

Because all constraint groups are the same, the outer sums that make up each inclu-

sion/exclusion term need not be computed explicitly. Rather, the probability of intersection

ACM Journal Name, Vol. V, No. N, Month 20YY.

34 · Giuseppe Ateniese et al.

can be computed once and multiplied by the number of combinations of groups. However,

the computation of p(Ai ∩Aj) involves summing over many terms.

p(Ai ∩Aj) =

n
∑

u=d+1

n
∑

v=d+1

p(Ai = u) · p(Aj = v).

Evaluating the i-th term in the inclusion-exclusion argument performs Θ(ni) work.

Analysis of πR. We change our formulation slightly in this case. The attacker splits

her deletions into xb deletions from the unencoded blocks (F) and xr deletions from the

encrypted and permuted redundancy blocks (R), which produce Xb,i and Xr,i deletions in

constraint group i respectively.

In this formulation, we need to consider all possible combinations of deletions from each

side of the encoded file.

p(Ai) =
n
∑

j=d+1

d
∑

k=0

p(Xb,i = j − k) · p(Xr,i = k)

Deletions on F and on R are independent events. The remainder of the formulation (inclu-

sion/exclusion) remains the same. This problem is not substantially harder (a factor of d)

than the single file version.

C Implemented PDP Schemes

As a basis of comparison, we have implemented the following two PDP schemes in

addition to our E-PDP scheme:

Basic RSA-based PDP Scheme (B-PDP)[Deswarte et al. 2003; Filho and Baretto

2006]. Let N be an RSA modulus and let g ∈ Z
∗
N .

Setup: C stores a = gF mod N . C sends F to S.

Challenge:

1. C generates a random value r
R
← Z

∗
n and sends gr to S.

2. S computes b = (gr)F mod N and sends b to C.

3. C computes ar and checks if b = ar mod N .

Merkle Hash Tree-based Storage Enforcing Scheme (MHT-SE)[Golle et al. 2002]. Let

ψ be a one-way length-increasing transformation and let h be a cryptographic hash func-

tion. In a binary tree, we denote by PATH(i) the set of nodes on the path between the

root of the tree and the i-th leaf.

Setup: C applies the transformation ψ on the file F and obtains the expanded file F′ = ψ(F). C

stores hroot as the root of the Merkle hash tree which is computed using h on the blocks of F′.

Challenge:

1. C randomly picks the index i of a block F′
i of the expanded file F′ and sends i to S.

2. Let Hi be the set of hashes corresponding to the nodes that “hang” off PATH(i) in the

Merkle hash tree determined by F′. S sends Hi and F′
i back to C.

3. C uses Hi and F′
i to recompute the root of the tree and compares this value with the stored

value for hroot.

ACM Journal Name, Vol. V, No. N, Month 20YY.

