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Remote Detection of Photoplethysmographic

Systolic and Diastolic Peaks Using a Digital Camera
Daniel McDuff*, Student Member, IEEE, Sarah Gontarek, and Rosalind W. Picard, Fellow, IEEE

Abstract—We present a new method for measuring pho-
toplethysmogram (PPG) signals remotely using ambient light
and a digital camera that allows for accurate recovery of the
waveform morphology (from a distance of 3m). In particular,
we show that the peak-to-peak time between the systolic peak
and diastolic peak/inflection can be automatically recovered using
the second order derivative of the remotely measured waveform.
We compare measurements from the face with those captured
using a contact finger-tip sensor and show high agreement in
peak and interval timings. Furthermore, we show that results
can be significantly improved using orange, green and cyan color
channels compared to the tradition red, green and blue channel
combination. The absolute error in inter-beat-intervals was 26ms
and the absolute error in mean systolic-diastolic peak-to-peak
times was 12ms. The mean systolic-diastolic peak-to-peak times
measured using the contact sensor and the camera were highly
correlated, ρ = 0.94 (p<0.001). The results were obtained with a
camera frame-rate of only 30Hz. This technology has significant
potential for advancing healthcare.

I. INTRODUCTION

Photoplethysmography (PPG) is a low-cost and non-invasive

method of measuring the cardiovascular blood volume pulse

(BVP) via light transmitted through, or reflected from, the

human body [1]. There are many clinical applications for PPG

and it can reveal significant information about health and risk

of cardiovascular diseases [2].

The peripheral pulse wave, as detected via PPG, charac-

teristically exhibits systolic and diastolic peaks. The systolic

peak is a result of the direct pressure wave traveling from the

left ventricle to the periphery of the body, the diastolic peak

(or inflection) is a result of reflections of the pressure wave by

arteries of the lower body [3]. Figure 1 shows an example of

a pulse waveform (black line) with the systolic and diastolic

peaks labeled. The systolic-diastolic peak-to-peak time (SD-

PPT) is defined as the time between successive systolic and

diastolic peaks/inflections.

Takazawa [4] evaluated the second derivative of the PPG

waveform and found that it had a characteristic shape that aids

in its interpretation. We use this approach to reveal diastolic

inflections in cases were there is no observable diastolic peak

within the BVP waveform. We compare the PPG waveforms

and second order derivatives measured using a contact sensor
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Fig. 1. Systolic-diastolic peak-to-peak time (SD-PPT) is calculated as the time
between the systolic and diastolic peaks within the PPG signal. The inter-beat
interval (IBI) is calculated as the time between systolic peaks. Calculating the
second derivative of the PPG waveform can be highly beneficial in recovering
the locations of the peaks.

and a digital camera. Figure 1 shows an example of the typical

second order derivative shape of a BVP waveform (grey line).

Traditionally, PPG measurements have been captured using

a contact sensor with dedicated light source. However, recent

work has shown that heart rate (HR), respiration rate (RR) and

heart rate variability (HRV) parameters can be extracted from

PPG signals measured using a digital camera [5], [6], [7].

Motion compensation is possible when motion artifacts are

problematic [8]. However, beyond accurate beat detection it

has not been clear whether the morphology of the PPG signal

could be accurately captured using such approaches. In this

paper we show that accurate waveform morphology can be

recovered automatically from the human face using ambient

light and a digital camera at a distance of 3m.

The main contribution of this paper is to present an auto-

mated algorithm for extracting the BVP waveform and systolic

and diastolic peaks from videos of the human face and show

that these have a high degree of agreement with contact

sensor measurements. In the remainder of the paper we will

explain the automated approach, data collection, validation

experiments and the results.

II. METHODS

A. Extraction of the BVP from Video

We use an automated method for recovering the BVP

waveform from the recorded videos similar to that presented

by McDuff et al. [7]. Figure 2(b) shows an overview of the
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Fig. 2. a) Experimental set-up. Contact measurements of the blood volume pulse were collected using a finger sensor. A camera, placed 3m from the
participant, was used to capture videos images at 30fps, 960x720 resolution. b) Overview of the automated method used to recover the systolic and diastolic
peaks from videos of a human face. 1) Facial landmarks are detected (using [9]) and the skin region of interest (ROI) segmented (excluding the region around
the eyes), 2) spatial average of each color channel in the ROI over time calculated, 3) source signals, calculated using Independent Component Analysis
(JADE implementation), are filtered, 4) the channel with the estimated strongest BVP signal selected and inverted (if necessary), 5) BVP signal interpolated
to 256Hz and systolic peaks detected, 6) second order derivative of the BVP waveform is calculated, interpolated to 256Hz, and used to locate the diastolic
inflection point.

approach. The videos, recorded from a digital single lens

reflex (DSLR) camera (at 30fps, 960x720 resolution), were

exported in an uncompressed format. The physiological and

video recordings were analyzed offline using custom software

written in MATLAB (The Mathworks, Inc.). A facial landmark

detector [9] was used to find the x- and y- coordinates of

points on the face in each frame of the video. These were

used to define a region of interest (ROI). We selected the

full width between the outer eye corners (w) and a height

twice the width (w above the eye corners to w below the eye

corners) as a box encompassing the ROI. We exclude pixels

within a a region around the eyes which is of width w and

height w/2. The average ROI size was less than 25% of the

frame. A spatial average of the color channel pixel values

within the resulting ROI were calculated for each frame to

form raw signals x1(t), x2(t),..., xN (t) respectively (where N is

the number of channels). The raw traces were detrended using

a technique based on a smoothness priors approach [10]. The

resulting signals were normalized by subtracting the mean and

dividing by the standard deviation. We then apply Independent

Component Analysis (ICA) (JADE implementation [11]) to

recover source signals from the observations, maximizing

the non-Gaussianity within the sources. Each of the source

signals was band-pass filtered (Hamming window filter with

low- and high-frequency cut-offs at 45 beats-per-minute (bpm)

(0.75Hz) and 270 bpm (4.5Hz) respectively). To select the

appropriate source signal we calculated the normalized fast

Fourier transform (FFT) of each source and chose the source

signal with the greatest frequency peak within the range 45-

270bpm. The source was also scaled by -1 if necessary using

the approach in [7].

B. Systolic and Diastolic Peak Detection

Systolic peak times can be detected accurately from the

BVP waveform as they are maxima within the signal. To do

so the estimated BVP signal was interpolated with a cubic

spline function at a sampling frequency of 256Hz. We used a

custom peak detection algorithm with a moving time window

of length 0.25s to locate the peaks. To avoid artifacts (such

as motion or ectopic beats) peaks intervals were filtered using

the non-causal of variable threshold (NC-VT) algorithm [12]

with a tolerance of 30%. These parameters have been verified

in prior work [6], [7].

However, the diastolic peaks (or inflections) are much more

difficult to locate as they are not always maxima (and even

if they are the systolic peaks are generally much bigger). In

order to automatically find the diastolic peaks we first compute

the second-order derivates of the BVP waveforms for both the

contact and remote PPG measurements. These were computed

by performing the MATLAB diff function twice on each

of the signals. The outputs are smoothed using a three-point

moving average filter. Figure 4 shows examples of the BVP

waveforms and the second order derivatives for two of the

subjects for a 5.5s window. Figures 4(a) and (b) show an

example with quite clear diastolic peaks and Figures 4(c)

and (d) show another example with less obvious diastolic

inflections.

In most cases the largest minima within the second order

derivative correspond to the systolic peaks and the min-

ima following these typically correspond to the diastolic

peaks/inflections. We use the locations of the systolic peaks as

detected above and perform peak detection on the inverted sec-

ond order derivative waveform using a custom peak detection

function in which a point is considered a peak if it is a local

maxima and is greater than the preceding value by at least 1%

of the total signal amplitude. The timing of the diastolic peak is

located as the timing of the minima following the systolic peak

in each pulse cycle. The systolic-diastolic peak-to-peak times

(SD-PPT) are then calculated for each beat. As the SD-PPTs

are relatively stationary (compared to IBIs) within each two-

minute session we class estimates that fall beyond one standard

deviation from the mean as outliers and do not include these

in our estimates of the final mean SD-PPT.

III. EXPERIMENTS

A. Design

Camera: The camera used for recording the video se-

quences was a digital single-lens reflex (DSLR) camera with

a Zuiko 50mm lens. The lens power will have an impact on

the accuracy of the measurements that can be made at a give

distance. The camera has sensors for capturing five color bands

which includes the typical three color band sensors (red, green

and blue (RGB)) and also cyan and orange frequency band

sensors (ROGCB). Specifically, the camera’s CMOS sensor
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has pixels for detecting light in the orange and cyan frequency

bands as well as pixels for detecting light in the red, green and

blue bands. In the experiments described below we tested the

performance of different color band combinations. The camera

sensitivity profile and sensor layout can be found in [7] and

information about the demosaicking in [13]. The changes to

the CMOS sensor would not make such a sensor dramatically

more expensive than a standard DSLR camera sensor.

Contact Measurements: Although there are no interna-

tional standards for the measurement of PPG the most com-

monly used approach is to use a contact device with a

dedicated light source and sensor [1]. Thus, for comparison

we collected contact PPG measurements to validate the remote

physiological measurements. The contact PPG signal was

recorded using an FDA-approved sensor (Flexcomp Infiniti by

Thought Technologies, Inc.) on the left index finger. Docu-

mentation for the contact sensor is available online [14]. As

there is no ground truth measurement of PPG for comparison

of measurements with the remote method we visually verified

the systolic and diastolic peak detection for the contact signals.

B. Protocol

All experiments were conducted indoors with a varying

amount of sunlight and indoor illumination. Participants were

seated 3m from the camera and the data were recorded on

a laptop (Toshiba running Windows 7). Our experiments in-

cluded 14 healthy participants of both genders (eight females),

different ages (18-35) and skin color. During the experiment

participants were asked to face the camera while the videos

were recorded. Figure 2(a) shows the experimental setup. Two

minute recordings of the participants were taken, the contact

measurements and video sequences were synchronized. Our

study was approved by the Institutional Review Board of the

Massachusetts Institute of Technology.

Two recordings were taken for each participant, one at rest

and one during a cognitive task. In all cases the cognitive task

was performed after the measurements at rest:

Measurements at rest. Participants were asked to sit still,

look toward the camera and relax. The video and contact

recordings were captured for two minutes.

Measurements during cognitive task. Participants were

asked to perform a mental arithmetic test (MAT) silently.

Starting with the number 4000 they were required to subtract

7, then subtract 7 again, and so on, as quickly as possible.

The video and contact recordings were captured for two

minutes. The participants started the task immediately after

the recordings were started. Nearly all the participants reported

this task to be significantly more stressful than the rest period.

C. Quantifying Morphological Parameters

In order to access the accuracy of the remote waveform

morphology relative to the contact measurement we defined

the following characteristics of the pulse wave. A summary of

the parameters can be seen in Figure 1.

Inter-Beat Intervals (IBIs): Defined as the intervals be-

tween successive systolic peaks.
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Fig. 3. Examples of a) clean and b) noisy contact sensor signals. The
affected region is highlighted. For comparison with the remote method it
was important that the systolic and diastolic peaks in the contact measures
could be visually verified since there is no clinically approved ground-truth
method for automatic detection of PPG systolic or diastolic peaks.

Systolic-Diastolic Peak-to-Peak Times (SD-PPTs): De-

fined as the time between the systolic and diastolic peak for

each pulse wave.

IV. RESULTS AND DISCUSSION

Using the data collected in the experiments described in

Section III-B we tested the performance of our approach for

automatically detecting systolic and diastolic peaks. For three

participants the contact sensor measurements were noisy and

had a number of unverifiable systolic and diastolic peaks. If

we could not visually verify the peaks within the waveforms

we did not use the sessions for the comparison with the

camera method here. This highlights some of the challenges

associated with contact sensor measurements. Figure 3 shows

two examples of noisy contact measurements. Notice that the

shape of the waveforms changes significantly in the affected

region and the systolic and diastolic peaks/inflections cannot

be verified. The noise within the signals is most likely to be

due to movement of the fingers.

A. Morphology Statistics

Table I shows the mean and standard deviations of the

IBIs and the SD-PPTs, measured using the contact sensor, for

the rest and stress cases. As we would expect the standard

deviation of the IBIs with each session is much greater

than the standard deviation of the SD-PPTs. We would not

expect the SD-PPTs to vary a lot within a session or for

an individual between tasks as this is a result of the time

taken for the reflected pulse wave to return from the lower
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Fig. 4. BVP and BVP second order derivatives measured using a contact finger sensor (red) and a digital camera (blue). a) BVP waveforms with more
prominent dicrotic notch and b) corresponding second order derivatives and estimation of diastolic peak locations. c) BVP waveforms with less prominent
dicrotic notch and d) corresponding second order derivatives and estimation of diastolic peak locations.

TABLE I
MEAN (AND STANDARD DEVIATION) OF IBIS AND SD-PPTS FOR EACH OF

THE 11 PARTICIPANTS DURING THE REST AND STRESS TASKS.

IBIs (s) SD-PPTs (s)

Rest Stress Rest Stress

P1 0.99 (0.038) 0.95 (0.047) 0.29 (0.006) 0.28 (0.007)
P2 0.97 (0.040) 0.99 (0.049) 0.30 (0.009) 0.32 (0.027)
P3 0.84 (0.045) 0.76 (0.060) 0.29 (0.007) 0.30 (0.024)
P4 0.85 (0.064) 0.89 (0.061) 0.32 (0.015) 0.32 (0.013)
P5 0.83 (0.037) 0.79 (0.031) 0.31 (0.010) 0.30 (0.008)
P6 0.91 (0.059) 0.87 (0.055) 0.33 (0.010) 0.32 (0.012)
P7 0.90 (0.058) 0.87 (0.036) 0.29 (0.009) 0.31 (0.007)
P8 1.00 (0.070) 0.75 (0.046) 0.34 (0.011) 0.28 (0.004)
P9 0.75 (0.046) 0.75 (0.046) 0.28 (0.004) 0.28 (0.005)
P10 0.91 (0.046) 0.81 (0.046) 0.29 (0.025) 0.30 (0.010)
P11 0.82 (0.057) 0.85 (0.045) 0.32 (0.009) 0.31 (0.006)

Mean 0.89 (0.051) 0.84 (0.047) 0.31 (0.011) 0.30 (0.011)

limbs and is not controlled by the autonomic nervous system

(ANS). However, there is variation in mean SD-PPT between

individuals, as much as 60ms. The mean standard deviation

of the IBIs was close to 50ms for both tasks and there was

a significant difference in the relative high and low frequency

power components in the HRV frequency spectra between

tasks. The HRV frequency spectrum is the frequency spectrum

of the IBI time series. The low frequency (LF) and high

frequency (HF) powers of the HRV were calculated as the

area under the PSD curve corresponding to 0.04-0.15 and 0.15-

0.4Hz respectively. LF/HF power ratio was significantly higher

during the stress task (1.66) than the rest task (0.84). This is

expected as HRV is influenced by both the sympathetic and

parasympathetic branches of the ANS.

B. Validation of Remote Measurement of Morphology

Excluding the data from the noisy contact measurements

leaves 22 two minute sessions from 11 participants. Figure 4

shows samples of the BVP signals calculated from the face

using the digital camera (blue lines) and the second order

derivatives of these signals. There are clear minima in the

second order derivatives that correspond to the diastolic peaks

(or inflections). The maxima immediately preceding these

corresponds to the dicrotic notch. In some cases the inflections

are visible in the BVP waveform. However, in other cases the

inflections are only obvious by looking at the second order

derivative (see Figure 4(c) and (d) in particular). In some cases

(see Figure 4(d)) the second order derivatives have additional

waves - perhaps due to artifacts within the detected BVP

waveform.

Although we would not expect the timings of the diastolic

peaks to be identical at the finger and on the face (due to the

reflected wave being different at different parts of the body)

it is likely that there would be a high degree of agreement.

Figure 4 compares the BVP waveforms and second order

derivatives for the contact finger measurements (red lines) and

the camera measurements (blue lines). The timings of peaks

within the contact and remotely measured BVP waveforms

and derivatives are very similar. The diastolic and systolic peak

heights are similar but not always identical, this may be in part

due to the difference in the magnitude of the waves observed

at different parts of the body.

The top row of Figure 5 shows the plots of the systolic peak

intervals (the same as the inter-beat intervals (IBIs)) measured

using the contact sensor and the camera method for three

subjects. The bottom row of Figure 5 shows the SD-PPTs

measured using the contact sensor and the camera method

for the same three subjects. We compare the measurements

using the camera green channel alone and the OGC channel

combination. For these examples we can see extremely close

agreement between the measurements from the camera and

the contact sensor over a two minute period using the OGC

channel combination. Figures 5 (a) and (b) shows an example

in which the OGC channel combination performed well, using

the green channel alone the measurements are less accurate.

Figure 5(c) shows an example in which the green and OGC

channels both performed quite well in estimating the IBIs but

poorly in estimating the SD-PPTs.
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Fig. 5. Top row) Systolic peak intervals (inter-beat intervals) measured using a contact sensor (red), the camera green channel (green) and the camera OGC
combination (blue) for three subjects over two minutes. Bottom row) systolic-diastolic peak-to-peak times (SD-PPT) measured using a contact sensor (red),
the camera green channel (green) and the camera OGC combination (blue) for three subjects over two minutes. a) An example in which the OGC combination
performed very well and much better than the green channel, especially in IBI estimation, b) An example in which the OGC combination performed very well
and much better than the green channel, especially in SD-PPT estimation, c) an example where both the green and OGC channel camera methods performed
relatively poorly in the estimation of SD-PPTs.

TABLE II
THE MEAN % ABSOLUTE ERROR AND ABSOLUTE ERROR BETWEEN THE

CONTACT AND REMOTELY MEASURED MORPHOLOGY PARAMETERS FOR

ALL 22 SESSIONS FROM 11 PARTICIPANTS.
∗ - SIGNIFICANTLY LOWER ERROR THAN RGB (p<0.05)

∗∗ - SIGNIFICANTLY LOWER ERROR THAN BOTH G AND RGB (p<0.05).

Channels

G RGB OGC ROGCB

IBIs
% Ab.Error 5.12∗ 8.72 3.10∗∗ 3.10∗∗

Ab.Error (s) 0.045∗ 0.076 0.026∗∗ 0.026∗∗

Mean SD-PPT
% Ab.Error 5.47 5.79 4.11 4.13
Ab.Error (s) 0.016 0.017 0.012 0.013
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Fig. 6. Mean SD-PPT measured using the remote method and the camera for
the 11 participants and 22 sessions (correlation: 0.94, p<0.001).

Table II shows the mean percentage absolute error and

the mean absolute error between the contact and remotely

measured systolic peak intervals for all 22 sessions. Table II

also shows the percentage absolute error and mean abso-

lute error between the contact and remotely measured mean

systolic-diastolic peak-to-peak times. We compare the results

calculated using just the green channel (G), the red, green and

blue channels (RGB), the orange, green and cyan channels

(OGC) and all channels (ROGCB). The absolute error between

the contact and remotely measured IBIs using OGC is 0.026s

(this represents only 3% error). The errors between the contact

and remotely measured mean SD-PPTs are also small, 0.012s

absolute error, using OGC channels (this represents 4% error

in SD-PPT timing). The accurate estimation of systolic and

diastolic peak locations is particularly good considering that

the sampling rate of the video was only 30Hz. The SD-PPTs

are much more challenging to calculate than the IBIs as the

diastolic peaks/inflections are more subtle - often a peak is

not present. These results support those reported previously

in [7]; the OGC channel combination significantly outperforms

the green and RGB channels for measurement of physiolog-

ical parameters (here the significances were computed using

two-sample Kolmogorov-Smirnov tests). The OGC channels

performs equivalently to the ROGCB combination. Again, this

suggests there is no added benefit of the red and blue channels.

Figure 6 shows the scatter plot of the mean SD-PPT for

each of the 22 sessions measured using the contact sensor

and the camera method. There is a strong correlation (ρ =

0.94, p<0.001). The SD-PPTs measured using the camera are

typically slightly longer than those measured using the finger

sensor.

C. Comparison of Accuracy During Rest and Cognitive Task

Table III shows the performance of the method (using the

OGC channels) during the rest and the stress task separately.

The results show that the performance was comparable for

both tasks. The error in IBIs for the rest task was 3.11% and

for the cognitive stress task was 3.10%. The error in mean SD-

PPT for the rest task was 4.60% and for the cognitive stress

task was 3.62%. As the mean SD-PPTs are not significantly

different during each of the tasks it is reasonable that the

performance of the automatic detection would be similar.

The IBI measurements were accurate enough to measure the

difference in IBI intervals between the two tasks.
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TABLE III
THE MEAN % ABSOLUTE ERROR AND ABSOLUTE ERROR BETWEEN

CONTACT AND REMOTE MEASURES OF MORPHOLOGY PARAMETERS FOR

ALL 11 PARTICIPANTS DURING THE REST AND COGNITIVE STRESS TASKS.

Task

Rest Cog. Stress

IBIs
% Ab.Error 3.11 3.10
Ab.Error (s) 0.027 0.025

Mean SD-PPT
% Ab.Error 4.60 3.62
Ab.Error (s) 0.014 0.011

V. CONCLUSIONS AND FUTURE WORK

We have presented a new automated method for detection of

the systolic and diastolic peaks of a PPG waveform captured

remotely using a digital camera. Thus we can automatically

capture the peak-to-peak times which are useful in measuring

aspects of cardiac health. We have shown that the second order

derivative of the camera PPG waveform reveals the diastolic

peak (or inflection) even if it does not appear to be visible in

the original PPG waveform.

We compare the measurements of diastolic and systolic

peak times measured remotely from the face with those

measured from a contact finger tip sensor. The results show

that there is high agreement in the peak-to-peak time and

the inter-beat intervals. The best performance was obtained

with a combination of green, orange and cyan color bands

from the camera. The correlation between the mean SD-PPT

measured from the contact sensor and the remote method was

0.94 (p<0.01). The accuracy of the predictions did not vary

significantly during a restful and cognitively stressing task.

Using a combination of the orange, green and cyan channels

yields significantly better (p<0.01) results than using just the

green signal or the traditional RGB combination.

The waveform morphology captured using ambient light and

a remote camera is susceptible to motion artifacts. Although

in the data we present here the participants were free to

move, they were seated and not talking - therefore relatively

stationary. Future work should consider how the estimates of

peak times are degraded in the presence of rigid head motions.

In addition, we plan to apply the technique to videos of

individuals from a broader range of ages in order to investigate

whether the effect of aging on the waveform morphology can

be recovered using these techniques.

Defining the operational envelope of remote PPG measure-

ment using digital cameras is important and there will be

a trade-off between the camera lens power and distance at

which measurements can be made with a similar accuracy.

All analysis was performed offline - we leave a real-time

implementation for future work.

Morphological parameters from the PPG could have the

potential to predict arterial stiffness (AS) which is an early sign

of atherosclerosis (hardening of the arteries) [15]. Properties

of the waveform can be used as a measure of small and

medium arterial stiffness due to the relationship between

arterial elasticity and the reflection of the PPG signal. Also,

with age the distance between the diastolic point and the

systolic point decreases. Future work will investigate whether

the relative amplitude of the systolic and diastolic peaks can

be accurately recovered using this method.
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