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Due to the successful application of machine learning techniques in several fields, automated diagnosis system in healthcare has
been increasing at a high rate. *e aim of the study is to propose an automated skin cancer diagnosis and triaging model and to
explore the impact of integrating the clinical features in the diagnosis and enhance the outcomes achieved by the literature study.
We used an ensemble-learning framework, consisting of the EfficientNetB3 deep learning model for skin lesion analysis and
Extreme Gradient Boosting (XGB) for clinical data.*e study used PAD-UFES-20 data set consisting of six unbalanced categories
of skin cancer. To overcome the data imbalance, we used data augmentation. Experiments were conducted using skin lesion
merely and the combination of skin lesion and clinical data. We found that integration of clinical data with skin lesions enhances
automated diagnosis accuracy. Moreover, the proposed model outperformed the results achieved by the previous study for the
PAD-UFES-20 data set with an accuracy of 0.78, precision of 0.89, recall of 0.86, and F1 of 0.88. In conclusion, the study provides
an improved automated diagnosis system to aid the healthcare professional and patients for skin cancer diagnosis and
remote triaging.

1. Introduction

Skin cancer is one of the commonly occurring and deadly
types of cancer. *e expected estimated number of newly
diagnosed skin cancer patients during 2020 in the USA will
be more than 1.8 million [1]. Skin cells are usually damaged
due to excessive exposure to ultraviolet (UV) radiation. Skin
cancer is a type of cancer caused by damaged skin cells or
abnormal growth of skin cells. It can be mainly categorized
as basal cell carcinoma (BCC), melanoma (MEL), non-
melanoma skin cancer, and squamous cell carcinoma (SCC).
However, some types of skin cancer are very rare such as
Kaposi sarcoma (KS) and actinic keratosis (AK), also known

as solar keratosis, lymphoma, and keratoacanthoma. *e
nature of some skin cancer types is lethal and metastasize in
nature. Early screening and prognosis of the skin cancer will
increase the chance of recovery and survival; otherwise, it
will lead to grim conditions.

*e widespread and deadly nature of the disease de-
mands the effective noninvasive diagnostic mechanism with
increased accuracy. Skin cancer is mainly diagnosed via
visual examination along with some clinical and histological
investigations. *e clinical information includes some de-
mographic information, location, and nature of skin lesion
[2]. Visual examination with the naked eye usually could not
recognize and disclose the details. To overcome this
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drawback, dermatoscope, a medical equipment for the skin
lesion investigation, was introduced. *e device greatly
enhanced the accuracy of early diagnosis capability [3]. A
dermoscopic image is a magnified high-resolution enlarged
image of the skin lesion.

Despite the invention of dermoscopic images, which
greatly enhanced the accuracy, it highly depends upon the
dermatologist’s experience and subjective judgment [3].
High similarity among the visual feature of different types of
skin cancer sometimes leads to the wrong diagnosis. *e
diagnosis can be further enhanced using seven checklist
points [4] and ABCD and ABCDE rules [5]. Seven checklist
points use seven dermoscopic features for malignant mel-
anoma diagnosis. *e sensitivity of the diagnosis was further
improved with the integration of dermoscopic images and
seven checklist point [6]. While, in the ABCDE rule, A
stands for asymmetry; B stands for border; C stands for
colour; D stands for differential structure; and E stands for
evolution [7]. *e ABCDE rule increases the accuracy of the
diagnosis but also require proper training to use the criteria.
Previously mentioned methods improved the diagnosis
process but were limited to melanoma diagnosis only.
*erefore, demand for an automated computationally in-
telligent method that can further enhance the visual features
and can aid the dermatologist in the diagnosis.

*e rest of the paper is organized as follows. Section 2
reviews previous studies for skin cancer diagnosis. Section 3
presents thematerial andmethods used in the study. Section 4
provides the experimental setup and results. Section 5 con-
tains the conclusion.

2. Related Studies

Several studies have been made to develop a computer-aided
diagnosis (CAD) system for skin cancer [8, 9]. Initially, the
studies related to skin cancer were mainly focused on using
image processing techniques [10], following using machine
learning techniques (supervised and unsupervised) [11] and
recently convolution neural network (CNN) and deep learning
models [12]. Deep learning models have produced significant
development and advancement in medical image analysis and
particularly for skin cancer [13, 14]. Some of the recent studies
using deep learning are discussed below. *e studies are or-
ganized chronologically in the literature review.

Esteva et al. used the deep CNNmodel for the diagnosis of
two types of skin cancer such as keratinocyte carcinomas and
seborrheic keratoses. *e diagnosis performance was com-
pared against the decision made by 21 highly qualified and
experienced dermatologists [15]. *e study proved the sig-
nificance of AI and particularly deep learning in skin cancer
diagnosis. *e study was performed using ISIC and Dermofit
skin lesion data set. Another investigation was made by
Haenssle et al. [16] who compared the performance of the
Google Inception V4 deep learning model with the top five
algorithms in the ISIC 2016 challenge and the diagnosis de-
cision made by 58 dermatologists. *e data set contains both
the images (dermoscopic and digitalized images) and clinical
information of 100 patients. Furthermore, a study made by
Brinker et al. [17] developed an enhanced deep learning model

for the diagnosis of melanoma. *ey compared the perfor-
mance of the model with the diagnosis decision made by 145
dermatologists from 12 hospitals in Germany.

Additionally, Pacheco et al. [18] developed a smartphone
application using skin lesion images and clinical information
for automated diagnosis. *e study covers six categories of
skin cancer with a total of 1,641 skin lesions. *e study
compared various deep learning models such as GoogleNet,
VGGNet-13/19-bn, ResNet (50, 101), MobileNet, and three-
layer convolutional neural network. *e models were first
trained using skin lesion images taken from smartphone
cameras and then using both (skin lesion images and clinical
features). *e first model achieved an accuracy of 0.69 and
was enhanced with the integration of clinical data and
achieved an average accuracy of 0.764. *e proposed study
attempts to enhance the outcome achieved by Pacheco’s
study.

Consequently, Kadampur and Riyaee’s study developed
a model-driven architecture for the diagnosis of skin cancer
using dermal cell images. Several deep learning models were
trained using the HAM10000 data set and achieved an AUC
(area under the curve) of 0.99 [19]. Likewise, two CNN
models such as region-based convolutional neural network
(RCNN) and Faster RCNN was used for skin lesion clas-
sification for benign and malignant tumor images [20]. *e
outcome of the model was compared with the diagnosis
made by 10 certified dermatologists and 10 trainee der-
matologists and conclusively achieved better classification
accuracy than the dermatologists.

Wei et al. [21] used pretrained deep learningmodels such
as MobileNet and DenseNet. ImageNet weights were used
for extracting the features using ISIC 2016 data set and
achieved an accuracy of 0.962. Another study performed by
Pham et al. [22] developed a CNN model for melanoma
classification using ISIC 2019 and MClass-D set dermo-
scopic skin lesion and achieved an AUC of 0.944. *e di-
agnosis of the proposed framework was further verified with
the 157 certified dermatologists in German hospitals.

Importantly, the integration of skin cancer clinical im-
ages and intelligent computation techniques produced ef-
fective outcomes and motivated the exploration and
implication of remote triaging for the skin cancer diagnosis.
Recently, Udrea et al. [23] proposed smartphone application
for identifying the patient at risk using a skin lesion. *e
model was trained using skin lesion images from multiple
data sets. Initially, the lesion segmentation was applied on
the image, after the segmentation noise such as hairs and
freckles were removed; then features were extracted such as
colour, shape, and texture; and finally all the extracted
features were input to support vector machine (SVM)
classifier. *e application produced good outcomes in terms
of sensitivity (0.951).

*e transfer learning concept was widely used for skin
cancer detection. One of the studies performed by Kassem
et al. [24] on the ISIC 2019 challenge data set using the
GoogleNet pretrained model for eight categories of skin
cancer lesion and achieved an accuracy of 0.949. Another
extensive study was made to evaluate the performance of the
proposed YOLOv2-SquuezeNet for segmentation and
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several classifiers for classification using four-year ISIC data
sets challenges (2017, 2018, 2019, and 2020) [25]. *e study
achieved mean average precision of 985 using optimized
SVM. Moreover, Gessert et al. [26] proposed an ensemble
method for integrating gender, anatomy information, and
skin lesion for diagnosing skin cancer using multiple data
sets. Several image processing techniques were applied for
preprocessing. However, the model was trained using
EfficientNet and achieved an accuracy of 0.63 using the
ISCIS 2019 data set.

Recently a study made by Goceri [27] developed a
multilayered deep learning model using facial skin lesions.
Initially, the images were segmented to identify the facial
disorder skin lesion. Subsequently, these skin lesions were
used by pretrained DenseNet201 for classifying the skin
lesions. *e study achieved an accuracy of 0.95. Further-
more, another study was performed for melanoma diagnosis
using dermoscopic images [28]. ISIC 2020 data set was used
for training EfficientNet models (B5 and B6). *e study
extensively applied several data augmentation techniques to
increase the number of images and better training the deep
learning models. *ey achieved an accuracy of 0.9411.

Despite extensive research made in skin cancer diag-
nosis, mostly, studies are using skin lesion images, and very
few studies used clinical data.*e importance of clinical data
in the diagnosis cannot be denied [15, 16, 22]. One of the
recent studies made by Pacheco and Krohling used the data
set consist of digitalized images taken by smartphone
cameras along with the clinical data of the patients [18]. *e
data set covers multiple types of skin cancer. Regardless of
significant results made by the researcher for the specified
data set, the results can be further enhanced, and several
techniques can be used and integrate to better train the
model.

3. Materials and Methods

*is section contains the description of the data set (PAD-
UFES-20) used in the studies, data preprocessing, and
classification model used in the study.

3.1. Data Set Description. PAD-UFES-20 [29] data set was
collected under the Dermatological and Surgical Assistance
Program (PAD) at Federal University of Espı́rito Santo. *e
PAD-UFES-20 data set consists of skin lesions and clinical
data with an average patient’s age of 60 years. *e data set
contains the data of 1,373 patients, 1,641 skin lesions, 2,298
images, and metadata containing 26 attributes. Some of the
images were removed due to the low-quality phone camera
used to capture the image. Some of the patients have more
than one type of skin cancer lesion. *e number of images
per category in the data set is shown in Figure 1. PAD-UFES-
20 suffers from class imbalance; the number of images for
ACK and BCC is high when compared with other categories.
*e data set covers six types of skin cancer such as actinic
keratosis (ACK), basal cell carcinoma (BCC), melanoma
(MEL), nevus (NEV), squamous cell carcinoma (SCC), and
seborrheic keratosis (SEK).

Moreover, the data set contains metadata, that is, clinical
features (26 attributes) in addition to the skin lesions. Some
of the attributes are the identifiers and were removed; 21
features are clinical data and the class label. Some of the
features are demographic information such as age, smoking
and drinking habits, and father and mother background.
Some of the attributes are related to the lesions such as
itches, bleed, hurt, and so on. Clinical features are estab-
lished on the questions commonly asked by dermatologists.
*e description of the vital signs attributes in data set is
shown in Table 1.

Some of the skin cancer have common regions in the
human body. For example, SEK skin cancer type lesion is
more common in the face region; however, ACK is common
in the forearm, and NEV is more common in the back
region. *e occurrence of skin cancer lesions in different
body regions is shown in Figure 2. Similarly, ACK, BCC, and
MEL skin cancer types do not grow. However, SEK category
has equal distribution of lesion that sometimes grow and
sometimes does not grow. Figure 3 shows the distribution of
skin lesions per category based on the attribute grew. ACK,
BCC, and SCC types of skin moles are itchy in nature.
Figure 4 shows the itchiness’ nature of the different types of
skin cancer. However, only ACK type of skin cancer hurts
and bleeds when compared with the other five types. Some of
the sample images from PAD-UFES-20 for each category of
skin cancer are presented in Figure 5.

Most of the features in the data set are categorical except
age, Fitzpatrick, diameter_1, and diameter_2. *e statistical
description of the numerical features is presented in Table 2.
*e prevalence of some types of skin cancers such as ACK,
BCC, MEL, SCC, and SEK is in the age range of 59.9 to 68.86
years. However, the mean (μ) age for the NEV category is
35.64. *e minimum age of the patients in the data set is 6
years, and the maximum age is 94 years. Similarly, the mean
of diameter_1 for BCC, NEV, and SCC is similar. However,
the mean of the diameter_2 is similar for ACK, BCC, and
SCC categories.

3.2. Data Preprocessing and Augmentation. For better gen-
eralization of the deep learning model and to alleviate the
data imbalance problem, data augmentation technique was
applied. *e data imbalance usually led to model overfitting
for the majority class. Augmentation was applied via
resizing, flipping, shifting, and rotating. For resizing the
images, the zoom range of 0.1 and rescale of 1.0/255 were set,
while a dimension of 300× 300× 3 was used, which is a
recommended input size for EfficientNetB3. Moreover,
random horizontal and vertical flipping along with width
and height shifting with a range of 0.1 were used to increase
the generalization of the model for all possible locations of
the skin cancer in images. For some images, 360° rotation
was performed.*e data augmentations were only applied to
the training data set.

3.3. Classification Model. After the data augmentation
classification model was developed. *e proposed model
consists of two classification models such as EfficientNet for
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skin lesions and Extreme Gradient Boosting (XGB) for the
clinical data. *e description of both models is discussed
below.

3.4. EfficientNetDeepLearningModel. Deep learning (DL) is
a kind of convolutional neural network (CNN) and is widely
used for images [30]. Recently deep learning has been widely

used for the diagnosis of various medical diseases. Similarly,
some studies have been made on diagnosis of skin diseases
using deep learning [12]. DL consists of multiple connected
layers using various weights and activation functions. *e
basic deep learning model contains a convolutional layer,
pooling, and connected layers. Several activation functions
are used to adjust the weights. *e activation functions
create a feature map that is input into the subsequent layer.

Table 1: Description of the PAD-UFES-20 clinical data.

Features Data type Data set description

Fitzpatrick Categorical (1–5) It is a phototype used to define a person’s skin type in terms of response to (UVR) exposure
Region Categorical (15 categories) *e location of the skin lesion in the patient’s body
Diameter_1 Numerical Skin lesions’ horizontal diameters
Diameter_2 Numerical Skin lesions’ vertical diameters
Diagnostic Categorical (6 categories) Skin cancer types, that is, ACK, MEL, NEV, and so on
Itch Boolean Skin lesion itching
Grew Boolean Skin lesion grew
Hurt Boolean Skin lesion hurts
Changed Boolean Skin lesion has recently changed
Bleed Boolean Skin lesion is bleeding
Elevation Boolean Skin lesion has an elevation
Biopsed Boolean Diagnosis from clinical data or lab test biopsy
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Figure 2: Presence of skin cancer lesion per category in different body regions.
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Figure 1: Number of skin cancer lesions per category in the PAD-UFES-20 data set.
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Pooling and convolutional layers are used for extracting the
features. *ese layers are used for extracting the visual
features and understand the complex nature of the images.
Nevertheless, the nature of the skin cancer lesion is very
complex, and developing an automated diagnosis system
using deep learning is challenging. To alleviate this problem,
transfer learning is used.

In our study, EfficientNetB3 is used for skin cancer
detection. EfficientNetB3 is an up-to-date, cost-efficient, and
robust model developed by scaling three parameters such as
depth, width, and resolution [31]. *e EfficientNetB3 model
with noisy-student weights is used in scenarios I and III for
the transfer learning process, while “isicall_eff3_weights”
weights are used as pretrain for scenarios II and IV. *e
GlobalAveragePooling2D layer is added to each scenario to
generalize the model better. *e number of parameters were
reduced. Furthermore, the RELU activation function is used
with three dense and two dropout layers. *e output layer
contains multiple output units for multiclass classification
using the softmax activation function. Table 3 enlists layers,
parameters, weights, and so on used in the proposed study.

3.5. Extreme Gradient Boosting (XGB). Extreme Gradient
Boosting (XGB) is an ensemble-based classification algo-
rithm and was proposed by Chen in 2015 [32]. XGB uses
boosted tree and is used for classification and regression.
XGB has been widely used for various prediction task and
produces significant outcome due to efficient learning ca-
pability and speed. XGB is an enhanced version of the
gradient boosting tree. *e main aim of the algorithm is the
optimization of the objective function by reducing the loss,
model complexity, and computational resource utilization.
*e complexity is reduced using regularization. Moreover,
the technique normalization is used to alleviate the model
overfitting. *e aim of using XGB for clinical data is due to
its innate capability to handle the data imbalance.

*e algorithm works by adding the trees iteratively by
splitting the features. In every next iteration, new rules are
added, and the loss decreases. *e iteration continues until
the model achieved the required optimal performance. XGB
model uses the second-order derivative to the loss function.
AssumeD is the data set consists of n number of attributes as
follows:
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Figure 3: Percentage of skin lesion per skin cancer category for grew attribute.
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Figure 4: Percentage of skin lesion per skin cancer category for itch attribute.
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Figure 5: Sample images for each category of skin cancer lesion from the PAD-UFES-20 data set.
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D � x1, x2, . . . , xn{ }. (1)

Y represents the class attribute; Yi represents the actual
value, while Yt′ represents the predicted value.

Tree_Ens � ∑j
k�1

Loss yk,∑N
n�1

fn xk( )  +∑N
n�1

Ω fn( ), fn ∈ F,

(2)
where Tree_Ens represents a tree ensemble model. *e loss
represents loss function, which is the difference between the
predicted and the actual. N represents the number of trees. F
represents the set of the trees used in the model training. Ω
represents the regularization term.

4. Experimental Setup and Results

*e models were implemented using python 3.8.4, and
experiments were carried out on Google Colab notebook
using GPU run-time type. Experiments were conducted on
original and augmented data sets. Different experimental
scenarios are discussed in the section below:

Scenario I. EfficientNet noisy-student weights
(PAD_UFES-20 data set): In this scenario, EfficientNet
noisy student’s weight was used for training the model.
Initially, the weights were computed using ISIC 2019
data set. Later, the model was further trained and tested
using PAD-UFES-20 images. *e noisy student is a
semisupervised technique that enhances the training
and purification of the model [33]. It enhanced the
performance of the ImageNet. *e main idea behind
the noisy student is that the number of students is
either equal to or greater than the number of teachers,
with the aim that the larger the number better will be
the training. Secondly, the noise will be added so that
noisy students are pushed to learn better and harder
from the data set.

Scenario II. ISIC 2019 weights (PAD_UFES-20 data
set): ISIC 2019 weights were used to train the model
[34]. However, PAD_UFES-20 skin lesions were used
for training and testing.

Scenario III. EfficientNet noisy-student weights
(PAD_UFES-20 data set): In this scenario, EfficientNet
noisy student’s weight was used for training the model.
In this scenario, skin lesions and clinical data were also
used.

Scenario IV. ISIC 2019 weights (PAD_UFES-20 data
set): ISIC 2019 weights were used to train the model.

However, PAD_UFES-20 skin lesions and clinical data
were used for training and testing.

During the experiments, the stratified fivefold cross-
validation method was used. Moreover, 30 epochs with 76
steps per epoch and a batch size of 24 were used. *e
learning rate was set to 0.0001, and the ReduceLROnPlateau
method was used to investigate the validation loss. *e study
defined factor� 0.5, patience� 5, and the min_lr� 0.000001
in the proposed method. *e ADAM with 0.001 optimi-
zation method was used as a solver. *e model has been
validated in two different phases.

*e performance of the proposed model is evaluated in
terms of several standard evaluation measures such as ac-
curacy, precision, recall, F1 measure, and AUC (area under
the curve). *e precision of the proposed model is the ratio
of skin lesions that are correctly predicted as skin cancer
types. However, the recall is the ratio of correctly predicted
skin lesions. Similarly, accuracy is correctly predicted skin
lesions as skin cancer types. While the F1 measure is the
harmonic mean of recall and precision.*e values have been
computed for each fold and finally, the average values for
each fold have been calculated. *e below figures show the
loss and accuracy for training and validation for all the
scenarios. Figures 6(a)–6(d) represents the curve for sce-
nario I; Figures 7(a)–7(d) represents the curve for scenario
II; Figures 8(a)–8(d) represents the curve for scenario III;
and Figures 9(a)–9(d) represents the curve for scenario IV.

*e results of the proposed model are represented in
Table 4 for all four scenarios. *e average highest accuracy
reported by the experiments was same for scenarios III and
IV. ISIC 2019 weights have outperformed the noisy student’s
weights with combined data, that is, skin lesion and clinical
data. However, with only skin lesions, noisy students pro-
duced a better outcome. *e reported average accuracy of
0.76, recall of 0.82, same precision, and F1 and AUC of 0.81.
*e study confirmed the finding made by Pacheco’s study
[18] that the integration of clinical data enhances the di-
agnosis and triaging performance.

*e proposed study outcome was compared with the
literature study. Indeed, it is important to mention that only
one study was used for comparison because so far only one
study has used the PAD-UFES-20 data set. *e results
achieved in the proposed study were not compared with the
studies in the literature using ISIC 2019 data set because in
the current study, the results were achieved using the PAD-
UFES-20 data set.

PAD-UFES-20 data set was proposed and used by
Pacheco. *e results presented in Table 5 confirmed that the
proposed study outperformed [24] in terms of all specified

Table 2: Statistical description of clinical features in the PAD-UFES-20 data set.

Features
ACK BCC MEL NEV SCC SEK
μ± σ μ± σ μ± σ μ± σ μ± σ μ± σ

Age 61.7± 12.7 63.15± 13.46 59.9± 13.9 35.64± 15.59 68.86± 12.21 65.89± 12.2
Fitzpatrick 2.33± 0.73 2.2± 0.69 2.29± 0.69 2.7± 0.87 2.21± 0.66 2.7± 1.13
Diameter_1 10.98± 7.1 12.05± 8.12 15.2± 7.60 12.13± 17.6 12.22± 8.41 9.37± 5.1
Diameter_2 8.19± 5.22 9.02± 6.02 11.17± 6.49 7.35± 6.64 9.51± 5.12 6.91± 3.78
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measures except AUC. However, similar results have been
achieved for both scenarios based on all the selected eval-
uation measures except AUC for both cases using skin lesion

and combined data set (skin lesion and clinical features).
Moreover, the AUC achieved by the study in both scenarios
is similar.

Table 3: Summary of the proposed model.

Layer (type) Output shape Parameters

Input layer 300, 300, 3 0
EfficientNetB3 (model) 10, 10, 1,536 10,783,528
Global_average_pooling2D 1,536 0
Dropout_2 1,536 0
Dense_2 128 196,736
Dropout_3 128 0
Dense_3 64 8,256
Dense_4 6 390
Total parameters — 10,988,910
Trainable parameters — 10,901,614
Nontrainable parameters — 87, 296
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Figure 6: Scenario I model: (a) training accuracy with number of epochs, (b) training loss with number of epochs, (c) validation accuracy
with number of epochs, and (d) validation loss with number of epochs.
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Figure 7: Scenario II model: (a) training accuracy with number of epochs, (b) training loss with number of epochs, (c) validation accuracy
with number of epochs, and (d) Validation loss with number of epochs.
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Figure 8: Continued.
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Figure 8: Scenario III model: (a) training accuracy with number of epochs, (b) training loss with number of epochs, (c) validation accuracy
with number of epochs, and (d) validation loss with number of epochs.
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Figure 9: Continued.
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Despite the significant results achieved by the proposed
study, there is still room for improvement. *e study used
the data augmentation technique for alleviating data im-
balance and better model generalization. *us, it is rec-
ommended to collect more skin lesions for the categories
that have very a smaller number of samples as compared to
the other categories. Moreover, some of the clinical fea-
tures were missing. Similarly, some of the images in the
data set do not have diagnosis using biopsy; the diagnosis
decision was made using the dermatologist diagnosis.
*erefore, there is a need for the data set where all the
diagnosis for the skin lesions was made using biopsy.
However, the proposed study overall produced high results
when compared with the original study that proposed the
data set.

Conclusively, the main contributions are:

(1) *e study explores the impact of clinical data on
diagnosis of skin cancer using skin lesions and at-
tempts to propose an automated tool for early
diagnosis

(2) For better generalization of the proposedmodel, data
augmentation techniques were applied

(3) In general, the proposed study model has out-
performed the benchmark study and can be served as
an effective tool for the diagnosis and triaging of skin
cancer

5. Conclusions

*is research presents an automated diagnosis and triaging
system for skin cancer. *e study used the EfficientNetB3
model for analysing the images taken via smartphone
cameras; however, for clinical data, Extreme Gradient
Boosting (XGB) ensemble classifier model is used. *e main
reason for using the XGB classifier is due to its better
performance in the imbalanced data sets. *e proposed
study confirms the findings made by Pacheco’s study, that is,
the integration of clinical data enhances the diagnosis and
triaging performance. *e average accuracy reported in the
study was 0.76 using skin cancer images and 0.78 using
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Figure 9: Scenario IV model: (a) training accuracy with number of epochs, (b) training loss with number of epochs, (c) validation accuracy
with number of epochs, and (d) validation loss with number of epochs.

Table 5: Results of the proposed study and comparison with results from Pacheco’s study [24].

Data Reference Accuracy Precision Recall F1 AUC

Skin lesions
Pacheco study [18] 0.690 0.72 0.690 0.695 0.92
Proposed study 0.76 0.81 0.82 0.81 0.81

Skin lesions + clinical features
Pacheco study [18] 0.76 0.77 0.76 0.76 0.94
Proposed study 0.78 0.89 0.86 0.88 0.82

Table 4: Experimental results obtained from the test set using fivefold stratified cross-validation.

Experimental scenarios Data type Accuracy Precision Recall F1 AUC

Scenario I Skin lesion 0.76 0.81 0.82 0.81 0.81
Scenario II Skin lesion 0.74 0.78 0.8 0.79 0.80
Scenario III Skin lesion + clinical data 0.78 0.88 0.85 0.87 0.83
Scenario IV Skin lesion + clinical data 0.78 0.89 0.86 0.88 0.82
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images and the clinical data. *e proposed study out-
performed the benchmark study. Despite the data imbalance
limitation, data augmentation techniques were applied to
reduce the risk of model overfitting. Nevertheless, the
outcome was significant, but there is still further need for
improvement. *e model can be further enhanced by
implementing and comparing other deep learning models.
Furthermore, the proposed model needs to be tested on
multiple data sets. However, there is no other open-source
data set available for skin cancer diagnosis that contains the
skin cancer lesions and the clinical data.

Data Availability

*e study was performed using PAD-UFES-20 and can be
accessed from the web link, https://data.mendeley.com/
datasets/zr7vgbcyr2/1.

Conflicts of Interest

*e authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] NIH National Cancer Institute, “Cancer facts and figures
2020,” CA: A Cancer Journal for Clinicians, vol. 70, pp. 1–76,
2020, https://www.cancer.org/cancer/bladder-cancer/detection-
diagnosis-staging/survival-rates.html.

[2] K. Wolff, R. A. Johnson, A. P. Saavedra, and E. K. Roh, Color
Atlas and Synopsis of Clinical Dermatology, McGraw-Hill
Education., New York, NY, USA, 8th edition, 2017.

[3] C. Sinz, P. Tschandl, C. Rosendahl et al., “Accuracy of der-
matoscopy for the diagnosis of nonpigmented cancers of the
skin,” Journal of the American Academy of Dermatology,
vol. 77, no. 6, pp. 1100–1109, 2017.

[4] M. F. Healsmith, J. F. Bourke, J. E. Osborne, and
R. A. Graham-Brown, “An evaluation of the revised seven-
point checklist for the early diagnosis of cutaneous malignant
melanoma,” British Journal of Dermatology, vol. 130, no. 1,
pp. 48–50, 1994.

[5] F. Nachbar, W. Stolz, T. Merkle et al., “*e ABCD rule of
dermatoscopy: high prospective value in the diagnosis of
doubtful melanocytic skin lesions,” Journal of the American
Academy of Dermatology, vol. 30, no. 4, pp. 551–559, 1994.

[6] V. Dal Pozzo, C. Benelli, and E. Roscetti, “*e seven features
for melanoma: a new dermoscopic algorithm for the diagnosis
of malignant melanoma,” European Journal of Dermatology,
vol. 9, no. 4, pp. 303–308, 1999.

[7] J. K. Robinson and R. Turrisi, “Skills training to learn dis-
crimination of ABCDE Criteria by those at risk of developing
melanoma,” Archives of Dermatology, vol. 142, 2006.

[8] L. Smith and S. Macneil, “State of the art in non-invasive
imaging of cutaneous melanoma,” Skin Research and Tech-
nology, vol. 17, no. 3, pp. 257–269, 2011.

[9] A. Masood and A. Ali Al-Jumaily, “Computer aided diag-
nostic support system for skin cancer: a review of techniques
and algorithms,” International Journal of Biomedical Imaging,
vol. 2013, pp. 1–22, 2013.

[10] R. H. Moss, W. V. Stoecker, G. A. Hance, and S. E. Umbaugh,
“Automatic color segmentation algorithms,” IEEE Engineer-
ing in Medicine and Biology Magazine, vol. 9, pp. 75–82, 1993.

[11] P. Schmid, “Segmentation of digitized dermatoscopic images
by two-dimensional color clustering,” IEEE Transactions on
Medical Imaging, vol. 18, no. 2, pp. 164–171, 1999.

[12] M. Efimenko, A. Ignatev, and K. Koshechkin, “Review of
medical image recognition technologies to detect melanomas
using neural networks,” BMC Bioinformatics, vol. 21, no. S11,
p. 270, 2020.

[13] A. G. C. Pacheco and R. A. Krohling, “Recent advances in
deep learning applied to skin cancer detection,” in Proceedings
of the Neural Information Processing Systems (NeurIPS),
Retrospectives Workshop, Vancouver, Canada, December
2019.

[14] M. Goyal, T. Knackstedt, S. Yan, and S. Hassanpour, “Arti-
ficial intelligence-based image classification for diagnosis of
skin cancer: challenges and opportunities,” Computers in
Biology and Medicine, vol. 127, pp. 1–9, 2019.

[15] A. Esteva, B. Kuprel, R. A. Novoa et al., “Dermatologist-level
classification of skin cancer with deep neural networks,”
Nature, vol. 542, pp. 115–118, 2017.

[16] H. A. Haenssle, C. Fink, R. Schneiderbauer et al., “Man against
Machine: diagnostic performance of a deep learning con-
volutional neural network for dermoscopic melanoma rec-
ognition in comparison to 58 dermatologists,” Annals of
Oncology: Official Journal of the European Society for Medical
Oncology, vol. 29, no. 8, pp. 1836–1842, 2018.

[17] T. J. Brinker, “ScienceDirect A convolutional neural network
trained with dermoscopic images performed on par with 145
dermatologists in a clinical melanoma image classification
task,” European Journal of Cancer, vol. 111, pp. 148–154, 2019.

[18] A. G. C. Pacheco and R. A. Krohling, “*e impact of patient
clinical information on automated skin cancer detection,”
Computers in Biology and Medicine, vol. 116, Article ID
103545, 2020.

[19] M. A. Kadampur and S. Al Riyaee, “Skin cancer detection:
applying a deep learning based model driven architecture in
the cloud for classifying dermal cell images,” Informatics in
Medicine Unlocked, vol. 18, Article ID 100282, 2020.

[20] S. Jinnai, N. Yamazaki, Y. Hirano, Y. Sugawara, Y. Ohe, and
R. Hamamoto, “*e development of a skin cancer classifi-
cation system for pigmented skin lesions using deep learning,”
Biomolecules, vol. 10, no. 8, pp. 1123–1213, 2020.

[21] L. Wei, K. Ding, and H. Hu, “Automatic skin cancer detection
in dermoscopy images based on ensemble lightweight deep
learning network,” IEEE Access, vol. 8, pp. 99633–99647, 2020.

[22] C. T. Pham, M. C. Luong, D. Van Hoang, and A. Doucet, “AI
outperformed every dermatologist: improved dermoscopic
melanoma diagnosis through customizing batch logic and loss
function in an optimized Deep CNN architecture,” vol. 11,
pp. 1–21, 2020, http://arxiv.org/abs/2003.02597.

[23] A. Udrea, G. D. Mitra, D. Costea et al., “Accuracy of a
smartphone application for triage of skin lesions based on
machine learning algorithms,” Journal of the European
Academy of Dermatology and Venereology, vol. 34, no. 3,
pp. 648–655, 2020.

[24] M. A. Kassem, K. M. Hosny, and M. M. Fouad, “Skin lesions
classification into eight classes for ISIC 2019 using deep
convolutional neural network and transfer learning,” IEEE
Access, vol. 8, pp. 114822–114832, 2020.

[25] M. A. Anjum, J. Amin, M. Sharif, H. U. Khan, M. S. A. Malik,
and S. Kadry, “Deep semantic segmentation and multi-class
skin lesion classification based on convolutional neural net-
work,” IEEE Access, vol. 8, pp. 129668–129678, 2020.

[26] N. Gessert, M. Nielsen, M. Shaikh, R. Werner, and
A. Schlaefer, “Skin lesion classification using ensembles of

12 Complexity

https://data.mendeley.com/datasets/zr7vgbcyr2/1
https://data.mendeley.com/datasets/zr7vgbcyr2/1
https://www.cancer.org/cancer/bladder-cancer/detection-diagnosis-staging/survival-rates.html
https://www.cancer.org/cancer/bladder-cancer/detection-diagnosis-staging/survival-rates.html
http://arxiv.org/abs/2003.02597


multi-resolution EfficientNets with meta data,” Methods
(Duluth), vol. 7, Article ID 100864, 2020.

[27] E. Goceri, “Deep learning based classification of facial der-
matological disorders,” Computers in Biology and Medicine,
vol. 128, Article ID 104118, 2021.

[28] S. Karki, P. Kulkarni, and A. Stranieri, “Melanoma classifi-
cation using EfficientNets and Ensemble of models with
different input resolution,” in Proceedings of the ACSW ’21:
2021 Australasian Computer Science Week Multiconference,
pp. 1–5, Dunedin New Zealand, February 2021.

[29] A. G. C. Pacheco, G. R. Lima, L. A. Dos Santos de Melo et al.,
“PAD-UFES-20: a skin lesion dataset composed of patient
data and clinical images collected from smartphones,”Data in
Brief, vol. 32, pp. 1–8, 2020.

[30] F. Sultana, A. Sufian, and P. Dutta, “A review of object de-
tection models based on convolutional neural network,” in
Intelligent Computing: Image Processing Based Applications,
J. Mandal and S. Banerjee, Eds., Springer, Singapore, pp. 1–16,
2020.

[31] Q. V. Le and M. Tan, EfficientNet: Rethinking Model Scaling
for Convolutional Neural Networks, 2019.

[32] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting
system,” in Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining,
pp. 785–794, San Francisco, CA, USA, August 2016.

[33] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training
with noisy student improves imagenet classification,” in
Proceedings of the 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 10684–10695,
Seattle, WA, USA, June 2020.

[34] ISIC-2019, “ISIC-2019-Skin lesion analysis towards mela-
noma detection,” 2019, https://challenge2019.isic-archive.
com/.

Complexity 13

https://challenge2019.isic-archive.com/
https://challenge2019.isic-archive.com/

