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Abstract 

Background: Rice is one of the most important grain crops worldwide. The accurate and dynamic monitoring of Leaf 

Area Index (LAI) provides important information to evaluate rice growth and production.

Methods: This study explores a simple method to remotely estimate LAI with Unmanned Aerial Vehicle (UAV) 

imaging for a variety of rice cultivars throughout the entire growing season. Forty eight different rice cultivars were 

planted in the study site and field campaigns were conducted once a week. For each campaign, several widely used 

vegetation indices (VI) were calculated from canopy reflectance obtained by 12-band UAV images, canopy height was 

derived from UAV RGB images and LAI was destructively measured by plant sampling.

Results: The results showed the correlation of VI and LAI in rice throughout the entire growing season was weak, and 

for all tested indices there existed significant hysteresis of VI vs. LAI relationship between rice pre-heading and post-

heading stages. The model based on the product of VI and canopy height could reduce such hysteresis and estimate 

rice LAI of the whole season with estimation errors under 24%, not requiring algorithm re-parameterization for differ-

ent phenology stages.

Conclusions: The progressing phenology can affect VI vs. LAI relationship in crops, especially for rice having quite 

different canopy spectra and structure after its panicle exsertion. Thus the models solely using VI to estimate rice LAI 

are phenology-specific and have high uncertainties for post-heading stages. The model developed in this study com-

bines both remotely sensed canopy height and VI information, considerably improving rice LAI estimation at both 

pre- and post-heading stages. This method can be easily and efficiently implemented in UAV platforms for various 

rice cultivars during the entire growing season with no rice phenology and cultivar pre-knowledge, which has great 

potential for assisting rice breeding and field management studies at a large scale.
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Background

With the ever-increasing global population, the food 

demand continues rising all over the world. Moreover, 

the declining in arable land, conjugated with more fre-

quent extreme climate events and severe environmental 

pollutions, poses tough challenges to feed the growing 
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world and ensure food security. Rice is one of the most 

important grain crops providing food for more than half 

of the world’s people [1]. A great number of studies have 

been dedicated to the improvement of rice production 

and quality [2–4].

Leaf area index (LAI) is defined as the total one-sided 

area of leaf tissues per unit ground surface area [5–7], 

which closely relates to canopy-environment exchange 

processes such as light absorption, water interception, 

evapotranspiration and carbon uptake [6–9]. As a good 

indicator of canopy photosynthesis capacity, LAI during 

the growing season strongly influences crop production 

[10, 11]. �e dynamic monitoring of LAI can provide 

valuable information to investigate crop growth in the 

response of ambient environment thus evaluating its final 

yield [12–14].

�e direct methods usually obtain vegetation LAI 

by means of manually sampling leaves and measuring 

their total area using leaf area meter, which is destruc-

tive, time-consuming and labor-intensive [6, 15]. Some 

devices were invented based on indirect optical meth-

ods to infer LAI from measured radiation transmission 

through the canopy [15–17], offering good alternatives to 

traditional destructive methods. But such devices have to 

be operated manually underneath the canopy in a stop-

and-go mode, which still require extensive field work and 

not suitable for agricultural applications at a large scale 

[18–20].

Recently, the use of remote sensing technology to esti-

mate vegetation LAI has been widely developed especially 

for large-scale and long-term crop monitoring [21, 22]. 

Canopy reflectance, which can be recorded by remote 

sensors at various platforms from close range to satellite 

altitude, is mostly governed by vegetation absorption and 

scattering that highly correlated with crop LAI [13, 23]. 

Vegetation indices (VI) formulated from math combina-

tions of reflectance at several bands [24, 25], as well as 

many multiple regression and machine-learning meth-

ods using multi- or hyper-spectral reflectance [26], were 

successfully developed to extract the most useful spectral 

information for LAI estimation. Nguy-Robertson et  al. 

[27] developed combined VI based on visible and NIR 

reflectance measured by ground-mounted radiometers to 

estimate LAI in maize and soybean; Yao et  al. [28] esti-

mated wheat LAI using modified triangular VI obtained 

from unmanned aerial vehicle (UAV) multispectral imag-

ing; Kira et  al. [29] applied support vector machines 

(SVM), neural network (NN), multiple linear regression 

(MLR) and VI techniques to estimate soybean and maize 

green LAI with satellite reflectance products; Wang et al. 

[30] compared MLR, partial least squares (PLS) regres-

sion and least squares support vector machines (LS-

SVM) methods to determine rice LAI using reflectance of 

selected optimal wavebands from hyperspectral spectro-

radiometer. In addition to spectral information, canopy 

structure information was also useful to indicate veg-

etation biophysical parameters [31]. It is found that plant 

height showed a significant relationship with biomass in 

winter wheat [19]. �e 3D point clouds data generated 

from UAV-based multispectral imagery, accounting for 

canopy thickness, height and leaf density distribution, 

was employed to estimate grape LAI [31]. Remote sens-

ing gives a fast, non-destructive and relatively cheap solu-

tion for monitoring crop LAI that can be extended to a 

regional scale [7, 13].

�e remote estimation of vegetation LAI has been 

studied for decades, but the routine and generic model 

that can achieve high accuracy for various species and 

field conditions is yet to be developed [15, 21, 32]. It is 

found that the phenological stage of the vegetation is one 

factor influencing the performance of vegetation param-

eter estimations using canopy reflectance [22], espe-

cially for crop having prominent flowers, fruits or grains 

during its growing season [27]. �e VI-based methods 

have a long history for its high efficiency and simplicity 

used in a wide variety of terrestrial science applications 

to characterize the Earth’s vegetation cover from space 

[33–35]. But the progressing phenology affects relation-

ships between VIs and biophysical parameters through-

out the vegetation growing season particularly for crops 

with their distinct phenology-related features [22, 36]. It 

is observed that there were obvious differences in the VI 

vs. canopy chlorophyll content relationships between the 

vegetative and reproductive stages in maize and soybean 

[37]. Fang et al. [38] found the uncertainties increased by 

50% when using VI for estimating vegetation fraction in 

oilseed rape during its flowering season. Many studies 

showed that in rice VIs worked well for biomass estima-

tion only for the pre-heading stages, but they were weakly 

related to biomass at post-heading stages [14, 39]. Zheng 

et al. [40] and Zha [41] reported the correlation between 

nitrogen concentration and VI was low after panicles 

emerging out from the sheath.

Using remote sensing for LAI estimation has been suc-

cessfully employed in many vegetation types [32, 36], 

but VI-based methods in rice are mostly applied for 

a few cultivars or for specific growth period. Rice has 

unique canopy features during reproductive and ripen-

ing stages. With the panicle exsertion, green and erect 

panicles occupy most of the top canopy. As grain grow-

ing toward maturity, the panicles become droopy with 

increased weight and their color turn to yellow [42, 43]. 

�e changes in the structure and color of panicles make 

the canopy reflectance complicated after rice heading. 

Since VIs are calculated from canopy reflectance, VI-

based models and algorithms for rice LAI estimation are 
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greatly influenced by phenology factor and may be spe-

cific to different growth stage thus limiting their appli-

cation throughout the entire growing season. However, 

it involves field work to visually determine rice phenol-

ogy stage which is sometimes slow and subjective [44, 

45]. And with the advancement of breeding technology, 

hundreds of rice cultivars have been bred with very dif-

ferent phenology cycles [44–46]. �us, it is unrealistic to 

firstly get the pre-knowledge of rice phenology and then 

calibrate the model for each phenology stage. �e model 

that are generic and able to efficiently monitor rice LAI 

of different cultivars and for the entire growing season is 

pressing especially for the study site having a number of 

different rice cultivars such as large breeding nursery.

UAV imaging is increasingly used as an emerging tech-

nology applied in the field of precision agriculture due to 

its high resolution, reduced cost and better flexibility of 

flight and sensor settings [47, 48]. For example, López-

Granados et al. [49] detected weed in croplands based on 

UAV images acquired at different heights; Yang et al. [11] 

predicted rice grain yield at the ripening stage with UAV 

RGB images; Hu et al. [50] recognized the diseased Pinus 

trees in UAV images to help monitor and control tree dis-

eases in large areas; Meinen et  al. [51] mapped erosion 

and deposition in an agricultural landscape based on 

UAV images obtained by four acquisition schemes. UAV-

collected data is becoming an effective and convenient 

tool to evaluate crop growth for assisting in farm man-

agements and crop breeding studies [52, 53].

Canopy spectra reflects crop absorption-related bio-

logical properties, and plant structure may indicate 

phenology-related morphological traits. �e structure 

information retrieved from UAV imaging may be a good 

addition to canopy reflectance for accurate LAI estima-

tion in rice of a variety of cultivars at different phenology 

stages. In this study, we aim to explore a simple method 

to remotely estimate LAI with UAV imaging for multi-

ple rice cultivars throughout the entire growing season. 

Our objectives are to: (1) evaluate several widely used 

VI for LAI estimation at different phenology stages, (2) 

analyze how phenology factor affected remotely sensed 

canopy spectral and structure signal, and (3) develop 

and improve VI-based model for estimating rice LAI, not 

requiring algorithm re-parameterizations for different 

phenology stages.

Materials and methods

Study area

�e study site was located at the Hybrid Rice Experiment 

and Research Base of Wuhan University near Ezhou 

City, Hubei Province, China (30°22′33″ N, 114°44′48″ E) 

(Fig.  1). �e flat terrain, subtropical monsoon climate 

of this area is suitable for rice growth. �e annual aver-

age temperature, sunshine time, and precipitation are 

17 °C, 2003.8 h, and 1282.8 mm, respectively. �is study 

site has 48 plots planted with different hybrid rice culti-

vars, which applied the same planting density, nitrogen 

fertilizer and the standard local field managements. �e 

rice varieties belong to the Honglian type hybrid rice, 

which are widely planted in the Middle-lower Yangtze 

Plain in China due to their high yield, wide adaptabil-

ity and good temperature and disease resistance [54]. 

Fig. 1 Study Area of 48 rice cultivars in Ezhou, Hubei, China
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�ese 48 cultivars were selected in our study site since 

they are representative in China and have quite obvious 

morpho-physiological differences. �e maximum LAI of 

these cultivars ranged from 2.76 to 8.53, and their height 

ranged from 0.82 to 1.13 m after the maturity. �ey were 

sown on May 11th, 2019, and the seedlings of 48 rice cul-

tivars were transplanted to the experiment field on June 

9th, 2019 with one cultivar in each plot. For each plot, six 

rows were planted and each row had double lines. �e 

distance between the rows was 33 cm and 20 cm within 

the row. Before transplanting, several whiteboards were 

erected on the edge of the plots to help locate different 

plots in the images. After transplanting, each plot was 

divided into a subplot (4  m × 3  m) for destructive sam-

pling (around 270 bundles) and a subplot (8 m × 3 m) for 

non-destructive observations (Fig.  1), trying to reduce 

the impact of destructive sampling on remotely sensed 

canopy spectra. �irteen field campaigns for LAI meas-

urements and UAV images of the study site were carried 

out throughout the entire rice growing season from June 

to September (Date: June 26th, July 2nd, July 6th, July 

14th, July 22nd, July 27th, Aug 1st, Aug 6th, Aug 11th, 

Aug 16th, Aug 22nd, Aug 29th, and Sep 3rd). For each 

campaign, the UAV flight was firstly arranged to acquire 

site images and plant sampling was then conducted in the 

field.

Destructive measurements of LAI

For each campaign, three bundles of rice plants in the 

non-edge area of each plot were sampled for destruc-

tive measurements of LAI. �e plants were placed in the 

cooler with ice bags and transported to the laboratory for 

further destructive vegetation measurements. �e green 

leaves were cut from the plant and run through LI-3100C 

leaf area meter (LI-COR, Lincoln, NE, United States). 

�e leaf area (LA) of each plot was obtained by the sum 

of all leaf areas of three bundles, and then plot LAI was 

calculated as: LAI =
LA

n
× ρ, where n is the number of 

samples in each plot and ρ is the plant density per square 

meter. In this study, n was equal to 3 and ρ was equal to 

22.5 bundles/m2.

Manual determination of heading date in rice

Heading date in rice is generally defined as the time when 

approximately 50% of the panicles have exserted [43, 45], 

which was determined by manual visual observations in 

the field. �e heading date of the studied 48 rice culti-

vars varied between 59 and 73 Days After Transplanting 

(DAT). In this study, the growing season of each rice cul-

tivar can be roughly divided based on heading date into 

pre-heading stages and post-heading stages.

Canopy re�ectance, vegetation index and canopy height 

remotely derived from UAV images

For each campaign, two UAV flights were arranged 

to acquire canopy spectral and structure information 

respectively. On the first flight the 12-band multispec-

tral images were obtained for the study site and the RGB 

images was then taken on the other flight. �e parame-

ters of sensors used in two UAV flights were summarized 

in Table 1.

�e 12-band images of the study site were obtained 

by a Mini-MCA camera system (Tetracam Inc., Chats-

worth, CA, United States) mounted on M8 UAV (Beijing 

TT Aviation Technology Co., Ltd.). �is 12-lens cam-

era system was equipped with customer-specified band 

pass filters centered at a wavelength of 490 nm, 520 nm, 

550  nm, 570  nm, 670  nm, 680  nm, 700  nm, 720  nm, 

800 nm, 850 nm, 900 nm, and 950 nm, respectively. �e 

12 camera lens were co-registered in the laboratory prior 

to the flight so that corresponding pixels of each lens 

were spatially overlapping in the same focal plane [34]. 

�e flights were taken in the sunny and cloudless weather 

between 10:00 AM and 2:00 PM, with the altitude of 

100 m and the image spatial resolution of 5.5 cm. A gim-

bal stable platform was installed on UAV to adjust the 

Table 1 Two UAV flights with different sensors

RGB images 12-Band images

Types of cameras DJI FC 6310 camera Mini-MCA camera system

Central wavelength R, G, B 490 nm, 520 nm, 550 nm, 570 nm, 670 nm, 680 nm, 
700 nm, 720 nm, 800 nm, 850 nm, 900 nm, 
950 nm

Image size 5472 × 3648 1280 × 1024

Image resolution 0.8 cm/pixel 5.5 cm/pixel

Fight height 30 m 100 m

Field of view 84° Horizontal angle of view: 38.26°
Vertical angle of view: 30.97°

Information retrieved from images Crop surface model Multi-spectral canopy reflectance
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camera system pointing close to nadir during the flight. 

For image radiometric calibration, a linear relationship 

was assumed between surface reflectance ( ρ ) and image 

digital numbers (DN) as [55, 56]:

where ρ� and DN� were the surface reflectance and cor-

responding image digital numbers at wavelength � . Eight 

near-Lambertian calibration canvases, at the constant 

reflectance of 0.03, 0.06, 0.12, 0.24, 0.36, 0.48, 0.56 and 

0.80, were placed in the camera’s field of view to solve 

Gain� and Offset� value in different bands using the least-

square method [57, 58] for image radiometric calibration. 

In this case, the canopy reflectance at 12 bands can be 

calculated based on Eq. (1). �e images of canopy reflec-

tance taken throughout the growing season were shown 

in Fig. 2.

�e RGB images of the study site with DJI FC 6310 

camera mounted on DJI Phantom 4 Professional UAV 

(SZ DJI Technology Co., Ltd., Shenzhen, China) for 

canopy 3-D reconstruction. �e field of view of the cam-

era was 84°, and the image resolution was 0.8 cm. Using 

Agisoft Photoscan Professional v1.4.5 (Agisoft LLC, St. 

Petersburg, Russia), the canopy Digital Surface Model 

(DSM) was generated [59–62]. �e canopy height (H) 

was calculated as:

(1)ρ� = DN� × Gain� + Offset�

where DSMsoil is equal to the DSM on the date before rice 

transplanting. �is approach is widely applied to retrieve 

canopy height with the accuracy around 3 cm [62–64].

�e 12-band images taken on the first flight (Jun. 26) 

was greatly affected by water high specular reflectance 

(bright spots in Fig. 2) since the rice seedlings were just 

transplanted in the study site and the water was not 

drained away completely. �e pixel having DN values 

greater than 250 in all bands was marked as “bad pixel” 

and excluded for further calculation. �e plot with obser-

vation area including more than 100 such bad pixels was 

not considered as valid sample. �us for this image, only 

24 plots were retained for model development. As water 

dried up in the study site, the images of other 12 flights 

were little affected by water and all plots could be used as 

valid samples.

For each rice plot, a rectangular region of interest 

(ROI) of the same size was defined that maximally fit the 

plot. �e ROI included three rows of rice corresponding 

around 800 pixels in the 12-band image and 2000 pixels 

in the RGB image. �e average reflectance and the aver-

age height of all pixels within the ROI were taken as the 

plot-level canopy reflectance and canopy height, respec-

tively. �e plot level vegetation indices (VI) were calcu-

lated from plot-level canopy reflectance. Eight VIs, which 

(2)H = DSM − DSMsoil

Fig. 2 The multi-spectral images taken throughout the growing season for the study site (The standard false color composite images are shown)
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are widely used for LAI estimation in many studies [14, 

18, 22, 24, 36, 57, 65, 66] and can be easily applied in cur-

rent satellite sensors, were tested in this study for analysis 

(Table 2).

Noted that the Mini-MCA sensor sensitivity drops 

around 450 nm and the signal to noise ratio is relatively 

low at blue band [67]. On the other hand, rice reflectance 

at blue band is quite low due to vegetation high absorp-

tion of visible radiation [68, 69], thus at blue band the 

quality of Mini-MCA images was not good. So in this 

study we avoided the VIs with blue reflectance. EVI2 was 

used instead of EVI, since these two indices appeared 

very close in many studies [35, 68–70].

Algorithm development for LAI estimation

In this study, the k-fold cross validation procedure [77] 

was used to develop the algorithms for LAI estimation. 

�e samples were randomly split into k mutually exclu-

sive sets (k = 10 in this study, which is a common num-

ber used in many studies [29, 65, 77, 78]) and they were 

trained and validated for k times. For each time, k-1 sets 

are used iteratively as training data for calibrating the 

coefficients  (Coefi) of the relationship, and the remain-

ing set is used as the validation data to obtain estimation 

accuracy: Root mean square error  (RMSEi), coefficient 

of variation  (CVi) and  Biasi [27, 28]. �is procedure was 

repeated k times, with each of the k sets used exactly 

once as the validation data. �e results form k iterations 

then can be averaged to produce a single estimation [65]:

where CVi =
RMSEi

Mean(Measured LAI)
 and Biasi =

∑n
j=1 (Estimated LAIj−Measured LAIj)

n

(3)Coef =
1

k

k∑

i=1

Coefi;RMSE =
1

k

k∑

i=1

RMSEi;CV =
1

k

k∑

i=1

CVi;Bias =
1

k

k∑

i=1

Biasi

Results

Relationships of VI vs. rice LAI throughout the entire 

growing

Eight VIs were related to LAI in this study, and it is found 

that the correlations between rice LAI and these VIs 

throughout the entire growing season were quite low not 

exceeding 0.4 (Table  3). �e ratio indices (MTCI,  CIgreen 

and  CIred edge) had the lowest correlation with LAI  (R2 

around 0.14), and  R2 of the normalized indices (NDRE, 

WDRVI and NDVI) appeared a little higher  (R2 around 

0.16), while EVI2 and OSAVI had relatively highest  R2 

 (R2 = 0.2 for OSAVI and 0.38 for EVI2).

Figure 3 presented the variation of VI plotted with rice 

LAI of the entire season. It is observed that for all our 

tested indices the samples obviously followed two differ-

ent patterns, one with samples collected before rice head-

ing and the other with samples after heading. �us, using 

one relationship for the entire rice-growing season could 

not well describe the LAI variation by VI (Table 3). When 

separating samples by heading date, during the pre-heading 

stages (green points in Fig.  3) all tested VIs were closely 

related with LAI. �is agreed with the observations in 

many previous studies that there existed significant rela-

tionships between those VIs and LAI. But for post-heading 

rice samples (yellow points in Fig. 3), the relationship VI vs. 

LAI had high uncertainties. Also noted that before the rice 

heading stage, NDRE, WDRVI, NDVI, OSAVI, and EVI2 

showed obvious saturation to moderate-to-high LAI vari-

ation (Fig. 3d–h), while MTCI,  CIgreen, and  CIred edge more 

linearly related to LAI (Fig. 3a–c).

The canopy spectra, of two samples with similar 

LAI values but one collected before rice heading and 

Table 2 Vegetation Indices (VI) tested in this study

VI Formula References

NDVI (ρNIR − ρred)/(ρNIR + ρred) Rouse et al. [71]

EVI2 2.5 × (ρNIR − ρred)/(1 + ρNIR + 2.4 × ρred) Jiang et al. [35]

WDRVI (α × ρNIR − ρred)/(α × ρNIR + ρred) , α = 0.2 Gitelson et al. [72]

CIgreen ρNIR/ρgreen − 1 Gitelson et al. [73]

CIrededge ρNIR/ρrededge − 1 Gitelson et al. [73]

NDRE (ρNIR − ρrededge)/(ρNIR + ρrededge) Gitelson et al. [74]

MTCI (ρNIR − ρrededge)/(ρrededge − ρred) Dash et al. [75]

OSAVI (1 + 0.16) × (ρNIR − ρrededge)/(ρNIR + ρrededge + 0.16) Steven et al. [76]
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Table 3 Correlation  (R2) between LAI and VI in rice of the entire growing season

MTCI CIgreen CIred edge NDRE WDRVI NDVI OSAVI EVI2

R2 0.13 0.14 0.15 0.15 0.16 0.17 0.20 0.38

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3 The variation of LAI plotted with a MTCI, b  CIgreen, c  CIred edge, d NDRE, e WDRVI, f NDVI, g OSAVI and h EVI2 in rice during the entire growing 

season. For all tested VIs, samples of post-heading (Post-HD) stages were deviated from the LAI vs. VI relationship of pre-heading (Pre-HD) stages
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the other after rice heading, were compared (Fig.  4). 

For low to moderate LAI (LAI up to 3) with similar 

LAI, reflectance in bands of 450–800  nm after rice 

heading was much higher than before heading, and 

reflectance in bands of 800–950 nm was close between 

two stages (Fig.  4a). It is observed that the green and 

red reflectance after heading can be more than twice 

as that before heading. For moderate to high LAI (LAI 

(a) (b)

Fig. 4 The canopy spectra of two samples with similar LAI values, a LAI around 2.9 and b LAI around 5, in pre-heading (Pre-HD) and post-heading 

(Post-HD) stages

Fig. 5 Temporal behaviors of measured LAI vs. a  CIred edge and b canopy height, and the LAI variation plotted with c  CIred edge and d canopy height 

during the rice entire growing season
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above 5) with similar LAI, reflectance in bands of 

450–750  nm was higher after rice heading while the 

reflectance in bands of 750–950  nm was lower. The 

difference in reflectance with similar LAI but at differ-

ent phenology stages (Fig. 4) caused substantial hyster-

esis of VI vs. LAI relationships between pre-heading 

and post-heading stages (Fig. 3).

LAI, VI and canopy height variation throughout the rice 

growing season

�e temporal behaviors of rice LAI, VI (e.g.,  CIred edge), 

and canopy height were compared throughout the entire 

growing season (Fig.  5a, b). From the beginning of the 

season, rice LAI sharply increased to peak value around 

10 days before heading date and then gradually decreased 

afterwards. While  CIred edge increased to a relatively high 

value approximately 20  days before heading date. It 

remained invariant or slightly increased until the heading 

date and then sharply decreased towards the end of the 

season. In contrast to  CIred edge, rice height continued to 

increase approximately 5 days after the heading date and 

then it decreased a little. �e different temporal behav-

iors of rice LAI, height, and VI may result in hysteresis 

effects existed on the relationship LAI vs. VI as well as 

the relationship LAI vs. height (Fig. 5c, d). Noted that the 

hysteresis on LAI vs. VI relationship and LAI vs. height 

relationship was opposite in direction, i.e., for the same 

rice LAI the canopy height was higher but VI was lower 

during the post-heading stages than those during the 

pre-heading stages (Fig. 5c, d). �is may offer an oppor-

tunity to improve LAI estimation model based on both 

VI and canopy height information to minimize hysteresis 

between pre-heading and post-heading stages.

LAI estimation based on remotely sensed VI and canopy 

height

�ree models, LAI vs. VI, LAI vs. H × VI and LAI vs. 

H × ln(VI + 1), were tested for rice LAI estimation 

throughout the entire growing season. It is found that 

the hysteresis between pre-heading and post-heading 

stages was considerably diminished on LAI vs. H × VI 

and LAI vs. H × ln(VI + 1) models (Fig. 6). Moreover, the 

indices saturated to moderate-to-high LAI (e.g., NDVI, 

NDRE and OSAVI) became much more sensitive to the 

wide range of LAI variation for H × VI and H × ln(VI + 1) 

model.

�e k-fold cross validation procedures were applied 

to develop algorithms estimating rice LAI through-

out the entire growing season based on VI, H × VI and 

H × ln(VI + 1) model. For all tested indices, the model 

using both H and VI information was much more accu-

rate than the model using solely VI. When canopy height 

included in the model, the estimation error significantly 

decreased by more than 20% (Table  4). Generally, the 

model based on H × ln(VI + 1) worked a little better than 

the model based on H × VI. For tested indices H × VI 

model can give LAI estimations with RMSE below 1.1 and 

CV below 27%, and H × ln(VI + 1) model can give LAI 

estimations with RMSE below 1.02 and CV below 25%.

Using one algorithm to estimate rice LAI through-

out the entire growing season, the estimation errors of 

pre-heading and post-heading stages were compared 

for three models. For both phenology stages, the inclu-

sion of canopy height can obviously improve the model 

accuracy with CV decreased by 6.60–13.50% for pre-

heading stages and by 3.37–10.96% for post-heading 

stages (Fig. 7a, b). When developing the algorithm using 

solely VI, for all indices LAI would be over-estimated 

at pre-heading stages and under-estimated at post-

heading stages (Fig. 7c, d). While the use of H × VI and 

H × ln(VI + 1) model could greatly reduce the estima-

tion bias for both phenology stages. Using VI model, the 

average bias of over-estimation was 0.39–0.64 for pre-

heading stages and the average bias of under-estimation 

was 0.72–1.18 for post-heading stages. Using H × VI and 

H × ln(VI + 1) model, no obvious over- or under-estima-

tion effects were consistently observed, and the average 

bias were considerably reduced for both phenology stages 

with |Bias| < 0.32 for pre-heading stages and |Bias| < 0.58 

for post-heading stages (Fig.  7c, d). Combining canopy 

height information, NDRE, WDRVI and OSAVI could 

estimate LAI with bias under ± 0.1 during the entire 

growing season.

Generally, the model based on H × ln(VI + 1) worked 

a little better than the model based on H × VI for most 

indices.  CIgreen, WDRVI and OSAVI were the best esti-

mating LAI in various rice cultivars throughout the entire 

growing season with green, red and red edge bands, 

respectively (Fig. 8):

Discussions

�e indices tested in this study have been widely applied 

for estimating vegetation biophysical parameters (e.g., 

LAI, canopy Chl, biomass) in many crop species [14, 25, 

LAI =2.04 × H × ln(CIgreen + 1) + 0.40,

RMSE = 0.95 CV = 23.1%

LAI =9.02 × H × ln(WDRVI + 1) + 0.55,

RMSE = 0.95 CV = 23.3%

LAI =12.72 × H × ln(OSAVI + 1) + 0.50,

RMSE = 0.94 CV = 22.9%
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(a) (b) (c)

Fig. 6 Three models, a LAI vs. VI, b LAI vs. H × VI and c LAI vs. H × ln(VI + 1), were tested for rice LAI estimation throughout the entire growing 

season for eight tested indices
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37]. Hysteresis was also reported in canopy Chl vs. VI 

relationship between vegetative and reproductive stages 

in maize and soybean, but such hysteresis was not sig-

nificant and using one relationship for the entire growing 

season could estimate canopy Chl with acceptable accu-

racy [37]. However, our study found that LAI vs. VI rela-

tionship in rice for the entire growing season had high 

uncertainties (Table 3, Fig. 3). Rice has its distinct canopy 

structure during the growing season [43]: After trans-

planting the seedling, plant height gradually increases 

and more leaves develop at regular intervals. �e tillering 

stage extends from the appearance of the first tiller until 

the maximum number of tillers. At this period, the plant 

stem lengthens but stops growing just before panicle ini-

tiation. As a bulging of the leaf stem conceals the devel-

oping panicle, called the booting stage, the rice plant is 

entering its reproductive phase from vegetative phase. 

�e tip of the developing panicle then emerges from the 

stem and continues to grow, and the heading stage is 

coming when the panicle is fully visible on top canopy. 

When rice enters ripen phase, plant growth can be subdi-

vided into milky, dough and maturity stages based on the 

Table 4 Root mean square errors (RMSE) and coefficient of variation (CV) of LAI estimation based on VI, H × VI and H × ln(VI + 1) 

model using ten-fold cross-validation

VI VI × H H × ln(VI + 1)

RMSE CV (%) RMSE CV (%) RMSE CV (%)

MTCI 1.44 35.1 1.09 26.6 0.97 23.8

CIgreen 1.43 34.9 1.08 26.3 0.95 23.1

CIred edge 1.43 34.9 1.09 26.6 0.98 23.8

NDRE 1.42 34.7 0.96 23.4 0.95 23.2

WDRVI 1.42 34.6 0.95 23.1 0.95 23.3

NDVI 1.41 34.4 1.01 24.7 1.02 24.9

OSAVI 1.38 33.7 0.94 23.0 0.94 22.9

EVI2 1.20 29.4 0.98 23.9 0.99 24.1

(a) (b)

(c) (d)

Fig. 7 Using one algorithm during entire rice growing seasons for LAI estimation based on VI, H × VI and H × ln (VI + 1) models with a coefficient of 

variation (CV) for pre-heading stages, b CV for post-heading stages, c Bias for pre-heading stages and d Bias for post-heading stages
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texture and color of growing grains. At milky stage, grain 

is milky and reaches final size, but the panicles are still 

green; at dough stage, grain is gradually dried and solid 

and panicles turn to yellow; At maturity stage, grains are 

very hard and waited to be harvested [79]. �e pre-head-

ing stages defined in this study includes transplanting, 

tillering, booting stages while the post-heading stages 

includes heading, milky, dough and maturity stages.

Canopy reflectance in the visible region is deter-

mined by pigment absorption, and reflectance in NIR 

region is mainly affected by canopy structure [80, 81]. 

Photosynthesis mainly takes place inside the leaf, so 

visible radiation absorbed by leaf is a lot higher than 

that by panicle. Panicles are apparent on top canopy 

since booting and heading stages and they turn into 

yellow during rice post-heading stages. As rice ripen-

ing, panicles droop due to increased grain weight and 

may partially cover the leaves below (Fig. 9). �e dense 

and droopy panicles can prevent the light penetration 

inside the canopy thus causing the rise of visible reflec-

tance. �erefore, for the same LAI value visible reflec-

tance in the period before rice heading was much lower 

than after heading when panicles occupying more than 

half of top canopy (Fig.  4). In addition, it is reported 

with the same LAI, the dark green leaves in the vegeta-

tive stage have much higher chlorophyll content than 

(a) (b) (c)

Fig. 8 Comparison of estimated and measured LAI based on H × ln(VI + 1) model using a  CIgreen, b WDRVI and c OSAVI

Fig. 9 Phenology stages of rice growth cycle
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in the reproductive stage with leaf senescence [82], so 

leaves in pre-heading stages can absorb more visible 

light than in post-heading stages thus resulting in lower 

reflectance.

In NIR region, canopy reflectance tended to decrease 

during the post-heading stages as plant becoming senes-

cent. When rice entering ripening phase, panicles tend to 

droop with the maturity of growing grain (Fig. 9), which 

greatly changes the canopy architecture making NIR 

reflectance fluctuating with high uncertainties (Fig. 4).

With the same LAI, the visible reflectance of rice can-

opy was higher at post-heading stages than pre-heading 

stages, while NIR reflectance of rice canopy was simi-

lar or lower at post-heading stages. Since our tested VIs 

were calculated based on the ratio or difference between 

NIR and visible reflectance, they behaved much lower at 

post-heading stages than at pre-heading stages causing 

hysteresis of VI vs. LAI relationship between two stages 

(Fig. 3). �e hysteresis for normalized difference indices 

was smaller than that for ratio indices (Fig. 3), and hys-

teresis for EVI2 and OSAVI appeared relatively smallest 

(Fig.  3g, h) since the constant used in such VI formula 

may somewhat attenuate the reflectance difference at dif-

ferent phenology stages.

As rice grows before heading, remotely sensed VI 

closely followed LAI variation (Fig.  3) and the relation-

ships VI vs. LAI are in accordance with the observations 

in many previous studies. �e indices derived from the 

ratio of NIR and red reflectance (e.g., NDVI, EVI2 and 

WDRVI) were saturated to moderate-to-high LAI since 

red reflectance behaved almost invariant for vegetation 

with moderate-to-high density [19, 28]. �e normalized 

indices (e.g., NDVI, NDRE, OSAVI) were insensitive to 

high LAI variation due to much higher NIR reflectance 

than visible reflectance for vegetation having high chlo-

rophyll content [83]. �e ratio indices using red edge or 

green reflectance seemed more linearly related to LAI 

since green and red edge reflectance is more sensitive to 

the wide range of LAI variation [84]. With the emergence 

of panicle, however, samples obviously deviated from the 

relationship which the pre-heading samples followed. 

With the same LAI, VI of pre-heading stages can be twice 

higher than that of post-heading stages. Using the algo-

rithm developed by samples collected before heading, 

LAI at post-heading stages would be significantly under-

estimated. �at’s why the  R2 of VI vs. LAI relationship 

before rice heading is high (above 0.8) but it dramati-

cally decreased as more and more post-heading samples 

included.

However, it is unrealistic to firstly separate rice into 

pre-heading and post-heading samples and then develop 

the relationships respectively. Extensive field work has to 

be conducted to record the heading date mainly based 

on visual inspection, which can be somewhat subjective. 

�e method to estimate rice LAI for the entire growing 

season, not requiring pre-knowledge of heading date 

and algorithm re-parameterization for different phenol-

ogy stages, is imperative to be developed especially for 

rice breeding experiments with various hybrids having 

different heading dates. In addition, for images of which 

the pixel size larger than a single cultivar plot, the model 

applicable for the entire growing season and for different 

rice cultivars is essential to estimate rice LAI efficiently 

and accurately.

�is study explored to use rice canopy height improv-

ing VI model to minimize hysteresis of LAI estimation 

algorithms between two different phenology stages. 

Canopy height can be accurately and remotely retrieved 

from stereo-observation images [85, 86] and it has been 

used to estimate vegetation growth parameters (e.g., 

LAI, biomass) in some research [60, 63, 86, 87]. In veg-

etative stage as plant grew canopy height as well as VI 

increased, so they both positively correlated with rice 

LAI (Fig.  5). In this period, more number of developed 

leaves and the increase in leaf chlorophyll content con-

tributed to maximize sunlight absorption. So VI sharply 

increased and then maintained at high level from late 

tillering stage to early heading stage. Around booting 

stage before rice heading, LAI reached almost maximum 

as flag leaf stretching completely. During heading stage, 

the elongated top internodes, together with the panicle 

exsertion, made the canopy height continue to increase 

late after the heading date. After heading stage as more 

and more green leaves turning to yellow and becoming 

senescent, VI sharply decreased due to the decline of 

leaf chlorophyll content and light absorption; LAI gradu-

ally decreased due to the shrinking of aging leaves; can-

opy height began to decrease slightly since milky stage 

because the increase in grain size and weight made more 

panicles droopy.

In this case, canopy height may be indicative to pani-

cle development, which can be used as an addition to VI 

for rice LAI estimation. For the same LAI, canopy height 

was higher in the period of post-heading than pre-head-

ing (Fig.  5d), while VI was lower at post-heading stages 

(Fig. 5c). �us solely using VI for LAI estimation of the 

entire season, LAI could be over-estimated at pre-head-

ing stages while under-estimated at post-heading stages 

(bias > 0 for pre-heading stages and bias < 0 for post-

heading stages—Fig. 7). �e production of VI and canopy 

height may compensate the hysteresis of VI vs. LAI rela-

tionship between pre- and post-heading stages. Moreo-

ver, during post-heading stages, the rate of VI change 

was much greater than LAI change while canopy height 

slightly decreased. So canopy height could somewhat 

adjust VI to follow LAI variation more closely. For all 
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tested indices, the use of canopy height in VI model can 

significantly increase estimation accuracy (Table  4) and 

no obvious hysteresis was observed between two stages 

(Fig.  6). Moreover, the indices which appeared nonline-

arly related to LAI with pre-heading samples (e.g., NDVI, 

OSAVI) became much more linearly related to LAI 

(Fig.  6) in H × VI and H × ln(VI + 1) model. By includ-

ing canopy height in model, LAI estimation accuracy was 

significantly increased for both stages with CV and bias 

greatly reduced at pre and post-heading stages (Fig. 7).

�is study clearly shows that crop phenology may sig-

nificantly affect canopy spectra and structure during 

its reproductive stage, especially for the crop with con-

spicuous flowers, fruits or grains having very different 

spectral or structural features from leaves. So phenology 

factor need to be considered in reflectance-based mod-

els for estimating crop biophysical parameters through-

out its growing season. �e method developed in our 

study is very simple for rice LAI estimation by includ-

ing canopy structure information as a good addition to 

spectral information, which can be effectively applied 

in remotely sensed images with two or three traditional 

visible and NIR bands. By this method, it is not neces-

sary to create new or complicated indices particularly 

for considering panicle factor but just incorporate rice 

height information into existing widely used VI models. 

�e algorithms used in this study are linear regressions 

that worked efficiently, so we don’t need to go for sophis-

ticated algorithms (e.g., machine learning method) with 

big computation and requiring hyperspectral data which 

is sometimes costly or unavailable. Since VI and canopy 

height can be obtained by various UAV platforms at low 

cost, our method can be used for routine monitoring of 

rice LAI during the entire growing season. �is can pro-

vide a rapid and quantitative way to evaluate rice growth 

at large scale, especially beneficial for high-through 

screening and selecting target crop in rice breeding stud-

ies having a large number of cultivars under different 

field conditions. But we realize that this study was only 

tested in 48 rice cultivars, and our model will be tried 

in much more rice cultivars all around the world. Also, 

our method was developed in rice with UAV images, the 

future work includes applying and improving it for other 

crop species with potential high-resolution satellite data.

Conclusions

In this study, we developed a method to remotely estimate 

LAI using UAV-retrieved canopy reflectance and height for 

different rice cultivars during the entire growing season. 

Several widely used VIs were calculated from canopy reflec-

tance, and significant hysteresis was observed in VI vs. LAI 

relationship between rice pre-heading and post-heading 

phenology stages. For the same LAI, canopy VI was higher 

while canopy height was lower at post-heading stage than 

at pre-heading stage. �e model based on the product of 

canopy reflectance and height effectively reduced hysteresis 

effect due to phenology difference and obviously improved 

the accuracy of rice LAI estimation throughout the entire 

growing season. �e model using one algorithm during the 

whole growing season with OSAVI and canopy height can 

estimate rice LAI with RMSE under 1.1 for both pre- and 

post-heading stages, not requiring algorithm re-parameter-

ization for different phenology stages.

Acknowledgements

We acknowledge the support and use of facilities and equipment provided by 

the Lab for Remote Sensing of Crop Phenotyping Institute, School of Remote 

Sensing and Information Engineering and College of Life Sciences, Wuhan 

University, China. We sincerely appreciate the groups directed by Prof. Ren-

shan Zhu and Prof. Shenghui Fang who work hard on the field and lab work to 

provide us valuable data.

Authors’ contributions

All authors have made significant contributions to this manuscript. YG and YP 

conceived of the research ideas. YG, KY and ZL designed the experiment and 

performed most of the data processing. YP and KY were major contributors in 

writing the manuscript. SF built the infrastructure for the study site to make 

this research possible. YG provided valuable guidance on data analysis and the 

writing of this paper. XW and RZ provided important insights and suggestions 

on this research from the perspective of agronomists. All authors read and 

approved the final manuscript.

Funding

This research was supported by National Natural Science Foundation of China 

(41771381), Key R & D projects in Hubei Province (2020BBB058), and National 

Key R&D Program of China (2016YFD0101105).

Availability of data and materials

The datasets used and analyzed during the current study may be available 

upon the agreement from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors agreed to publish this manuscript.

Competing interests

The authors declare that they have no competing interests.

Author details
1 School of Remote Sensing and Information Engineering, Wuhan University, 

Wuhan, China. 2 College of Life Sciences, Wuhan University, Wuhan, China. 3 Lab 

for Remote Sensing of Crop Phenotyping, Wuhan University, Wuhan, China. 

Received: 24 February 2021   Accepted: 1 August 2021

References

 1. Yuan L. Development of hybrid rice to ensure food security. Rice Sci. 

2014;21:1–2.

 2. Dan Z, Hu J, Zhou W, Yao G, Zhu R, Zhu Y, et al. Metabolic prediction of 

important agronomic traits in hybrid rice (Oryza sativa L.). Sci Rep. 2016. 

https:// doi. org/ 10. 1038/ srep2 1732.

https://doi.org/10.1038/srep21732


Page 15 of 16Gong et al. Plant Methods           (2021) 17:88  

 3. Peng S, Khush GS, Virk P, Tang Q, Zou Y. Progress in ideotype breeding to 

increase rice yield potential. Field Crop Res. 2008;108:32–8.

 4. Bello BK, Hou Y, Zhao J, Jiao G, Wu Y, Li Z, et al. NF-YB1-YC12-bHLH144 

complex directly activates Wx to regulate grain quality in rice (Oryza 

sativa L.). Plant Biotechnol J. 2019;17:1222–35.

 5. Watson DJ. Comparative physiological studies on the growth of field 

crops: I. Variation in net assimilation rate and leaf area between species 

and varieties, and within and between years. Ann Bot. 1947;11:41–76.

 6. Breda NJ. Ground-based measurements of leaf area index: a review 

of methods, instruments and current controversies. J Exp Bot. 

2003;54:2403–17.

 7. Zheng G, Moskal LM. Retrieving leaf area index (LAI) using remote sens-

ing: theories, methods and sensors. Sensors. 2009;9:2719–45.

 8. Asner GP, Braswell BH, Schimel DS, Wessman CA. Ecological research 

needs from multiangle remote sensing data. Remote Sens Environ. 

1998;63:155–65.

 9. Boussetta S, Balsamo G, Beljaars A, Kral T, Jarlan L. Impact of a satellite-

derived leaf area index monthly climatology in a global numerical 

weather prediction model. Int J Remote Sens. 2012;34:3520–42.

 10. Liu X, Jin J, Herbert SJ, Zhang Q, Wang G. Yield components, dry 

matter, LAI and LAD of soybeans in northeast China. Field Crop Res. 

2005;93:85–93.

 11. Yang Q, Shi L, Han J, Zha Y, Zhu P. Deep convolutional neural networks 

for rice grain yield estimation at the ripening stage using UAV-based 

remotely sensed images. Field Crop Res. 2019;235:142–53.

 12. Wan L, Cen H, Zhu J, Zhang J, Zhu Y, Sun D, et al. Grain yield prediction of 

rice using multi-temporal UAV-based RGB and multispectral images and 

model transfer—a case study of small farmlands in the South of China. 

Agr Forest Meteorol. 2020. https:// doi. org/ 10. 1016/j. agrfo rmet. 2020. 

108096.

 13. Li S, Yuan F, Ata-Ui-Karim ST, Zheng H, Cheng T, Liu X, et al. Combin-

ing color indices and textures of UAV-based digital imagery for rice LAI 

estimation. Remote Sens. 2019. https:// doi. org/ 10. 3390/ rs111 51763.

 14. Wang Y, Zhang K, Tang C, Cao Q, Tian Y, Zhu Y, et al. Estimation of rice 

growth parameters based on linear mixed-effect model using multispec-

tral images from fixed-wing unmanned aerial vehicles. Remote Sens. 

2019. https:// doi. org/ 10. 3390/ rs111 11371.

 15. Yan G, Hu R, Luo J, Weiss M, Jiang H, Mu X, et al. Review of indirect opti-

cal measurements of leaf area index: recent advances, challenges, and 

perspectives. Agr Forest Meteorol. 2019;265:390–411.

 16. Fang H, Baret F, Plummer S, Schaepman-Strub G. An overview of global 

leaf area index (LAI): methods, products, validation, and applications. Rev 

Geophys. 2019;57:739–99.

 17. Vincent G, Antin C, Laurans M, Heurtebize J, Durrieu S, Lavalley C, et al. 

Mapping plant area index of tropical evergreen forest by airborne laser 

scanning. A cross-validation study using LAI2200 optical sensor. Remote 

Sens Environ. 2017;198:254–66.

 18. Hashimoto N, Saito Y, Maki M, Homma K. Simulation of reflectance and 

vegetation indices for unmanned aerial vehicle (UAV) monitoring of 

paddy fields. Remote Sens. 2019. https:// doi. org/ 10. 3390/ rs111 82119.

 19. Tavakoli H, Mohtasebi SS, Alimardani R, Gebbers R. Evaluation of different 

sensing approaches concerning to nondestructive estimation of leaf area 

index (LAI) for winter wheat. Int J Smart Sens Intell Syst. 2014;7:337–59.

 20. Nackaerts K, Coppin P, Muys B, Hermy M. Sampling methodology for LAI 

measurements with LAI-2000 in small forest stands. Agr Forest Meteorol. 

2000;101:247–50.

 21. Weiss M, Jacob F, Duveiller G. Remote sensing for agricultural applica-

tions: a meta-review. Remote Sens Environ. 2020. https:// doi. org/ 10. 

1016/j. rse. 2019. 111402.

 22. Qiao K, Zhu W, Xie Z, Li P. Estimating the seasonal dynamics of the leaf 

area index using piecewise LAI-VI relationships based on phenophases. 

Remote Sens. 2019. https:// doi. org/ 10. 3390/ rs110 60689.

 23. Vaesen K, Gilliams S, Nackaerts K, Coppin P. Ground-measured spectral 

signatures as indicators of ground cover and leaf area index: the case of 

paddy rice. Field Crop Res. 2001;69:13–25.

 24. He J, Zhang N, Su X, Lu J, Yao X, Cheng T, et al. Estimating leaf area index 

with a new vegetation index considering the influence of rice panicles. 

Remote Sens. 2019. https:// doi. org/ 10. 3390/ rs111 51809.

 25. Dong T, Liu J, Shang J, Qian B, Ma B, Kovacs JM, et al. Assessment of red-

edge vegetation indices for crop leaf area index estimation. Remote Sens 

Environ. 2019;222:133–43.

 26. Houborg R, Anderson M, Daughtry C. Utility of an image-based canopy 

reflectance modeling tool for remote estimation of LAI and leaf chloro-

phyll content at the field scale. Remote Sens Environ. 2009;113:259–74.

 27. Nguy-Robertson A, Gitelson A, Peng Y, Viña A, Arkebauer T, Rundquist D. 

Green leaf area index estimation in maize and soybean: combining veg-

etation indices to achieve maximal sensitivity. Agron J. 2012;104:1336–47.

 28. Yao X, Wang N, Liu Y, Cheng T, Tian Y, Chen Q, et al. Estimation of wheat 

LAI at middle to high levels using unmanned aerial vehicle narrowband 

multispectral imagery. Remote Sens. 2017. https:// doi. org/ 10. 3390/ rs912 

1304.

 29. Kira O, Nguy-Robertson AL, Arkebauer TJ, Linker R, Gitelson AA. Toward 

generic models for green LAI estimation in maize and soybean: satellite 

observations. Remote Sens. 2017. https:// doi. org/ 10. 3390/ rs904 0318.

 30. Wang F, Huang J, Lou Z. A comparison of three methods for estimating 

leaf area index of paddy rice from optimal hyperspectral bands. Precision 

Agric. 2010;12:439–47.

 31. Comba L, Biglia A, Ricauda Aimonino D, Tortia C, Mania E, Guidoni S, et al. 

Leaf area index evaluation in vineyards using 3D point clouds from UAV 

imagery. Precision Agric. 2020;21:881–96.

 32. Richter K, Atzberger C, Vuolo F, D’Urso G. Evaluation of sentinel-2 spectral 

sampling for radiative transfer model based LAI estimation of wheat, 

sugar beet, and maize. IEEE J-STARS. 2011;4:458–64.

 33. Naito H, Ogawa S, Valencia MO, Mohri H, Urano Y, Hosoi F, et al. Estimating 

rice yield related traits and quantitative trait loci analysis under different 

nitrogen treatments using a simple tower-based field phenotyping 

system with modified single-lens reflex cameras. ISPRS J Photogramm 

Remote Sens. 2017;125:50–62.

 34. Jhan JP, Rau JY, Huang CY. Band-to-band registration and ortho-rectifi-

cation of multilens/multispectral imagery: a case study of MiniMCA-12 

acquired by a fixed-wing UAS. ISPRS J Photogramm Remote Sens. 

2016;114:66–77.

 35. Jiang Z, Huete A, Didan K, Miura T. Development of a two-band 

enhanced vegetation index without a blue band. Remote Sens Environ. 

2008;112:3833–45.

 36. Tillack A, Clasen A, Kleinschmit B, Förster M. Estimation of the seasonal 

leaf area index in an alluvial forest using high-resolution satellite-based 

vegetation indices. Remote Sens Environ. 2014;141:52–63.

 37. Peng Y, Nguy-Robertson A, Arkebauer T, Gitelson A. Assessment of 

canopy chlorophyll content retrieval in maize and soybean: implications 

of hysteresis on the development of generic algorithms. Remote Sens. 

2017. https:// doi. org/ 10. 3390/ rs903 0226.

 38. Fang S, Tang W, Peng Y, Gong Y, Dai C, Chai R, et al. Remote estimation of 

vegetation fraction and flower fraction in oilseed rape with unmanned 

aerial vehicle data. Remote Sens. 2016. https:// doi. org/ 10. 3390/ rs805 

0416.

 39. Zheng H, Cheng T, Zhou M, Li D, Yao X, Tian Y, et al. Improved estimation 

of rice aboveground biomass combining textural and spectral analysis of 

UAV imagery. Precision Agric. 2019;20:611–29.

 40. Zheng H, Cheng T, Li D, Yao X, Tian Y, Cao W, et al. Combining unmanned 

aerial vehicle (UAV)-based multispectral imagery and ground-based 

hyperspectral data for plant nitrogen concentration estimation in rice. 

Front Plant Sci. 2018;9:936. https:// doi. org/ 10. 3389/ fpls. 2018. 00936.

 41. Zha H, Miao Y, Wang T, Li Y, Zhang J, Sun W, et al. Improving unmanned 

aerial vehicle remote sensing-based rice nitrogen nutrition index predic-

tion with machine learning. Remote Sens. 2020. https:// doi. org/ 10. 3390/ 

rs120 20215.

 42. Reza MN, Na IS, Baek SW, Lee K-H. Rice yield estimation based on K-means 

clustering with graph-cut segmentation using low-altitude UAV images. 

Biosyst Eng. 2019;177:109–21.

 43. Yoshida S. Fundamentals of rice crop science. Los Baños: International 

Rice Research Institute; 1981.

 44. Ma Y, Jiang Q, Wu X, Zhu R, Gong Y, Peng Y, et al. Monitoring hybrid rice 

phenology at initial heading stage based on low-altitude remote sensing 

data. Remote Sens. 2020. https:// doi. org/ 10. 3390/ rs130 10086.

 45. Desai SV, Balasubramanian VN, Fukatsu T, Ninomiya S, Guo W. Automatic 

estimation of heading date of paddy rice using deep learning. Plant 

Methods. 2019. https:// doi. org/ 10. 1186/ s13007- 019- 0457-1.

 46. Lv Q, Li W, Sun Z, Ouyang N, Jing X, He Q, et al. Resequencing of 1,143 

indica rice accessions reveals important genetic variations and differ-

ent heterosis patterns. Nat Commun. 2020. https:// doi. org/ 10. 1038/ 

s41467- 020- 18608-0.

https://doi.org/10.1016/j.agrformet.2020.108096
https://doi.org/10.1016/j.agrformet.2020.108096
https://doi.org/10.3390/rs11151763
https://doi.org/10.3390/rs11111371
https://doi.org/10.3390/rs11182119
https://doi.org/10.1016/j.rse.2019.111402
https://doi.org/10.1016/j.rse.2019.111402
https://doi.org/10.3390/rs11060689
https://doi.org/10.3390/rs11151809
https://doi.org/10.3390/rs9121304
https://doi.org/10.3390/rs9121304
https://doi.org/10.3390/rs9040318
https://doi.org/10.3390/rs9030226
https://doi.org/10.3390/rs8050416
https://doi.org/10.3390/rs8050416
https://doi.org/10.3389/fpls.2018.00936
https://doi.org/10.3390/rs12020215
https://doi.org/10.3390/rs12020215
https://doi.org/10.3390/rs13010086
https://doi.org/10.1186/s13007-019-0457-1
https://doi.org/10.1038/s41467-020-18608-0
https://doi.org/10.1038/s41467-020-18608-0


Page 16 of 16Gong et al. Plant Methods           (2021) 17:88 

 47. Tsouros DC, Bibi S, Sarigiannidis PG. A review on uav-based applications 

for precision agriculture. Information. 2019. https:// doi. org/ 10. 3390/ info1 

01103 49.

 48. Ampatzidis Y, Partel V, Costa L. Agroview: cloud-based application to 

process, analyze and visualize UAV-collected data for precision agriculture 

applications utilizing artificial intelligence. Comput Electron Agric. 2020. 

https:// doi. org/ 10. 1016/j. compag. 2020. 105457.

 49. Gómez-Candón D, De Castro AI, López-Granados F. Assessing the 

accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for 

precision agriculture purposes in wheat. Precision Agric. 2013;15:44–56.

 50. Hu G, Yin C, Wan M, Zhang Y, Fang Y. Recognition of diseased Pinus trees 

in UAV images using deep learning and AdaBoost classifier. Biosyst Eng. 

2020;194:138–51.

 51. Meinen BU, Robinson DT. Mapping erosion and deposition in an agri-

cultural landscape: optimization of UAV image acquisition schemes for 

SfM-MVS. Remote Sens Environ. 2020. https:// doi. org/ 10. 1016/j. rse. 2020. 

111666.

 52. Boursianis AD, Papadopoulou MS, Diamantoulakis P, Liopa-Tsakalidi A, 

Barouchas P, Salahas G, et al. Internet of things (IoT) and agricultural 

unmanned aerial vehicles (UAVs) in smart farming: a comprehensive 

review. Internet Things. 2020. https:// doi. org/ 10. 1016/j. iot. 2020. 100187.

 53. Shakoor N, Lee S, Mockler TC. High throughput phenotyping to acceler-

ate crop breeding and monitoring of diseases in the field. Curr Opin Plant 

Biol. 2017;38:184–92.

 54. Zhu R. Research and practice of honglian type hybrid rice. Hybrid Rice. 

2010. https:// doi. org/ 10. 16267/j. cnki. 1005- 3956. 2010. s1. 064.

 55. Smith GM, Milton EJ. The use of the empirical line method to calibrate 

remotely sensed data to reflectance. Int J Remote Sens. 2010;20:2653–62.

 56. Laliberte AS, Goforth MA, Steele CM, Rango A. Multispectral remote sens-

ing from unmanned aircraft: image processing workflows and applica-

tions for rangeland environments. Remote Sens. 2011;3:2529–51.

 57. Duan B, Liu Y, Gong Y, Peng Y, Wu X, Zhu R, et al. Remote estimation of rice 

LAI based on Fourier spectrum texture from UAV image. Plant Methods. 

2019. https:// doi. org/ 10. 1186/ s13007- 019- 0507-8.

 58. Cen H, Wan L, Zhu J, Li Y, Li X, Zhu Y, et al. Dynamic monitoring of biomass 

of rice under different nitrogen treatments using a lightweight UAV with 

dual image-frame snapshot cameras. Plant Methods. 2019. https:// doi. 

org/ 10. 1186/ s13007- 019- 0418-8.

 59. Jiang Q. UAV-based biomass estimation for rice-combining spectral, TIN-

based structural and meteorological features. Remote Sens. 2019. https:// 

doi. org/ 10. 3390/ rs110 70890.

 60. Bendig J, Yu K, Aasen H, Bolten A, Bennertz S, Broscheit J, et al. Combin-

ing UAV-based plant height from crop surface models, visible, and near 

infrared vegetation indices for biomass monitoring in barley. Int J Appl 

Earth Obs Geoinf. 2015;39:79–87.

 61. Gašparović M, Seletković A, Berta A, Balenović I. The evaluation of 

photogrammetry-based DSM from low-cost UAV by LiDAR-based DSM. 

South-east Eur for. 2017;8:117–25.

 62. Geipel J, Link J, Claupein W. Combined spectral and spatial modeling of 

corn yield based on aerial images and crop surface models acquired with 

an unmanned aircraft system. Remote Sens. 2014;6:10335–55.

 63. Yue J, Yang G, Li C, Li Z, Wang Y, Feng H, et al. Estimation of winter wheat 

above-ground biomass using unmanned aerial vehicle-based snapshot 

hyperspectral sensor and crop height improved models. Remote Sens. 

2017. https:// doi. org/ 10. 3390/ rs907 0708.

 64. Matese A, Di Gennaro SF, Berton A. Assessment of a canopy height model 

(CHM) in a vineyard using UAV-based multispectral imaging. Int J Remote 

Sens. 2016;38:2150–60.

 65. Peng Y, Zhu T, Li Y, Dai C, Fang S, Gong Y, et al. Remote prediction of 

yield based on LAI estimation in oilseed rape under different plant-

ing methods and nitrogen fertilizer applications. Agric For Meteorol. 

2019;271:116–25.

 66. Jay S, Maupas F, Bendoula R, Gorretta N. Retrieving LAI, chlorophyll and 

nitrogen contents in sugar beet crops from multi-angular optical remote 

sensing: comparison of vegetation indices and PROSAIL inversion for field 

phenotyping. Field Crop Res. 2017;210:33–46.

 67. TETRACAM. https:// www. tetra cam. com/ Tetra cam% 20-% 20Rec ommen 

datio ns% 20for% 20Band% 20Pass% 20Fil ter% 20Sel ection. html. Accessed 

May 2021.

 68. Duan B, Fang S, Zhu R, Wu X, Wang S, Gong Y, Peng Y. Remote estima-

tion of rice yield with unmanned aerial vehicle (UAV) data and spectral 

mixture analysis. Front Plant Sci. 2019. https:// doi. org/ 10. 3389/ fpls. 2019. 

00204.

 69. Yuan N, Gong Y, Fang S, Liu Y, Duan B, Yang K, Wu X, Zhu R. UAV remote 

sensing estimation of rice yield based on adaptive spectral endmembers 

and bilinear mixing model. Remote Sens. 2021. https:// doi. org/ 10. 3390/ 

rs131 12190.

 70. Liu J, Pattey E, Jégo G. Assessment of vegetation indices for regional 

crop green LAI estimation from Landsat images over multiple growing 

seasons. Remote Sens Environ. 2012;123:347–58.

 71. Rouse JW Jr, Haas RH, Schell JA, Deering DW. Monitoring vegetation sys-

tems in the great plains with ERTS. NASA Special Publ. 1974;351:309–17.

 72. Gitelson AA. Wide dynamic range vegetation index for remote quan-

tification of biophysical characteristics of vegetation. J Plant Physiol. 

2004;161:165–73.

 73. Gitelson AA, Gritz Y, Merzlyak MN. Relationships between leaf chlo-

rophyll content and spectral reflectance and algorithms for non-

destructive chlorophyll assessment in higher plant leaves. J Plant Physiol. 

2003;160:271–82.

 74. Gitelson AA, Merzlyak MN, Lichtenthaler HK. Detection of red edge posi-

tion and chlorophyll content by reflectance measurements near 700 nm. 

J Plant Physiol. 1996;148:501–8.

 75. Dash J, Curran PJ. The MERIS terrestrial chlorophyll index. Int J Remote 

Sens. 2004;25:5403–13.

 76. Steven MD. The sensitivity of the OSAVI vegetation index to observational 

parameters. Remote Sens Environ. 1998;63:49–60.

 77. Kohavi R. A Study of cross-validation and bootstrap for accuracy estima-

tion and model selection. In: International Joint Conference on Artificial 

Intelligence (IJCAI), Canada. 1995; p. 1137–45.

 78. Asrola M, Papilob P, Gunawan FE. Support vector machine with K-fold 

validation to improve the industry’s sustainability performance classifica-

tion. Procedia Comput Sci. 2021;179:854–62.

 79. Wikipedia. https:// en. wikip edia. org/ wiki/ Cereal_ growth_ stagi ng_ scales. 

Accessed Feb 2021.

 80. Woolley JT. Reflectance and transmittance of light by leaves. Plant 

Physiol. 1970;47:656–62.

 81. Gausman HW, Allen WA, Cardenas R. Reflectance of cotton leaves and 

their structure. Remote Sens Environ. 1969;1:19–22.

 82. Peng Y, Gitelson AA, Keydan G, Rundquist DC, Moses W. Remote 

estimation of gross primary production in maize and support for a new 

paradigm based on total crop chlorophyll content. Remote Sens Environ. 

2011;115:978–89.

 83. Kira O, Nguy-Robertson AL, Arkebauer TJ, Linker R, Gitelson AA. Informa-

tive spectral bands for remote green LAI estimation in C3 and C4 crops. 

Agric For Meteorol. 2016;218–9:243–9.

 84. Yang L, Deng S, Zhang Z. New spectral model for estimating leaf area 

index based on gene expression programming. Comput Electric Eng. 

2020. https:// doi. org/ 10. 1016/j. compe leceng. 2020. 106604.

 85. Zarco-Tejada PJ, Diaz-Varela R, Angileri V, Loudjani P. Tree height quantifi-

cation using very high resolution imagery acquired from an unmanned 

aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. 

Eur J Agron. 2014;55:89–99.

 86. Tilly N, Hoffmeister D, Cao Q, Huang S, Lenz-Wiedemann V, Miao Y, et al. 

Multitemporal crop surface models: accurate plant height measurement 

and biomass estimation with terrestrial laser scanning in paddy rice. J 

Appl Remote Sens. 2014. https:// doi. org/ 10. 1117/1. JRS.8. 083671.

 87. Tilly N, Aasen H, Bareth G. Fusion of plant height and vegetation indices 

for the estimation of barley biomass. Remote Sens. 2015;7:11449–80.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-

lished maps and institutional affiliations.

https://doi.org/10.3390/info10110349
https://doi.org/10.3390/info10110349
https://doi.org/10.1016/j.compag.2020.105457
https://doi.org/10.1016/j.rse.2020.111666
https://doi.org/10.1016/j.rse.2020.111666
https://doi.org/10.1016/j.iot.2020.100187
https://doi.org/10.16267/j.cnki.1005-3956.2010.s1.064
https://doi.org/10.1186/s13007-019-0507-8
https://doi.org/10.1186/s13007-019-0418-8
https://doi.org/10.1186/s13007-019-0418-8
https://doi.org/10.3390/rs11070890
https://doi.org/10.3390/rs11070890
https://doi.org/10.3390/rs9070708
https://www.tetracam.com/Tetracam%20-%20Recommendations%20for%20Band%20Pass%20Filter%20Selection.html
https://www.tetracam.com/Tetracam%20-%20Recommendations%20for%20Band%20Pass%20Filter%20Selection.html
https://doi.org/10.3389/fpls.2019.00204
https://doi.org/10.3389/fpls.2019.00204
https://doi.org/10.3390/rs13112190
https://doi.org/10.3390/rs13112190
https://en.wikipedia.org/wiki/Cereal_growth_staging_scales
https://doi.org/10.1016/j.compeleceng.2020.106604
https://doi.org/10.1117/1.JRS.8.083671

	Remote estimation of leaf area index (LAI) with unmanned aerial vehicle (UAV) imaging for different rice cultivars throughout the entire growing season
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Materials and methods
	Study area
	Destructive measurements of LAI
	Manual determination of heading date in rice
	Canopy reflectance, vegetation index and canopy height remotely derived from UAV images
	Algorithm development for LAI estimation

	Results
	Relationships of VI vs. rice LAI throughout the entire growing
	LAI, VI and canopy height variation throughout the rice growing season
	LAI estimation based on remotely sensed VI and canopy height

	Discussions
	Conclusions
	Acknowledgements
	References


