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Abstract 

Background: The accurate quantification of yield in rapeseed is important for evaluating the supply of vegetable oil, 

especially at regional scales.

Methods: This study developed an approach to estimate rapeseed yield with remotely sensed canopy spectra and 

abundance data by spectral mixture analysis. A six-band image of the studied rapeseed plots was obtained by an 

unmanned aerial vehicle (UAV) system during the rapeseed flowering stage. Several widely used vegetation indices 

(VIs) were calculated from canopy reflectance derived from the UAV image. And the plot-level abundance of flower, 

leaf and soil, indicating the fraction of different components within the plot, was retrieved based on spectral mixture 

analysis on the six-band image and endmember spectra collected in situ for different components.

Results: The results showed that for all tested indices VI multiplied by leaf-related abundance closely related to 

rapeseed yield. The product of Normalized Difference Vegetation Index and short-stalk-leaf abundance was the most 

accurate for estimating yield in rapeseed under different nitrogen treatments with the estimation errors below 13%.

Conclusion: This study gives an important indication that spectral mixture analysis needs to be considered when 

estimating yield by remotely sensed VI, especially for the image containing obviously spectral different components 

or for crops which have conspicuous flowers or fruits with significantly different spectra from their leave.
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Background
Rapeseed is an important cash crop cultivated primarily 

for its oil-rich seeds which can be processed into edible 

oil used all over the world. �e byproducts of rapeseed 

are also widely used for animal feed, biofuel and medi-

cine [1]. It is reported that in the last decade rapeseed 

displayed the highest production rise amongst oil crops 

[2] due to the long-term increase of global food and fuel 

demands. �e accurate estimation of rapeseed yield, 

especially at regional scale, is of significance to evalu-

ate the supply of vegetation oil and help enhance food 

security.

Remote sensing technique can efficiently obtain canopy 

spectra data from space, which carries valuable informa-

tion indicating the canopy interaction with solar radia-

tion such as vegetation absorption and scattering [3]. 

Many methods have been developed trying to relate the 

vegetation spectra to its optical properties for evaluating 

vegetation growth. Leaf pigments strongly absorb visible 

light thus reducing vegetation reflectance in the visible 

range [4], and vegetation reflectance in the near-infrared 

(NIR) range is affected by thick plant tissues and canopy 

structures [5]. Optical vegetation indices (VI), calcu-

lated from reflectance of different spectral ranges [6], 

have been developed to retrieve biophysical parameters 

such as leaf area index [7, 8], chlorophyll content [9, 10] 

and biomass [11, 12]. Instead of establishing regression 

algorithms of using VI to estimate vegetation parameter, 
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machine-learning methods employ more sophisticated 

statistical techniques to develop relationships between 

the vegetation spectra and biophysical parameters [13]. 

For example, Bacour et al. [14] applied a neural network 

to estimate leaf area index and vegetation fraction with 

MERIS satellite reflectance at 11 bands. Verrelst et  al. 

[15] used Gaussian process machine learning techniques 

to retrieve chlorophyll content with 62-band CHRIS sat-

ellite images. �ese methods can make full use of spectral 

information at all bands and be able to approximate com-

plex non-linear functions, thus they often appeared more 

robust and adaptive than VI-based algorithms especially 

for hyperspectral data [16]. Despite spectral information, 

vegetation structure-related features can be also remotely 

estimated. Yue et  al. [17] constructed crop 3D models 

using images taken from different positions for the same 

area, which clearly showed the height variations in wheat 

under different nitrogen and water treatments. Gener-

ally, VI-based methods are the mainstream approach for 

estimating biophysical parameters in various terrestrial 

ecosystems [18] and from various remote sensing plat-

forms [19–21]. For multispectral data which is available 

for most current sensors, many experiments showed that 

machine-learning methods only slightly improved esti-

mation accuracy compared with VI-based methods. �e 

use of appropriate VI can give comparable performance 

to the complex machine-learning methods but with 

much more efficiency and feasibility [13].

�e increase or decrease of crop photosynthesis capac-

ity, which can be captured through spectral measures (e.g., 

VIs), directly affects plant development thus determining 

its ultimate yield. �us VI showed the good potential as a 

basic and simple approach for remote estimation of crop 

yield at the large scale [22, 23]. Becker-Reshef et  al. [24] 

found that in winter wheat the maximum Normalized Dif-

ference Vegetation Index (NDVI) derived from MODIS 

satellite data of each season closely followed the yield vari-

ations with the correlation coefficient above 0.74; Rahman 

et al. [25] utilized AVHRR-satellite-based NDVI and tem-

perature data to model annual yield in rice with residual 

values in individual years around 4%; Sakamoto et al. [26] 

mapped U.S. corn yields successfully using Wide Dynamic 

Range Vegetation Index (WDRVI) derived from time-

series MODIS data with the estimation error below 30% at 

the state level; Liang et al. [27] reported a good relationship 

between grape yield and NDVI derived from Landsat data 

having the correlation coefficient above 0.64. Remote sens-

ing is able to offer the spatial and temporal information of 

the study site timely and economically. �eir application 

for crop yield evaluation has been demonstrated across a 

wide range of scales and geographic locations [28–31].

Due to the limitation of the spatial resolution as well as 

the landscape fragmentation, there may be a considerable 

discrepancy between pixel sizes of the used remotely 

sensed images and much smaller sizes of the studied 

croplands. For example, MODIS satellite data, which is 

free available and widely used all over the world, obtains 

the daily global observations at the spatial resolution of 

0.25–1 km. While the smallholder farms in China, which 

accounted to 98% of the total farm area in China, had the 

typical size smaller than 0.002 km2 [32, 33]. In this case, 

one pixel on an image encompasses several land cover 

types. Even for the high resolution data, the signal of one 

pixel can be contributed by multiple cropland compo-

nents (e.g., soil, leaf, flower and fruit) that have signifi-

cantly different spectra [34]. VI derived from spectra of 

such mixed pixels may include the data of components 

not or weakly related to yield, which introduces unex-

pected uncertainties for yield estimation. �is problem 

is more obvious when applying to rapeseed. Unlike grain 

crops, conspicuous flowers will appear on top of the rape-

seed canopy at its early reproductive stage and the flow-

ering period may last more than 30 days [35]. Rapeseed 

flowers were bright yellow with dense petals that can 

scatter the radiation to all possible directions, while rape-

seed leaves are green orienting nearly horizontal. With 

the same vegetation cover, it is observed that canopy 

spectra of rapeseed during flowering stage was twice as 

high as during green-up stage, especially in the green and 

NIR spectral ranges [36]. When the remotely detected 

canopy spectra is greatly mixed by flower and leaf spec-

tra, the accuracy of estimating vegetation parameter with 

pixel-level VI would decrease. Behrens et al. [37] showed 

the weak correlations between NDVI and rapeseed bio-

mass with the correlation coefficient below 0.1; Fang et al. 

[36] reported the uncertainties increased by 50% when 

using VI to estimate vegetation fraction in rapeseed dur-

ing its flowering season. Canopy reflectance sensed from 

the space is confounded by different components of rape-

seed cropland, and there is a need to consider the factor 

of spectral mixture that will influence the yield estimates 

especially during the flowering period.

Many studies used spectral mixture analysis to quan-

tify the spectral contributions from different components 

within a pixel [38–40]. It assumes that the individual pixel 

is mixed by a few dominant components with different 

proportions that appear in the studied scene, and these 

components spectrally contribute to the total pixel signal 

at sub-pixel scale [41]. Endmembers, the dominant com-

ponents of the image scene and not themselves mixed 

by other components, are firstly identified. A set of pure 

spectra of these endmembers is measured as field data, 

and the fraction of each endmember within a pixel can be 

estimated based on comparing the pixel spectra and field-

collected endmembers’ spectra in multiple bands [42]. 

�is method is commonly applied to assess vegetation 
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properties. Based on measured spectra of two endmem-

bers (bare soil and dense vegetation), Gitelson et  al. [43] 

developed an approach to estimate vegetation fraction in 

sampling zones; Li and Strahler [44] proposed a model sep-

arating a pixel reflectance into reflectance of four compo-

nents (sunlit ground, sunlit crown, shadowed ground and 

shadowed crown), and this model was further extended to 

estimate tree density in woodland using Landsat satellite 

data [45]. However, the analysis of how the spectral mix-

ture will affect yield estimates and how to select appropri-

ate endmembers for yield estimation in rapeseed has not 

been adequately elaborated and addressed.

Recently, Unmanned Aerial Vehicles (UAV) are increas-

ingly used as an innovative remote sensing platform for 

environmental applications [46, 47]. Unlike field-col-

lected data, UAV can fly over the predetermined area to 

obtain the images efficiently with very high spatial (e.g., 

centimeters) and temporal (e.g., daily observations) reso-

lutions, which greatly reduces the labor and time costs 

[48]. In comparison to most satellite and airborne plat-

forms, the availability of using customizable sensor on 

UAV as well as the flexibility of changing UAV flight alti-

tude and attitude can give us an easy access to data with 

the spatial and spectral resolutions as required by users 

[49]. �is is particularly beneficial for precision agricul-

ture by offering the image with resolutions appropriately 

selected for detailed observations on the in-field crop 

growth. For example, Jin et al. [50] developed a method 

to estimate wheat density using images taken from a hex-

acopter flying at very low altitude (3–7  m); López-Gra-

nados et al. [51] mapped weed distributions in croplands 

based on images collected by UAV at different heights; 

Zhou et al. [52] predicted rice yield using multi-temporal 

images acquired by two cameras with different spectral 

ranges mounted on an UAV system. UAV-collected data 

is becoming a promising tool for monitoring crop growth 

and assisting in field managements.

�is study explores to improve VI-based approach for 

estimating rapeseed yield by considering spectral mixture 

factors. �e image of the study site was remotely obtained 

by an UAV system. �e first objective is to compare and 

evaluate several widely used VIs for rapeseed yield esti-

mation. �e second objective is to identify and analyze 

the endmembers that appear in remotely sensed scene 

and mostly related to rapeseed yield. �e final objective 

is to develop an approach for the accurate estimation of 

rapeseed yield with VI data and spectral mixture analysis.

Methods
Study area

In this investigation, we studied 24 rapeseed plots 

located at Rapeseed Experiment and Research Base 

(30.1127°N,115.5894°E), Central China Agricultural 

University, Wuxue, Hubei, China. �ey were of the size 

about 15  m × 2  m and all planted with the same hybrid 

of rapeseed (Huayouza No.9) [53]. �e field manage-

ments for these plots were similar except that different 

amounts of nitrogen fertilizer were applied. Eight nitro-

gen (N) rates (0, 45, 90, 135, 180, 225, 270 and 360  kg/

ha) were utilized, and each rate was repeated on three 

randomly distributed plots (Fig.  1). All the plots were 

irrigated and weeded regularly. �e growing season for 

our studied rapeseed was from Sept. 2014 to the follow-

ing May. In this study, one UAV flight was arranged to 

obtain the image of study area on Mar. 21, 2015 during 

the early flowering stage of the rapeseed. In this period, 

rapeseed was on the stage that plants increase photosyn-

thetic rates due to strong carbon sink of developing flow-

ers and fruits [37]. �us, the obtained image at this stage 

probably corresponded to the maximum photosynthe-

sis capacity of rapeseed plants, which is indicative to its 

final yield. For all 24 plots, half of each plot was sampled 

periodically for crop growth evaluations while the other 

half of each plot was kept intact until the harvest date for 

yield determination.

Rapeseed yield determination

�e 24 rapeseed plots were harvested on 5 May, 2015. 

In each plot, half of the above-ground plant materials 

(around 15 m2) were all cut for yield determination. �e 

harvested materials were exposed to the sun for 10 days 

for seed threshed. �e seeds were then cleaned and put 

into an oven at 60  °C until their weight did not change 

(around 4 days). All the dry seeds were weighted together 

and the plot yield was calculated as the ratio of this total 

weight to the ground area (kg/ha). �e final yield of 24 

plots varied from 1000 to 3500 kg/ha, which represented 

a wide range of yield variation.

Fig. 1 Study area in this study and the nitrogen fertilizer applications 

in 24 rapeseed plots
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Canopy re�ectance and VI derived from UAV data

�e UAV flight was carried out on Mar. 21, 2015 between 

10:00 and 13:00 local time when changes in solar zenith 

angle were minimal and the weather was clear with low 

cloud cover observed. �e Mini-MCA system (Mini-

MCA 6, Tetracam Inc., Chatsworth, CA, USA) was 

mounted on an UAV (S1000, SZ DJI Technology Co., Ltd, 

Shenzhen, China) to obtain images of the studied area. 

Mini-MCA is consisted of six individual miniature digi-

tal cameras, and each camera lens was equipped with a 

customer-specified band pass filter centered at wave-

length of 490, 550, 670, 720, 800 or 900 nm respectively 

at the band width of 10  nm. �ese bands were selected 

since they were commonly used for estimating vegetation 

photosynthesis-related parameters [37, 54, 55].

Prior to the flight, six cameras were co-registered in the 

laboratory using a camera distortion correction model 

[56] so that the corresponding pixels of each lens were 

spatial overlapped in the same focal plane. During the 

flight, a gimbal stable platform was used to help adjust 

the camera system pointing close to nadir [57], which 

minimized the fluctuations in collected reflectance due 

to variations of observation azimuth angles. �e flight 

altitude was kept at 50  m above the ground to acquire 

images at the spatial resolution around 2.5 cm. For each 

exposure, six cameras simultaneously took a picture to 

produce a six-band-composite image of the study area.

In this study, the image digital numbers (DN) were 

converted to surface reflectance using the empirical 

line approach [58, 59]. Four calibration ground targets, 

providing a relatively flat response to incident radia-

tion throughout the visible to NIR spectral ranges, were 

placed in the cameras’ field of view as a standard for 

image radiometric corrections. �e calibration targets 

used in this study are made of highly durable woven 

polyester fabric at the size of 0.4  m × 0.6  m, having the 

relatively constant reflectance of 6%, 24%, 48% and 100%, 

respectively (more details can be found at: http://www.

tetra cam.com/Produ cts_Groun d_Calib ratio n_Panel 

s.htm). Assuming a linear relationship between surface 

reflectance and DN values, canopy surface reflectance 

ρ(�) can be calculated as [60, 61]:

where DN(�) is the digital number of a given pixel at 

wavelength � ; B� and G� are bias and gains of the sensor 

at wavelength � . For each wavelength, B and G can be 

calculated based on DN values of pixels from four cali-

bration targets (referring to DN0.06 , DN0.24 , DN0.48 , DN1)

Within each of 24 plots, we defined a maximum rectan-

gle fitted the plot (including around 30,000 pixels). And 

the plot-level reflectance was calculated as the average 

value of all pixels within the defined rectangle. Plot-level 

VI was then retrieved from plot-level canopy reflectance 

(Table 1).

Spectral mixture analysis and endmember abundance

To analyze the factor of spectral mixture within a pixel, 

five endmembers were considered in this study: (1) flower 

(FL), (2) sessile leaf (SE-LF), (3) short stalk leaf (SS-LF), 

(4) wet soil (W-soil) and (5) dry soil (D-soil). �ey were 

the dominant components visible in our studied scene 

(Fig.  2). Samples of each component were collected 

from the study area and their spectra were immediately 

(1)
ρ(�) = DN (�) × G� + B�

(� = 490, 550, 670, 720, 800 and 900 nm)
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Table 1 Vegetation indices tested in this study

Vegetation indices Formula References

Normalized Difference Vegetation Index (NDVI) (ρ800 − ρ670)/(ρ800 + ρ670) Rouse et al. [62]

Red edge chlorophyll index  (CIrededge) ρ800/ρ720 − 1 Gitelson et al. [63]

Green chlorophyll index  (CIgreen) ρ800/ρ550 − 1 Gitelson et al. [63]

Visible Atmospherically Resistant Index (VARI) (ρ550 − ρ670)/(ρ550 + ρ670) Gitelson et al. [43]

Ratio Vegetation Index (RVI) ρ800/ρ670 Jordan et al. [64]

Difference Vegetation Index (DVI) ρ800 − ρ670 Richardson et al. [65]

Renormalized difference Vegetation Index (RDVI)
√
NDVI × (ρ800 − ρ670)/2 Roujean et al. [66]

Enhanced Vegetation Index (EVI) 2.5(ρ800 − ρ670)/(ρ800 + 6ρ670 − 7.5ρ490 + 1) Liu et al. [67]

Triangular Vegetation Index (TVI) 0.5[120(ρ800 − ρ550) − 200((ρ670 − ρ550)] Broge et al. [68]

Soil Adjusted Vegetation Index (SAVI) (1 + L)(ρ800 − ρ670)/(ρ800 + ρ670 + L) Huete [69]

http://www.tetracam.com/Products_Ground_Calibration_Panels.htm
http://www.tetracam.com/Products_Ground_Calibration_Panels.htm
http://www.tetracam.com/Products_Ground_Calibration_Panels.htm
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measured in situ using a hyperspectral radiometer (Ana-

lytical Spectral Devices Inc., Boulder, CO, USA). �is 

radiometer was equipped with a 25° field-of-view opti-

cal fiber that obtained sample reflectance in range of 

350–1100 nm at a spectral resolution around 1 nm. �e 

measurements of W- or D- soil spectra were conducted 

in all plots (at least six sampling areas per plot) with the 

ASD fiber pointing to the area at the appropriate height 

to make sure the instant field of view was all covered by 

wet or dry soil with no vegetation, and the averaged spec-

tra was used as soil spectra. �e leaf spectra were taken 

fractional abundance of each spectral endmember. It is 

assumed that the acquired image can be represented as 

a linear mixture of a few dominant spectral endmembers. 

For a given pixel at the wavelength λ, the pixel reflectance 

ρ(λ) can be approximated as:

where N is the number of selected endmembers,  Abdi is 

the fractional abundance of endmember i, ρi(�) is the ref-

erence reflectance of endmember i at band λ. �e abun-

dance is constrained between 0 and 1, and for each pixel 

the sum of the abundance of all endmembers equals to 

1. An abundance of 0 indicates no spectral contributions 

from the particular endmember, while an abundance of 1 

means this pixel spectra is the same with pure spectra of 

the particular endmember.

In this study, we selected flower, sessile leaf, short-stalk 

leaf, wet soil and dry soil as five endmembers. According 

to Eq. 3, abundance of the selected five components for 

each pixel can be retrieved from the six-band UAV image 

of the study site [71–73] (run by MATLAB 7.5) as:

where ρ(�i) is the surface reflectance of the given pixel 

at band �i (i = 1, 2…6). ρFL(�i) , ρSE−LF (�i) , ρSS−LF (�i) , 

ρW−soil(�i) and ρD−soil(�i) are the endmember reflec-

tance at band �i for flower, sessile leave, short stalk leave, 

wet soil and dry soil, respectively. AbdFL , AbdSE−LF , 

AbdSS−LF , AbdW−soil and AbdD−soil are the abundance 

of flower, sessile leave, short stalk leave, wet soil and dry 

soil respectively, referring to the fraction of the given 

component within a pixel. Pixel by pixel, the abundance 

images of five endmembers were then constructed. For 

each abundance image, the previous defined rectangle 

in each of 24 plots for calculating plot-level VI was used 

to retrieve plot-level abundance by averaging abundance 

values of all pixels within the given rectangle.

(3)

ρ(�) =

N∑

i=1

Abdiρi(�);

and 0 ≤ Abdi ≤ 1;

and

N∑

i=1

Abdi = 1

(4)
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Fig. 2 Endmembers selected in this study

using ASD with a self-illuminated leaf clip for sessile leaf 

and short-stalk leaf respectively. For each leaf, spectral 

reflectance was scanned at 5 positions randomly distrib-

uted on the leaf adaxial side and six leaves were sampled 

per plot. �e average of all spectra scans was then used 

as leaf reflectance. Since the rapeseed flower is small and 

narrow, the sample flowers were gathered together on a 

black background and arranged to fully cover the sensor’s 

view field to make sure that the radiometer collected the 

pure spectra of flower. By this way, the reference end-

member reflectance of five components were obtained: 

ρFL , ρSE−LF , ρSS−LF , ρW−soil and ρD−soil.

For spectral mixture analysis, the linear mixing spec-

tral model [70] was used in this study to estimate the 
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Yield estimation in rapeseed using VI and abundance data

In this study, plot-level VI was firstly correlated with 

rapeseed yield directly. Since leaves are the main organ 

for photosynthesis in rapeseed that will determine its 

production and the seed number largely depends on the 

number of flowers that will be further translated into 

pods, plot-level VI was multiplied by plot-level leaf or 

flower abundance for relating to rapeseed yield. As lin-

ear relationships are easy to implement and sensitive to 

wide range of variation in the dependent variable [74], 

four linear relationships were developed using 24 sam-

ples: (1) yield versus VI, (2) yield versus VI × AbdFL (3) 

yield versus VI × (AbdSE-LF + AbdSS-LF) and (4) yield ver-

sus VI × AbdSS-LF. Coefficients of determination  (R2) 

and coefficients of variation (CV) were analyzed and 

compared.

Algorithm establishment using leave-one-out 

cross-validation

�is study used the leave-one-out cross-validation 

approach [75] to establish the algorithm for rapeseed 

yield estimation. �e samples were trained and tested 

for K times (K is the number of samples, K = 24 in this 

study). For each time i, K − 1 samples were used itera-

tively as training data for calibrating the coefficients 

 (Coefi) of the algorithm with the accuracy of the coef-

ficients of determination (Ri
2), and the remaining single 

sample was used for validation to obtain the estimation 

error  (Ei). �is procedure was repeated K times, with all 

samples used for both calibration and validation and each 

sample used exactly one time as validation data. From K 

iterations, the final algorithm with the accuracy  (R2 and 

root mean square error—RMSE) can be produced as:

Results
Relationship of VI versus yield in rapeseed

In this study, the yield was firstly correlated with several 

widely used VIs. Among the tested indices,  CIred edge, EVI, 

DVI, RDVI, TVI and SAVI showed significant correla-

tions with yield  (R2 > 0.7) in rapeseed, while NDVI, RVI, 

VARI and  CIgreen had weak correlations with rapeseed 

yield  (R2 below 0.52)—Table 2. In addition, the relation-

ships of NDVI and VARI versus yield appeared nonlinear. 

(5)

Coef =

∑K
i=1

Coefi

K
R2

=

∑K
i=1

R2
i

K
RMSE =

√

∑K
i=1

E2
i

K

As shown in Fig.  3, NDVI and VARI were saturated to 

moderate to high yield variations when the yield of rape-

seed exceeding 2000 (kg/ha), but SAVI and  CIred edge 

related to yield almost linearly.

Image-based abundance analysis

In order to improve the accuracy of yield estimates, 

spectral mixture was considered as a factor affecting 

yield in our developed approach. Figure 4 presented the 

measured spectra of five endmembers appearing in the 

studied rapeseed-plot. As soil moisture increased, soil 

reflectance decreased at all wavelengths. Obvious spectra 

difference was observed for flower, sessile leaf and short 

stalk leaf in rapeseed plant. Flower reflectance was lower 

than half of the leaf reflectance in blue band (3% vs. 8%), 

but it was much higher than leaf reflectance in green, red 

and NIR bands. Compared to short stalk leaf, sessile leaf 

had much lower green reflectance but a little higher NIR 

reflectance.

Based on spectra of selected endmembers, abundance 

image of each component was derived for the study area. 

�e abundance images of flower, short stalk leaf, sessile 

leaf, wet soil, and dry soil were given in Fig.  5. Gener-

ally, among the five abundance images, flower abundance 

image appeared the brightest. �e abundance image of 

short stalk leaf was overall brighter than that of sessile 

leaf. And the brightness of dry and wet soil abundance 

images was relatively low (Fig. 5b–f). Pixels located at the 

ridges between the plots were bright in soil abundance 

images but dark in flower/leaf abundance images. Noted 

that obvious brightness heterogeneity was existed among 

different plots in the images, and such heterogeneity pat-

terns were quite different in flower abundance image and 

leaf abundance images.

Yield estimation using VI and abundance data

Since flower and leaf were the most important organs 

for rapeseed photosynthesis and production, in our pro-

posed approach we used the information of plot-level 

flower abundance  (AbdFL), leaf (sessile leaf and short 

stalk leaf together) abundance (AbdSE-LF + AbdSS-LF) and 

short stalk leaf abundance  (AbdSS-LF) to evaluate the yield 

in rapeseed. Generally, using VI × AbdFL to estimate 

rapeseed yield was less accurate than using VI alone with 

higher CV and lower  R2 values except for  CIgreen, VARI 

and RVI. For all tested indices, multiplying leaf-related 

abundance information (VI × (AbdSE-LF + AbdSS-LF) and 

Table 2 Correlation coe�cient  (R2) between VI and yield in rapeseed

CIgreen VARI RVI NDVI CIred edge EVI DVI RDVI TVI SAVI

R2 0.33 0.43 0.47 0.51 0.72 0.74 0.78 0.78 0.78 0.81
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VI × AbdSS-LF) increased the accuracy of yield estimation 

(Table 3). As shown in Fig. 6, using the product of leaf-

related abundance and VI was able to estimate yield accu-

rately with  R2 above 0.7 and CV blow 17 (%). Especially 

for the indices which had weak correlation with yield 

(such as NDVI,  CIgreen, VARI, RVI), the yield estimation 

accuracy was greatly improved when using VI × (AbdSE-

LF + AbdSS-LF) and VI × AbdSS-LF, with  R2 increased by 

0.3 and CV decreased by 8%. Also noticed, for all indi-

ces VI × AbdSS-LF consistently gave better estimation 

results than VI × (AbdSE-LF + AbdSS-LF). �e algorithms 

were established using the leave-one-out cross-validation 

Fig. 3 The relationships of yield and a  CIgreen, b RVI, c NDVI, d VARI, e  CIred edge and f SAVI
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approach for NDVI × AbdSS-LF,  CIred edge × AbdSS-LF, 

TVI × AbdSS-LF and SAVI × AbdSS-LF, which had the high-

est correlation with yield (Table  4). �ey worked accu-

rately for estimating yield in rapeseed with RMSE below 

303  kg/ha and CV below 13.1% (Fig.  7). Moreover, the 

relationship of yield versus NDVI × AbdSS-LF appeared 

much more linear related to yield than the relationship of 

yield versus NDVI (Figs. 3 and 7).

Discussion
�e indices tested in this study was mostly originally 

developed for estimating vegetation greenness-related 

parameters such as chlorophyll content, leaf area index 

and vegetation fraction. It is found that crop greenness 

during mature growing stage was indicative to crop yield 

and some indices have been successfully used for yield 

estimation in maize and soybean [76]. However, they 

didn’t work accurately for yield estimates in rapeseed 

(Table 2, Fig. 3). Especially for indices using green reflec-

tance  (CIgreen and VARI), the relationships of VI versus 

yield were weak with  R2 below 0.43. �is is consistent 

with finding from Sulik and Long [77] that the correlation 

between NDVI and yield was only 0.22 in spring canola 

during flowering seasons in Oregon, USA, thus they pro-

posed a yellowness index which was linearly and strongly 

related to canola yield with the correlation coefficient 

around 0.76. Unlike grain crops (e.g., maize or soybean), 

rapeseed during early mature stage had conspicuous 

flowers which may occupy the top of canopy for more 

than 30  days. �e flowers are numerous and aligned in 

racemes, and they appear bright yellow. In this case, can-

opy reflectance in green bands would be more affected 

by flower absorption and scattering. On the other hand, 

plot-level VI was calculated from mixed components 

including flower, leaf and soil. Each component contrib-

uted differently to rapeseed yield, so using VI alone for 

yield regression may introduce unexpected uncertain-

ties. �us the abundance images of each component were 

produced trying to associate VI with the component 

most relevant to rapeseed yield.

Among the five abundance images, flower abundance 

was the brightest (Fig. 5) indicating that flowers occupied 

the largest proportion in view of sensor. �is is not sur-

prising since the rapeseed was blooming in our studied 

period, and flowers were growing on the top of canopy 

thus easily being seen by the sensor. Noted that the abun-

dance of short stalk leaf was generally higher than that 

of sessile leaf. In rapeseed plant, sessile leaf was quite 

small and vertically oriented (Fig. 2), thus it was likely to 

be hidden underneath the flower petals. Although short 

stalk leaf was developed underneath the sessile leaf, it 

was much bigger and horizontal expanded thus appear-

ing more visible in view of sensor. Due to the different 

nitrogen treatments applied in 24 plots, the greenness 

of rapeseed in different plots varied when the images 

were taken, and different plots would have contrasting 

yield thereafter ranging from 1000 to 3500  kg/ha. It is 

observed that flower abundance image was quite homo-

geneous in 24 plots, but obvious difference in leaf abun-

dance existed among different plots (Fig. 5). It indicated 

that leaf abundance was more sensitive than flower abun-

dance to nitrogen usage variations.

Compared to using VI to estimate yield, the accuracy of 

yield estimation increased when using VI × AbdSS-LF and 

VI × (AbdSE-LF + AbdSS-LF) for all indices, but for most 

indices the accuracy decreased when using VI × AbdFL 

(Fig. 6, Table 3). �e flowering period of rapeseed can last 

for more than 30 days. �e plants begin to flower firstly 

at the main stems, and then on upper branches followed 

by lower branches. �e studied image was taken in the 

early flowering period, thus the flowers that may bloom 

later were missing at the observation moment. Only one 

observation (even several) during the relatively long flow-

ering period cannot record the complete information of 

possible flowers of all plants. So multiplying the flower 

abundance at one moment weakened the relationship of 

VI versus yield.

During flowering period, plant leaves were fully devel-

oped and their greenness maintained quite stable. 

Many studies showed that leaves of rapeseed are mainly 

responsible for photosynthesis which is crucial to final 

yield, and the leaf status at plant mature stage is repre-

sentative to crop potential yield [78]. �e product of 

VI and leaf-related abundance may somewhat get rid 

of components that are not closely related to rapeseed 

yield (e.g., soil and flower at one moment). For all tested 

VIs, VI × (AbdSE-LF + AbdSS-LF) related to rapeseed yield 

closely with  R2 above 0.7. Moreover, multiplying the 

abundance of short stalk leaf further increased the accu-

racy of yield for all indices. Wang et al.’s [35] experiments 

evaluated and compared the contributions of short stalk 

Fig. 4 Pure spectral reflectance of flower, sessile leaf, short stalk leaf, 

dry soil and wet soil in the studied rapeseed plots
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Fig. 5 a The six-band image of the study area obtained by UAV system (true color was shown). Abundance images derived from spectral mixture 

analysis on the UAV six-band image for b flower, c sessile leaf, d short stalk leaf, e dry soil and f wet soil
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Table 3 The coe�cients of determination  (R2) and coe�cients of variation (CV) of relationships of yield versus VI, yield 

versus VI × AbdFL, yield versus VI × (AbdSE-Lf + AbdSS-LF) and yield versus VI × AbdSS-LF

R
2 CV (%)

VI VI × AbdFL VI × (AbdSE-LF + AbdSS-LF) VI × AbdSS-LF VI VI × AbdFL VI × (AbdSE-LF + AbdSS-LF) VI × AbdSS-LF

CIgreen 0.33 0.6 0.71 0.75 25.8 20.1 16.9 15.7

VARI 0.43 0.6 0.73 0.81 23.8 19.8 16.4 13.8

RVI 0.47 0.69 0.74 0.78 23.0 17.5 16.2 14.8

NDVI 0.51 0.46 0.79 0.83 22.0 23.1 14.5 13.0

CIred edge 0.72 0.6 0.82 0.82 16.7 20.0 13.5 13.4

EVI 0.74 0.5 0.78 0.82 16.2 22.4 14.8 13.4

DVI 0.78 0.55 0.8 0.82 14.8 21.3 14.2 13.4

RDVI 0.78 0.61 0.8 0.82 14.9 19.8 14.1 13.2

TVI 0.78 0.55 0.8 0.82 14.7 21.3 14.2 13.3

SAVI 0.81 0.52 0.81 0.83 13.7 21.8 13.9 12.8

Fig. 6 The comparison of a coefficients of determination  (R2) and b coefficients of variation (CV) for relationships of (1) yield versus VI, (2) yield 

versus VI × AbdFL (3) yield versus VI × (AbdSE-LF + AbdSS-LF) and (4) yield versus VI × AbdSS-LF for the studied indices

Table 4 The algorithms for  estimating rapeseed yield using the  product of  vegetation index and  short-stalk-leaf 

abundance

The best �t functions, determination coe�cients  (R2) and root mean square errors (RMSE) are given for four indices

VI × AbdSS_LF Best �t function R2 RMSE (kg/ha)

SAVI × AbdSS_LF Yield = 9252.9 × SAVI × AbdSS_LF +519.28 0.84 299.91

NDVI × AbdSS_LF Yield = 8059.7 × NDVI × AbdSS_LF +204.22 0.83 294.11

CIrededge × AbdSS_LF Yield = 7011.2 × CIrededge × AbdSS_LF +735.09 0.82 302.27

TVI × AbdSS_LF Yield = 181.15 × TVI × AbdSS_LF +755.43 0.82 299.88
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leaves and sessile leaves on rapeseed yield. �ey found 

that the removal of sessile leaves obviously decreased 

the number of rapeseed pods while the removal of short 

stalk leaves not only decreased the number of pods but 

also the number of seeds per pod. As shown in Fig.  6, 

by multiplying  AbdSS-LF all indices were able to estimate 

yield quite accurately with  R2 above 0.75 and CV below 

15.7%. Even for VIs appeared weakly related to rapeseed 

yield such as  CIgreen, VARI and NDVI, the use of  AbdSS-LF 

enabled them to achieve comparable accuracy with other 

indices. VI × AbdSS-LF associated VI to the fraction of 

short stalk leaf in a plot, which is the most relevant com-

ponent for rapeseed yield, thus resulting in higher accu-

racy for yield estimation than VI alone. It indicated that 

the model of yield∝VI × AbdSS-LF may be applicable for 

all greenness-related VIs and not selective to indices with 

specific spectral bands and sophisticated formulations, 

which greatly expand the range of choice for yield estima-

tion using remotely sensed images with conventional and 

few bands.

�is study developed an approach to estimate rape-

seed yield using the product of vegetation index and leaf 

abundance retrieved from the UAV image. �e approach 

is simple but gives an important indication that spectral 

mixture analysis needs to be considered when estimating 

yield by remotely sensed VI, especially for the image con-

taining obviously spectral different components. For all 

tested VIs in rapeseed, the product of VI and leaf abun-

dance was capable of estimating yield especially for those 

VIs which seemed weakly related to rapeseed yield in 

many studies [79, 80]. Instead of creating a new spectral 

index requiring specific spectral bands or sophisticated 

Fig. 7 Validation of algorithms, established using the leave-one-out cross-validation approach, for estimating rapeseed yield in 24 plots under 

different nitrogen treatments by a NDVI × AbdSS-LF, b  CIred edge × AbdSS-LF, c TVI × AbdSS-LF and d SAVI × AbdSS-LF
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formulations, maybe an effective and simple way is to 

relate VI to abundance of plant components most rel-

evant with its final yield. �e results of this work can 

provide a conceptual background for using satellite data 

of which the spectral mixture may be an issue. �e end-

members proposed in this study are particularly for rape-

seed yield estimation, which is not applicable to other 

crops. But this work may offer a theoretical framework 

for yield estimation in crops which have conspicuous 

flowers or fruits with significantly different spectra from 

their leaves (e.g., rapeseed, cotton). Our future work is to 

apply this approach to real satellite data and in other crop 

species. In addition, we’d like to test this approach in 

crops planted in various regions under different weather 

conditions in order to explore the robustness of our 

approach to changes in meteorological parameters such 

as temperature, humidity, precipitation and wind speed.

Conclusions
In this study, we developed an approach to estimate rape-

seed yield using UAV-obtained canopy reflectance and 

abundance data. It is observed that canopy reflectance 

collected during rapeseed flowering period is mixed and 

confounded by reflectance of flower, leaf and soil. �us, 

the spectral mixture analysis was conducted to estimate 

the fractional abundance of different components that 

appear in the studied scene within a pixel. Flower, sessile 

leaf, short stalk leaf, wet soil and dry soil were selected 

as endmemebers and abundance images of these compo-

nents were produced based on the six-band UAV image. 

For all tested indices, the product of plot-level VI and 

leaf-related abundance closely related to rapeseed yield 

with  R2 above 0.75. Among the tested VIs, multiplying 

NDVI,  CIred edge, TVI, and SAVI by short-stalk-leaf abun-

dance were the most accurate for yield estimates in rape-

seed under different nitrogen fertilizer treatment with 

estimation errors below 13.1%.
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